A non-abelian tensor product and universal
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Abstract
A non-abelian tensor product for Leibniz n-algebras is introduced as a gen-
eralization of the non-abelian tensor product for Leibniz algebras introduced
by Kurdiani and Pirashvili. We use it to construct the universal central ex-
tension of a perfect Leibniz n-algebra.

1 Introduction

In 1973 Nambu [13] proposed a generalization of the classical Hamiltonian formalism
where the Poisson bracket is replaced by a n-linear skew-symmetric bracket {...}
(the Nambu bracket) on the algebra of smooth functions on a manifold M. Within the
framework of Nambu mechanics, the evolution of physical system is determined by
n — 1 functions Hy, ..., H, 1 € C*°(M) and the equation of motion of an observable
f e C>®(M) is given by df /dt = {Hy,...,H,—1, [}

These ideas inspired novel mathematical structures by extending the binary Lie
bracket to a n-bracket (see [3], [4], [5], [14], [17]).

In the 90’s Loday [9, 10] introduced a new kind of algebras, called Leibniz alge-
bras, which are the non-skew-symmetric counterpart to Lie algebras. In brief, a Leib-
niz algebra g is a K-vector space equipped with a bilinear bracket [—, =] : gx g — g
satisfying the Leibniz identity

[I, [y,z]]:[[x,y],z]—[[x,z],y],‘v’x,y,zeg (1)
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Obviously, if this bracket satisfies [z, x] = 0,Vx € g, then the Leibniz identity is the
Jacobi identity and a Leibniz algebra is a Lie algebra.

In this context, was natural to extend this concept to Nambu algebras, so in
2002 Casas, Loday and Pirashvili [2] introduced the concept of Leibniz n-algebra,
suggested by Takhtajan in [16], and developed a cohomology theory for this kind of
algebras, which was complemented in [1] with a homology with trivial coefficients
theory.

In this way, in section 3, we construct a type of non-abelian tensor product of
Leibniz n-algebras (as a generalization of the non-abelian tensor product for Leibniz
algebras introduced by Kurdiani and Pirashvili [7]) which is essential in order to
construct the universal central extension of a perfect Leibniz n-algebra.

To summarize, for a Leibniz n-algebra £ we define the Leibniz n-algebra £*" :=
Coker (6 : L2~V — £%") equipped with the bracket defined by formula (4) below.
Then we achieve the exact sequence

0 — JHL (L) — £ o HELG (L) — 0

where ,HL,(—) denotes the Leibniz homology with trivial coefficients for Leibniz
n-algebras [1]. In case of perfect Leibniz n-algebras, that is £ = [L,.”., L], we have
that ,H Lo(L) = 0 and we proof that last sequence is the universal central extension
of L.

Previously we introduce in section 2 new concepts of Leibniz n-algebras as com-
mutator n-sided ideal, derivations and semidirect product which are useful in section
3. Moreover we study the relationship between derivations and semidirect product
achieving the exact sequence

0 — Der(L,M) — Der(K,M) — Hom(Nu, M)

associated to the exact sequence of Leibniz n-algebras 0 — N — K — £ — 0, and
the representatibility of derivation functor.

2 Preliminaries on Leibniz n-algebras

A Leibniz n-algebra is a K-vector space £ equipped with a n- linear bracket [—, ..., —] :
LZ" — L satisfying the following fundamental identity

H'Tlv Lo, ... 7$n]a Y, Y2y - - ayn—l] =
Z[l’l, N 7 I [l’i, Y1,Y2, - .. ,ynfl], Litly--- ,In] (2)
i=1
A morphism of Leibniz n-algebras is a linear map preserving the n-bracket. So
we have defined the category of Leibniz n-algebras, denoted by ,Lb. In case n = 2
the identity (2) is the Leibniz identity (1), so a Leibniz 2-algebra is a Leibniz algebra
[10], and we use Lb instead of sLb.
Leibniz (n + 1)-algebras and Leibniz algebras are related by means of the Dalet-
skii’s functor [3] which assigns to a Leibniz (n + 1)-algebra £ the Leibniz algebra
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D, (L) = L®" with bracket
(1 ® - ®ap, b1 @ Qb =D a1 @+ @ ag,br,....,0) @ ®ay,
=1

Conversely, if £ is a Leibniz algebra, then also is a Leibniz n-algebra under the
following n-bracket [2]

(1, @9, ..o Ty = |21, [0, .o [Tno1, @)y -] (3)
Examples:

1. Examples of Leibniz algebras in [10] yield examples of Leibniz n-algebras with
the bracket defined by equation (3).

2. A Lie triple system [8] is a vector space equipped with a bracket [—, —, —]
that satisfies the same identity (2) (particular case n = 3) and, instead of
skew-symmetry, satisfies the conditions

[z,y, 2]+ ly, z, 2] + [z, 2,9 = 0

and
[z,y,y] = 0.

It is an easy exercise to verify that Lie triple systems are Leibniz 3-algebras.

3. Let g be a Leibniz algebra with involution ¢. This means that o is an auto-
morphism of g and ¢ = id. Then

L={xeg|z+o(x)=0}
is a Leibniz 3-algebra with respect to the bracket

[ZL‘, Y, Z] = [ZL‘, [y7 ZH
4. Let V be a (n+1)-dimensional vector space with basis {ey, €3, ..., ens1}. Then
we define [z7, 23, ..., 2, := det(A), where A is the following matrix
S
r11 To21 ... [E(n+1)1
T2 T2 ... T(nt1)2
Tin T2n -+ T(ntl)n

Here ;= x1; €1 +Xo; €9 + - + T(n41)i e,:H. Easily one sees that V equipped
with this bracket is a Leibniz n-algebra.

5. An associative trialgebra is a K-vector space A equipped with three binary op-
erations: -, L, (called left, middle and right, respectively), satisfying eleven
associative relations [12]. Then A can be endowed with a structure of Leibniz
3-algebra with respect to the bracket

[y, zl=cd(yLz)—(yL2))Fex—xzd(zLly)+(zLy kFz
=zrzd(ylz—zLly)—(ylz—zlyktzx
for all z,y,z € A.
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Let £ be a Leibniz n-algebra. A subalgebra I of L is called n-sided ideal if
l1,lo,...,0,) € K assoon as l; € K and ly,...,li—1,lit1, ..., 01, € L, for all i =
1,2,...,n. This definition ensures that the quotient £/K is endowed with a well
defined bracket induced naturally by the bracket in L.

A derivation of a Leibniz n-algebra L is a linear map d : £ — L for which the
following identity holds:

n

dlzr, ...,z =D |21, d(zy), ..., Ty

=1

For instance, if we define the application ad|ys,...,y,] : L — L, ad[ys, ..., y,](z)
= (2,92, - .., Yn], fundamental identity (2) means that ad[ys, ..., y,| is a derivation.

Let M and P be n-sided ideals of a Leibniz n-algebra £. The commutator ideal of
M and P, denoted by [M, P, L"?], is the n-sided ideal of £ spanned by the brackets
i, .ol 1, o0 ] as soon as [; € M, l; € P and [, € L for all k different to
i,j. Obviously [M,P,L" 2] C M NP. In the particular case M = P = L we
obtain the definition of derived algebra of a Leibniz n-algebra L.

For a Leibniz n-algebra £, we define its centre as the n-sided ideal

ZWL)y={leL|[l,.... L1, L ligy, .. L) =0V eLi=1,...,4,...,n}

The category ,Lb has zero object, products and coproducts and every morphism
has image. From here, one can get the notion of centre (by Huq) [6] in a natural
way. It is an easy exercise to show that Z(L£) coincides with this natural notion
since is the maximal central subobject in the category ,Lb.

An abelian Leibniz n-algebra is a Leibniz n-algebra with trivial bracket, that
is, the commutator n-sided ideal [£"] = [L,...,L] = 0. It is clear that a Leibniz
n-algebra L is abelian if and only if £ = Z(L£). To any Leibniz n-algebra £ we can
associate its largest abelian quotient Ly, i. e., the abelianization functor works from
»Lb to K-vector spaces category; clearly the kernel of the projection map 7 : £ —
L., must contain the n-sided ideal [£"]. It is easy to verify that L., = L/[L"].

An abelian extension of Leibniz n-algebras is an exact sequence (K) : 0 — M-
K 5 L — 0 of Leibniz n-algebras such that [ki,...,k,] = 0 as soon as k; € M and
k;j € M for some 1 <i,j <n (i. e., [M,M,K"?] =0). Here ki, ..., k, € K. Clearly
then M is an abelian Leibniz n-algebra. Let us observe that the converse is true only
for n = 2.

If () is an abelian extension of Leibniz n-algebras, then M is equipped with
n actions [—,...,—] : L2® M L2170 — M, 0 < i < n — 1, satisfying (2n —
1) equations, which are obtained from (2) by letting exactly one of the variables
Tlyeey Ty Y1y -« Yn—1 be in M and all the others in £ [2].

A representation of a Leibniz n-algebra L is a K-vector space M equipped with
n actions of [—,...,—] : L& M L2170 — M, 1 <i < n — 1, satisfying these
(2n — 1) axioms [2].

If we define the multilinear applications p; : L1 — Endx (M) by

pi(lla s 7ln—1)(m) - [l17 D Jli—17m7 li—‘rl? s Jln—l]

1 < i < n, then the axioms of representation can be expressed by the following
identities [1]:



A non-abelian tensor product of Leibniz n-algebra 263

1. For 2 <k <n,
pk([lh - '7ln]7ln+17 cee 7l2n—2) =

Zpi(lb ey lAZ', . 7ln) . pk(lialn+1> ey lQn_g)
i=1

2. For 1 <k <n,
[pl(ln7 e 7l2n72>7pk<l17 e ,lnfl)] =

n—1
Z pk(lla SRR li—17 [ll7 lm ey l2n—2]7 li+17 RIS ln—l)
i=1

being the bracket on Endg (M) the usual one for associative algebras.

A particular instance of representation is the case M =L, where the applications
p; are the adjoint representations

&di(ll, Ce ,ln,1)<l) = [ll, ey lifl,l, li+1> ey lnfl]

If the components of the representation ad : L£®" ' — Endg(L) are ad =
(ady,...,ad,), then Ker ad = {l € L | adi(ly,...,ln—1)(l) = 0,Y(ly,...,l,—1) €
£em=11 <4 < n}, that is, Ker ad is the centre of L.

Definition 1. Let L be a Leibniz n-algebra and M a representation of L. A deriva-
tion from L to M is a K-linear map d : L — M for which the following identity
holds:

n

dily, . L) =S 00, d (), L)

=1

Notice that this property of d is compatible with n-linearity and the fundamental
identity (2). We denote by Der(L, M) the K-vector space of all derivations from
L to M. When £ is regarded as representation of £, then Der(L, L) coincides with
Der(L), the K-vector space of derivations of £. If M is a trivial representation of
L, that is, the actions [—,..., —] : L@ M L2170 — M, 1 < i <n — 1, are
trivial, then a derivation d : £ — M is a homomorphism of Leibniz n-algebras.

Definition 2. Let L be a Leibniz n-algebra and M a representation of L. We define
the semidirect product M x L as the Leibniz n-algebra with underlying vector space
M @ L and bracket

n

[(ml, ll), N (mn,ln)} = (Z[Zl’ Ce ,li_l,mi7li+1, .. 7ln]7 [lh ey ln])

=1

There is an obvious injective homomorphism of Leibniz n-algebras i : M — M
L given by i(m) = (m,0), m € M. There also is an obvious surjective homomorphism
of Leibniz n-algebras 7 : M x £ — L given by 7(m,l) = I. On the other hand,
i(M) is a n-sided ideal of M x £ with quotient £, being the canonical projection
7; thus the sequence 0 — M 5 M x £ 5 £ — 0 is exact. Moreover i(M) is a
representation of M x L via 7, so the exact sequence is an abelian extension of
Leibniz n-algebras which splits by means of 0 : L — M x L, 0(l) = (0,1),l € L.

The projection 6 : M x £ — M, 0(m,l) = m, is a derivation, being M a repre-
sentation of M x L via 7.
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Theorem 1. Let L be a Leibniz n-algebra and M a representation of L. For every
homomorphism of Leibniz n-algebras f : @ — L and every f-derivation d : @ — M,
there exists a unique homomorphism of Leibniz n-algebras h : @ — M x L such that
the following diagram is commutative

Q

vl N

0— > M MM LTl — 0

0

Conversely, every homomorphism of Leibniz n-algebras h : @ — M x L deter-
mines a homomorphism of Leibniz n-algebras f = wh : @ — L and a f-derivation
d=60h:Q — M.

Proof. Define h(z) = (d(x), f(z)),z € Q. For converse, apply following lemma.m

Lemma 1. Let f : Q — L be a homomorphism of Leibniz n-algebras and d : L — M
a derivation, then df : @ — M is a deriwation, being M a representation of Q via f.

Corollary 1. The set Der(L,M) is in one-to-one correspondence with the set of
homomorphisms of Leibniz n-algebras h : L — M x L such that mh = 1.

If we denote by , Leib/L the comma category over the Leibniz n-algebra £, then
there exists a natural equivalence between the functors

nLeib/L
D€T<_>M)Jl>\HOaneib/g(—,M X L — L)
Vect i

that is, the functor Der(—, M) is representable.

Theorem 2. Let 0 = N — K — L — 0 be an ezact sequence of Leibniz n-algebras
and let M be a representation of L, then

0 — Der(L,M) — Der(K,M) — Hom(Nu, M)
1s natural exact sequence of K-vector spaces

Proof. Applying the left exact functor Hom, peib/z(—, M X £ — L) to the exact
sequence, we obtain the exact sequence

0— HOaneib/g([,,M X L — ﬁ) — HOaneib/g(’C,M X L — ,C)

— HOaneib/ﬁ(N,M X L — E)

By natural equivalence 7, this sequence is
0 — Der(L,M) — Der(K,M) — Der(N,M)

but Der(N,M) = Hom(N,M) = Hom(Na, M), since M is a trivial representation
of . "
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Now we remember the (co)homology theory for Leibniz n-algebras developed in
1, 2].

Let £ be a Leibniz n-algebra and let M be a representation of £. Then Hom(L, M)
is a D,_1(L)-representation as Leibniz algebras [2]. One defines the cochain com-
plex ,CL*(L, M) to be CL*(D,_1(L), Hom(L, M)). We also put ,HL*(L, M) :=
H*(,CL*(L,M)). Thus, by definition one has ,HL*(L,M) = HL*(D,_1(L),
Hom(L, M)). Here C'L* denotes the Leibniz complex and H L* its homology, called
Leibniz cohomology (see [10, 11] for more information).

In case n = 2, this cohomology theory gives o HL™(L, M) = HL™ (L, M),

m > 1 and o HL(L, M) = Der(L, M).

On the other hand, ,HL°(L, M) = Der(L£, M) and ,HL'(L, M) = Ext(L, M),
where Ext(L, M) denotes the set of isomorphism classes of abelian extensions of £
by M [2].

Homology with trivial coefficients of a Leibniz n-algebra L is defined in [1] as the
homology of the Leibniz complex ,CL, (L) := CL,(D,,_1(L), L), where L is endowed
with a structure of D,,_;(£) symmetric corepresentation. We denote the homology
groups of this complex by ,,HL,(L).

When L is a Leibniz 2-algebra, that is a Leibniz algebra, then we have that
oHL (L) = HLp1 (L), k > 1. Particularly, o HLo(L) = HL,(L) = L/[L, L] = Lap.
On the other hand, , H Lo(L) = L.

3 Universal central extensions of Leibniz  n-algebras

Let £ be a Leibniz n-algebra. We can endowed the tensor £%" with a structure of
Leibniz n-algebra by means of the following bracket:

[1711®"'®I’n1,$12®"'®$n2,...,l‘1n®“'®l’nn] =

[3}'11, [.CClg,. .. ,.’ﬂng], ceey [Qfln,. .. ,xnn]] ®l’21 [ ®l’n1—|—
1’11@ [213'21,[3712,...,1'”2],...,[Iln,...,l‘nn“ (ORI ®$n1—|—+ (4)
Tl Q- ®5L‘(n—1)1 X [xnly [:L‘12a cee >:En2]7- O [xlny- o 7mnn“

In particular case n = 2 we obtain a structure of Leibniz algebra on £ ® £ which
is the subject of [7].

Now we remember that the complex used in [1] in order to achieve the homology
with trivial coefficients of a Leibniz n-algebra L is

co s [OR(=DH1 %k pe(k—1)(n-1)+1 Ot -1 %2 pen 5 p
where the low differentials are
52(I1®"'®$n®y1®"'®yn—1) - [xla"'7$n]®yl®"'®yn—l_

[T1, Y15 Yn1] @ T2 @ @y — = X1 @ o . Tt @ [Ty Y1y - -y Y1

and 4, : L% — L is the commutator map

61($1®"‘®$n):[xly"'v$n]
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Definition 3. For a Leibniz n-algebra L, let be

Z7(L)=Aa€ L] [x1,a,...,x,) =" =[r1,29,...,0] =0;21,...,2, € L}

Definition 4. For a Leibniz n-algebra L, let L be the smallest n-sided ideal
spanned by the elements of the form |xy,... x|, z; € L;i = 1,...,n as soon as
€T; = [L’j.

Lemma 2. Z7(L) is a n-sided ideal of L. Moreover it is verified that

£, Z7(L),....Ll=---=[L,L,....,Z7(L)=0
and
(Z7(L),L,..., L] C Lo
Proof: The proof is straightforward and we leave it to the reader. [

Lemma 3. The image of the differential 65 : L1 — L& is an abelian n-sided
ideal of L®™. Moreover Im 6o C Z 7 (LZ™).

Proof: The proof only uses the fundamental identity (2), the structure on £%"
given by identity (4) and lemma 2. [

Now we consider the vector space
L= Lx .7 %L = Coker(dy : LEC1 — £&)

which is equipped with a structure of Leibniz n-algebra induced by the bracket (4)
defined on £%". We denote by zy * - -+ % x,, the image of z; ® -+ ® z,, € L®" into
L*™. Since

[T, ) kY ke Ry, =
[T1, Y2y oo Yn] kT ke Xy - F
Tk K T 1k [T, Y2y e e Ynl
we see that
[Ty -k X1, Lo % -k T,y ooy Tipy %0 K Ty =
[T11, oy Tp1] * [T12, oo, Tpa] %ok [T, o T (5)

Having in mind the definition of homology with trivial coefficients one has the exact
sequence of Leibniz n-algebras

0= JHL(L) — £l e o HEy(L) — 0 (6)

Here ,H Lo(L) and ,,H L (L) are abelian Leibniz n-algebras. Moreover one can show
that ,HLi(L) is a central subalgebra of £*.

Proposition 1. Let L be a free Leibniz n-algebra, then the homomorphism
[—...,=]: L= L
18 injective.

Proof. In (6) ,HL,(L) = 0 (see theorem 2 [1]). ]
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Given n-sided ideals M. of £ such that M C M;, being M, n-sided ideals of

L,i=1,...,n, then there exists a canonical homomorphism i : M/ % ---x M! —
Myqx--x M, where M *---x M, means the smallest ideal of Lx .. x£ spanned
by the elements mq*---xm,, with m; € M;, i =1,...,n. We shall denote the image

of this homomorphism by (M * -+ % M) m,
Proposition 2. Let K be a n-sided ideal of L which is contained in N}y M,;. Then

there is a canonical isomorphism
Ml* *Mn My -k M,
K K ?:1(-/\/[1*"'*Mi—l*]C*Mi—‘rl*"'*Mn)./\/h ..... M,

1%

Proof. The canonical map

Ml Mn Ml**Mn

O — %% —
K K ?zl(Ml*"'*Mi—l*’C*Mi+1*"'*Mn)M1 ..... M,

is a well defined homomorphism of Leibniz n-algebras. On the other hand, the
canonical map

U:M1*~~~*Mn—>'/\’/cll*~-'*/\’/lcn

is a homomorphism of Leibniz n-algebras which annihilates

n

Z(Ml*"'*Mi—l*’C*Mi+1*"'*Mn)M1 ..... My,

=1

Then o induces

My % x M, M, M,
E : — koo ek
g Myps ke My Kk Mgy # - % M) agy,M, K K
and moreover Y is inverse of ®. [
Theorem 3. Let L be a Leibniz n-algebra, then
JHL(L) = Ker(L™ 72570 1)
Proof. See exact sequence (6). ]

If0 = R—F — L — 0is a free presentation of a Leibniz n-algebra £ (always
there exist free presentations of a Leibniz n-algebra, see [1]), then having in mind
Propositions 1 and 2 we obtain the following isomorphism

Fn [F,.mn., F]

ﬁ*ngf* n *fg ~ (7)
TR TR OYNE (Fxe xRy F)pear R, F,VLF

Now we consider a perfect Leibniz n-algebra £, that is £ = [L£,.7., L], equiva-
lently , H Lo(L) = 0, then exact sequence (6) is the central extension

Jr—o (8)

The following results are devoted to show that exact sequence (8) is the universal
central extension of £. Firstly we remember some results about (see [1]).



268 J. M. Casas

Definition 5. A central extension (K) of Leibniz n-algebras is an extension of Leib-
niz n-algebras (K) : 0 = M — K 5 £ — 0 for which [M,K"'] = 0.
This central extension is called universal if for every central extension (K') :

0— M —K' ™ £ — 0 there exists a unique homomorphism h : KK — K" such that
m'h =.

Note that a central extension is an abelian extension and that equips M with a
structure of trivial L-representation.

Theorem 4. 1. If (K):0—-M — K 5 L — 0 is a central extension with K a
perfect Leibniz n-algebra and every central extension of K splits, then (K) is
universal.

2. A Leibniz n-algebra L admits a universal central extension if and only if L is
perfect.

3. The kernel of the universal central extension is canonically isomorphic to

WHL (L, K).

Lemma 4. Let ¢ : L — M be a surjective homomorphism of Leibniz n-algebras.
Then the canonical homomorphism px .. x@ : L — M* is surjective and its
kernel is the n-sided ideal

Im(Ker(p)« Lx---x L+ -+ Lx--xLxKer(p) = LxLx---xL)

Lemma 5. Let 0 = N — H 5 £ — 0 be a central extension of Leibniz n-algebras,
being H a perfect Leibniz n-algebra. Let 0 — M — K 5 L — 0 be another
central extension of Leibniz n-algebras. If there exists a homomorphism of Leibniz
n-algebras ¢ : H — K such that c¢ = 7, then ¢ is unique.

Proof. Let ¢,¢ : H — K be two homomorphisms of Leibniz n-algebras such
that o¢p = m and oy = w. Then for any h € H there exists m € M such that
¢(h) = ¥(h) + m. From here, ¢ and 1 coincide on commutators [hy, ..., h,] € H
thanks to centrality of M on K. Since H is a perfect Leibniz n-algebra, it is spanned
by commutators, so ¢ = .

Theorem 5. Let L be a perfect Leibniz n-algebra, then

0= JHL(L) — £l e g 9)
is the universal central extension of L.

Proof. Let (H) : 0 — M — K 5 £ — 0 be an arbitrary central extension of L.
The homomorphism of Leibniz n-algebras 7 : K** — K, 7(x1%- - -xx,) = [21,. .., Ty],
can be factored throughout the homomorphism o% .7. x¢ : H** — L£*" by lemma 4
and centrality of M = Ker(c). This provides a homomorphism ¢ : £** — H such
that o.¢(ly * -+ % 1,) = [l1,...,1,], forall Iy, ... 1, € L.

On the other hand, £ perfect implies that £*" is perfect since [L*™, ..., L] =
[L,....L]*---x[L,..., L]. Now lemma 5 ends the proof. n
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Having in mind formula (7), then we can write the universal central extension
of a perfect Leibniz n-algebra £ as follows

[F,.n., F] =g

0 — HLy (L) — )
=) = T A

From here we can deduce that ,HL;(L) = (RN [F,.7.,F])/[R,F,n-1, F|, being
0 — R — F — L — 0 a free presentation of a Leibniz n-algebra £. This result was
obtained in [1] using other techniques.

In the universal central extension (9), ,HL1(L) can be considered as a trivial
representation of £. By Theorem 3 in [1] (Theorem of Universal Coefficient) we
have that

WHLNL, HL (L)) = Hom(,HL, (L), ,HL,(L))
But it is well-known the bijection (see [2])
WHLNL,  HL\(L)) = Ext(L, ,HL,(L))
One can see that the universal central extension corresponds to the element

IdnHLl(L) S Hom(nHLl (,C), nH L1 (,C))
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