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Abstract

The class of orthomodular spaces described by Gross and Künzi based
on H. Keller’s work is a generalization of classic Hilbert spaces. Let E be
an orthomodular space in this class, endowed with a positive form φ. As
in Hilbert spaces, φ induces a topology on E making it a complete space.
For every n ∈ N, we describe definite spaces (En, φn), with dim(En) = 2n

over the base field Kn = R((χ1, . . . , χn)), and we build a family of selfadjoint
and indecomposable operators. Later we build an orthomodular definite space
(E, φ) with infinite dimension and we also prove that the sequence of operators
in this family induces a bounded, selfadjoint and indecomposable operator in
(E, φ).

1 Preliminaries.

In this chapter we will study the fields that we are going to use as base fields of
different vector spaces, including finite rank and infinite rank, vector spaces with
finite dimension, and finally an orthomodular vector space with infinite dimension.

1.1 Fields of Generalized Power Series.

Let (G, +) be an ordered additive group and K = R((G)) be the field of generalized
power series with real coefficients, that is, the set of all maps α : G −→ R such that
supp(α) = {g ∈ G : α(g) 6= 0} is a well ordered set. Addition and multiplication
are defined as follows:

(α + β)(g) = α(g) + β(g)
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(α · β)(g) =
∑

g′+g′′=g

α(g′) · β(g′′)

for all α, β ∈ K and g, g′, g′′ ∈ G.
Let τ g be the characteristic function of {g} ⊆ G. Then α ∈ K can be represented

by the following expression:
α =

∑
g∈G

agτ
g

with ag := α(g) ∈ R.
On one hand, it is possible to order K in the following way:
If α ∈ K then α =

∑
g∈G

agτ
g ∈ K with g0 = min supp(α), we say that α is positive

in the order of K if and only if ag0 is positive as a real number.
On the other hand, the function v : K −→ G ∪ {∞} defined by:

v(α) := min supp(α) para α 6= 0 and v(0) = ∞

is a valuation in the sense of Krull, it means:

a) v(α) = ∞ if and only if α = 0,

b) v(α · β) = v(α) + v(β), and

c) v(α + β) ≥ min{v(α), v(β)}.

This order defined in K is compatible with the valuation in the sense that for
all α, β ∈ K if 0 ≤ α ≤ β then v(β) ≤ v(α).

We can also deal with K as a topological field considering

Ug(α) = {x ∈ K : v(x− α) > g}

as a base for open sets at α ∈ K, for any g ∈ G. With this topology K is complete.

1.2 The En vector space over the field Kn.

a) The valued field Kn. We will consider the additive group Gn =
n⊕

i=1
Z.

Gn can be ordered antilexicographically, that is, if h = (h1, . . . , hn) 6= f =
(f1, . . . , fn) ∈ Gn and k = max{j ∈ {1, 2, . . . , n} : hi 6= fi}, then f ≤ h if and
only if fk < hk. Now we can define Kn = R((Gn)) as the field of generalized
power series with real coefficients.

Remark 1.1 The field K1 = R((G1)) is isomorphic to R((t1)) the field of
Laurent series over t1. Moreover, Kn

∼= R((t1, . . . , tn))

Lemma 1.2 [2] Let Kn = R((Gn)). For i = 1, 2, . . . , n let hi = (0, . ., 1, 0, . ., 0)
and χi := τhi ∈ Kn. Then

Σn := {χε1
1 χε2

2 · · ·χεn
n : ε1, . . . , εn ∈ {0, 1}}

is a set of representatives of the positive squares classes of Kn.
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Remark 1.3 As Kn is an ordered field, it is possible to order Σn from the
biggest to the smallest representative as follow:

Σn = {τ1 = 1, τ2 = χ1, τ3 = χ2, . . . , τ2n = χ1χ2 · · ·χn}

b) The vector space En.

Definition 1.4 En = {(ξ1, . . . , ξ2n) ∈ K2n

n } is the Kn-vector space with
dim(En) = 2n.

We write en
1 , e

n
2 , . . . , e

n
2n as the vectors of the canonical base of En. En is

endowed with a symmetric positive form φn : En × En −→ Kn defined by:

For i, j ∈ {1, . . . , 2n}:

a) If i 6= j, then φn(en
i , e

n
j ) = 0, and

b) φn(en
i , e

n
i ) = τi ∈ Σn (see 1.3).

c) Operators in L(En).

Definition 1.5 Let (E, φ) be a vector space endowed with an inner product
and
B : E −→ E a linear operator, we say that B is decomposable if E is an
orthogonal addition of two non-trivial invariant subspaces: E = E1 ⊕ E2. In
that case E admits an orthogonal base in which the matrix of B is decomposed
into two blocks

B =

(
B1 0
0 B2

)
.

We deal with decompositions of operators B which are selfadjoint, that is,
φ(B(x), y) = φ(x, B(y)) for all x, y ∈ E. Such an operator is decomposable
if and only if E admits a non-trivial subspace E1, for then E2 = E⊥

1 is also
invariant.

We are interested about proving the decomposability or indecomposability of
selfadjoint linear operators in En. Next lemma explains why the dimension of
the space En as a power of 2.

Lemma 1.6 ([2], Lemma 2.6) Let Kn be the base field and (E, φ) a positive
defined vector space. If dim(E) is not a power of 2, then any selfadjoint linear
operator B : E −→ E is decomposable.

In [2] Keller and Ochsenius had built for every n ∈ N a selfadjoint, indecompos-
able linear operator defined in (En, φn) and in [7] is proved that this collection
induces an operator in infinite dimension also selfadjoint and indecomposable.
The aim of this paper is to generalize this construction.

Lemma 1.7 Let E be a vector space with finite dimension over a field K. If
B : E −→ E is a decomposable operator, then the characteristic polynomial is
reducible.

Proof: The proof is straightforward and will be omitted.
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2 The K-vector space E.

As this work can be divided into two parts, on one hand the part developed in finite
dimension and, on the other hand the infinite dimension one, we are going to indicate
some previous results about the vector space with infinite dimension (see[7]).

Let G =
∞⊕
i=1

Z ordered antilexicographically, and K = R((G)) the field of gener-

alized power series over R. As in the preliminaries, K is a non-archimedean valued
field in the sense of Krull, Henselian, topological and ordered, consistently with the
valuation. Let Σ be a complete set of representatives of the positive square classes
of K̇, ordered decreasingly:

Σ = {τ1 = τ (0,0,...), τ2 = τ (1,0,0,...), τ3 = τ (0,1,0,0,...), τ4 = τ (1,1,0,0,...), . . .}

Now, we are ready to define the K-vector space E (see[4]):

E := {(ξi)i∈N ∈ KN :
∞∑
i=1

ξ2
i τi converges in the valuation topology },

E is a K-vector space with addition and scalar multiplication by components.
It is possible endow E with a positive form φ : E × E −→ K by:

φ((ξi)i∈N, (ηi)i∈N) =
∞∑
i=1

ξiηiτi.

Remark 2.1 It is important to realize that for every vector in the canonical base of
E, ei = (0, . . . , 1, 0, . . .), we have that φ(ei, ei) = τi, and as τi is not a square in G,
except when i = 1, it is clear that the base is orthogonal but not orthonormal.

Definition 2.2 Let L be a vector space over an arbitrary skew field endowed with a
hermitian form φ. Then (E, φ) is called orthomodular if

X ⊆ L, X = X⊥⊥ ⇒ L = X ⊕X⊥

holds true.

Theorem 2.3 ([4], Theorem 1) Let G, K and E as before, then:

a) (E, φ) is an orthomodular space.

b) The map || · || : E −→ G defined by x 7→ v(φ(x, x)) is a non-archimedean
norm. The form φ is continuous in the norm topology. E is complete in the
norm topology.

c) A linear subspace U of E is closed in the norm topology if and only if it is
orthogonally closed.

d) If x, y are orthogonal, x ⊥ y, then ||x|| 6= ||y||. Consequently (E, φ) is not
isometric to any proper subspace.
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3 Building a sequence of indecomposable and selfadjoint

operators in finite dimension.

Now that we have finished with the preliminaries we can start building our operators.
Let In be the identity matrix with dimension 2n × 2n. Then we define T1 by its

matrix, over the canonical base, as follows:

T1 :=

(
0 χ1

1 0

)
,

and for n ≥ 1, Tn+1 recursively

Tn+1 :=

 Tn χn+1 · (Tn − In)

Tn − In Tn

 .

The first step is to prove that {Tn}n∈N is selfadjoint. In order to do this we have
the next theorem.

Theorem 3.1 Let A, B, C : (En, φn) −→ (En, φn) be three operators with matrices
A,B, C respectively. Then D : (En+1, φn+1) −→ (En+1, φn+1) defined by

D =

 A χn+1 · B

B C


is selfadjoint with respect to (En+1, φn+1) every time that A, B and C are selfadjoint
in (En, φn).

Proof: The proof follows directly from the hypothesis.
Therefore,

Corollary 3.2 For n ≥ 1, Tn : (En, φn) −→ (En, φn) is a selfadjoint operator.

Proof: The proof will be omitted, since it is enough to use induction and the
previous theorem.

Now, it is our aim to prove that every operator in the sequence is indecomposable.
In order to obtain it we have some previous lemma.

Lemma 3.3 [8] Let E be a vector space with finite dimension over a field K endowed
with an inner product φ. If B : E −→ E is selfadjoint, decomposable linear operator,
then its characteristic polynomial is reducible in K[x].

Lemma 3.4 For all n ≥ 1, the operator Tn does not have eigenvalues in Kn.

Proof: We prove by induction that every operator Tn does not have eigenvalues in
Kn but it has them in Kn = Kn(

√
χ1,

√
χ2, . . . ,

√
χn), and here they are all different.

If n = 1,

T1 =

(
0 χ1

1 0

)
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and its characteristic polynomial is p1(λ) = λ2 − χ1. Then its eigenvalues are
λ1 =

√
χ1 and λ2 = −√χ1. Those elements do not belong to K1, because in that

case χ1 should be a square and that is not true.
For n ≥ 1,

Tn+1 =

 Tn χn+1 · (Tn − In)

Tn − In Tn

 .

Let pn(λ) be the characteristic polynomial of Tn and Cn an extension of Kn that
has all the 2n roots of pn(λ), {λ1, . . . , λ2n}. By hypothesis the 2n roots of pn(λ) are
different and they do not belong to Kn. But in Cn, Tn can be diagonalized and:

R−1
n · Tn ·Rn =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λ2n

 ,

for some invertible matrix Rn with coefficients in Cn.

Now, we have to find all the roots of pn+1(λ).
We call Un and U∗

n to:

Un =

 Rn 0

0 Rn

 and U∗
n =

 R−1
n 0

0 R−1
n

 .

Then:
pn+1(λ)

= det(Tn+1 − λ · In+1)

= det(U∗
n · Tn+1 · Un − λ · In+1)

=

∣∣∣∣∣∣∣
R−1

n · Tn ·Rn − λ · In χn+1 ·R−1
n · (Tn − In) ·Rn

R−1
n · (Tn − In) ·Rn R−1

n · Tn ·Rn − λ · In

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1 − λ 0 . . . 0 (λ1 − 1)χn+1 0 . . . 0
0 λ2 − λ . . . 0 0 (λ2 − 1)χn+1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · λ2n − λ 0 0 · · · (λ2n − 1)χn+1

λ1 − 1 0 . . . 0 λ1 − λ 0 . . . 0
0 λ2 − 1 . . . 0 0 λ2 − λ . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · λ2n − 1 0 0 · · · λ2n − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and solving this system we obtain:

pn+1(λ) = [(λ−λ1)
2−(λ1−1)2χn+1] [(λ−λ2)

2−(λ2−1)2χn+1] · · · [(λ−λ2n)2−(λ2n−1)2χn+1]
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Therefore the eigenvalues of Tn+1 are all the solutions of the equations

(λ− λi)
2 − (λi − 1)2 · χn+1 = 0, with i = 1, . . . , 2n.

That means that they have the form:

λ
(l)
i = λi + l

√
χn+1 · (λi − 1)

where l ∈ {−1, 1} and i ∈ {1, . . . , 2n}.
As

√
χn+1 /∈ Kn+1(λ1, . . . , λ2n), then we have λ

(l)
i /∈ Kn+1. Thus, Tn+1 has no

eigenvalues in Kn+1, and all the 2n+1 roots of pn+1(λ) are different. �

Classically in Galois theory we have that:

Lemma 3.5 Let F be a field and r1, . . . , rm, in the algebraic closure of F , the m
different roots of a polynomial p(x) ∈ F [x] such that deg{p} = m. Also suppose
that ri /∈ F for i = 1, . . . ,m. Let K = F (r1, . . . , rm) be an extension of F and
G = GalF (K). Then p(x) is irreducible over F [x] if and only if for every pair ri, rj

there is an automorphism g ∈ G such that g(ri) = rj.

We have shown how to prove the irreducibility of a polynomial, now we will show
what happens when we change the base field.

Lemma 3.6 Let s(x) ∈ Kn[x] be a polynomial with deg(s) > 1. If s(x) is irreducible
in Kn[x], then so it is over Kn+1[x].

Proof: The proof relies directly on the fact that Kn+1 is a transcendental exten-
sion of Kn.

Finally we are ready to prove the main theorem in this section:

Theorem 3.7 For all n ≥ 1, the operator Tn is indecomposable.

Proof: By Lemma 3.3, it is enough to prove that its characteristic polynomial, pn(λ),
is irreducible. And now we proceed by induction:

For n = 1, we have that p1(λ) = λ2 − χ1 is irreducible because
√

χ1 /∈ K1.

For n ≥ 1, let suppose that pn(x) is irreducible over Kn. Let consider Jn as
the splitting field of pn(x) over Kn+1 and let G′ be the Galois group GalKn+1(Jn).
By 3.6 pn(x) is irreducible over Kn+1[x] and by lemma 3.5 we have for every
pair of roots λi, λj of pn(x) there is g′ ∈ G′ such that g′(λi) = λj. Let Cn+1 =
Kn+1(λ1, . . . , λ2n ,

√
χn+1) the splitting field of fn+1(x) = x2 − χn+1 over Jn. Then

|Cn+1 : Kn+1| = |Cn+1 : Jn| · |Jn : Kn+1| = 2 · 2n = 2n+1. We can notice that
Cn+1 is also the splitting field of pn+1(x) over Kn+1 and, for every g′ ∈ G′ there is
g ∈ G = GalKn+1(Cn+1) such that g|Jn = g′.

Our purpose is to prove the irreducibility of pn+1(x) over Kn+1[x]. By Lemma
3.5 is enough to prove that for every pair of roots of this polynomial it is possible
to find an automorphism mapping one root into the other one, by Lemma 3.4 every
root of pn+1(x) has the following form:

λ
(l)
i = λi + l

√
χn+1(λi − 1)
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In order to prove the theorem consider two roots λ
(l)
i , λ

(l′)
j and g′ ∈ G′ such

that g′(λi) = λj, and the homomorphism g : Cn+1 −→ Cn+1 such that g|Jn =
g′ and g(

√
χn+1) = ll′

√
χn+1. Then g defined as before is an automorphism of

GalKn+1(Cn+1) and:

g(λ
(l)
i ) = g(λi + l

√
χn+1(λi − 1))

= g(λi) + lg(
√

χn+1)(g(λi)− 1)
= g′(λi) + lg(

√
χn+1)(g

′(λi)− 1)
= λj + l2l′

√
χn+1(λj − 1)

= λj + l′
√

χn+1(λj − 1)

= λ
(l′)
j

By Lemma 3.5 we have that pn+1(x) is irreducible over Kn+1[x].
Then, by induction, for all n ≥ 1 the polynomial pn(x) is irreducible and by

Lemma 3.3 the operator Tn is indecomposable. �

4 An indecomposable operator over E.

Now we build an operator defined in E such that it is bounded, selfadjoint and
indecomposable. But first we must study the residual spaces of E.

4.1 Residual Spaces.

The isolated subgroups of G =
∞⊕
i=1

Z are ∆0 ⊂ ∆1 . . . defined for every n ∈ N∪{0} by

∆n =
∞⊕
i=1

Di where Di = Z if i ≤ n and Di = {0} if i > n. Each of these subgroups

has associated a valuation ring Rn defined by:

Rn = {ξ ∈ K : v(ξ) ≥ δ for some δ ∈ ∆n}

and its unique maximal ideal is

Jn = {ξ ∈ K : v(ξ) > δ for all δ ∈ ∆n}.

Then K̂n := Rn/Jn (with θn : Rn −→ K̂n, the canonical projection) is the
residual field related to ∆n.

Lemma 4.1 For all n ≥ 1 K̂n
∼= Kn.

Remark 4.2 In this section we analyze the residual spaces of E as well as the
residual fields of K. Concerning the latter ones, it is possible to prove that they are
isomorphic to the fields that we have deal with in Section 2.2. For that reason it is
natural to define En in the way that it has been done.

Note that

Mn := {x ∈ E : ||x|| ≥ δ for some δ ∈ ∆n}
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is a module over Rn and

Sn := {x ∈ E : ||x|| > δ for all δ ∈ ∆n}

is a submodule.
Then Ên := Mn/Sn (with πn : Mn −→ Ên, the canonical projection) is a K̂n-

vector space by defining scalar multiplication in the following way:

πn(ξx) := θn(ξ)πn(x)

when x ∈ Mn and ξ ∈ Rn.
Ên is endowed with an inner product defined by:

φ̂n(πn(x), πn(y)) := θn(φ(x, y))

with x, y ∈ Mn.

Lemma 4.3 Ên is isomorphic to En, and we call the isomorphism πn.

It is also possible project a subspace U ⊆ E under πn to Ên by:

πn(U) := {πn(x) : x ∈ U ∩Mn}.

Lemma 4.4 [6] If two sub-spaces U,W ⊆ E are orthogonal, U ⊥ W , then πn(U) ⊥
πn(W ) and πn(U ⊕W ) = πn(U)⊕ πn(W ).

4.2 Bounded linear operators in E.

Now we define an infinite matrix that will represent a linear operator. For this
operator it is our aim to prove that it is bounded, selfadjoint and indecomposable.

Definition 4.5 A linear operator B : E −→ E is bounded if there is g ∈ G such
that

||B(x)|| − ||x|| ≥ g

for all x ∈ E \ {0}.

Lemma 4.6 [6](3.1) A map B0 : {ei : i ∈ N} −→ E can be extended to a bounded
linear operator B : E −→ E if and only if the set {||B0(ei)|| − ||ei|| : i ∈ N} is
bounded from below.

4.3 The operator T .

In chapter 2 we built a sequence of selfadjoint, indecomposable and bounded oper-
ators over the residual spaces (En, φn) of (E, φ). Now we will see how this sequence
induces a linear operator defined on E.

Definition 4.7 Let {Pn}n∈N be a sequence of matrices where Pn = (pn
ij), and such

that for all n ∈ N
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a) Pn ∈ Mat2n(Kn),

b) if i, j ≤ 2n then pn+1
ij = pn

ij.

We define the final matrix as the sequence {Pn}n∈N given by the infinite matrix
P defined by:

P = (pij)

where, for given i, j ∈ N we take any m ∈ N such thati, j ≤ 2m, and we define
pij := pm

ij .

We define the matrix T as the final matrix of the sequence {Tn}n∈N from chapter
2 and we will prove that it represents a bounded, selfadjoint and indecomposable
operator in (E, φ).

Using Theorem 4.6 and the next lemma we conclude that T induces a bounded
operator in E.

Lemma 4.8 For all n ∈ N it is true that ||Tn(en
i )|| − ||en

i || = v(χ1) > 0 for i ∈
{1, . . . , 2n}.

Proof: Using induction a proof for this lemma is readily built.

Theorem 4.9 T defines a bounded operator T in E.

Proof: In fact we prove that T is bounded from zero. Let us suppose that there is
i ∈ N such that ||T (ei)|| − ||ei|| < 0. Let k be such that v(t2kiτk) = ||T (ei)||. Then
there is n ∈ N such that i, k < 2n, therefore v((tnki)

2τk) = ||Tn(en
i )|| and ||ei|| = ||en

i ||,
then
0 > ||T (ei)||−||ei|| = ||Tn(en

i )||−||en
i ||, arriving to a contradiction with the previous

lemma. �

From Theorem 4.9 we have that for all n ∈ N ∪ {0}, T (Mn) ⊆ Mn and T (Sn) ⊆
Sn, then T induces an operator

T̂n : Ên −→ Ên

πn(x) 7−→ πn(T (x)) (x ∈ Mn)

Lemma 4.10 T : (E, φ) −→ (E, φ) is selfadjoint.

Therefore T is a selfadjoint and bounded operator in (E, φ). Now, in order to
close the chapter we will show that no closed subspace of E is left invariant by T .

Theorem 4.11 T is indecomposable.

Proof: Let suppose that T leaves invariant a nontrivial closed subspace U . By
orthomodularity it is possible to write E = U ⊕ U⊥. As U and U⊥ are not trivial
there exist x ∈ U and z ∈ U⊥, both non zero and n ∈ N such that πn(x), πn(z) 6= 0.

We write En
∼= Ên = πn(E) = πn(U) ⊕ πn(U⊥). By Lemma 4.4, πn(U) and

πn(U⊥) are different to {0}, then πn(U) is invariant under T̂n arriving to a contra-
diction with Theorem 3.7. Hence T is indecomposable. �
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