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Abstract

We study the action of right conjugates of a standard morphism on the
infinite word (if it exists) generated by this morphism. When g is the i-th
right conjugate of a standard morphism generating an infinite word x, g(x) is
the i-th conjugate of x. We design an algorithm to obtain a canonical decom-
position of all the right conjugates of a standard morphism. As an application
we compute the sequence of conjugates of the powers of the Fibonacci mor-
phism and then we generalize, to all the conjugates of F, Wen and Wen’s
decomposition of the Fibonacci word F in singular words.

Résumé

Nous étudions l’action des conjugués à droite d’un morphisme standard
sur le mot infini (s’il existe) engendré par ce morphisme. Quand g est le
i-ème conjugué à droite d’un morphisme standard engendrant un mot infini
x, g(x) est le i-ème conjugué de x. Nous décrivons un algorithme pour obtenir
une décomposition canonique de tous les conjugués à droite d’un morphisme
standard, puis, appliquant ce résultat au calcul de la suite de tous les conju-
gués à droite du morphisme de Fibonacci, nous généralisons à l’ensemble des
conjugués de F la décomposition de Wen et Wen du mot de Fibonacci F en
mots singuliers.
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1 Introduction

A Sturmian word is an infinite binary word which contains exactly n + 1 distinct
factors of length n for every positive integer n. These words have many character-
izations and numerous properties. They are used in various fields of Mathematics
such as symbolic dynamics or the study of continued fraction expansion, but also in
Physics and, of course, in some domains of Computer Science as infography, formal
language theory, algorithms on words, combinatorics on words. For a wide descrip-
tion of various characterizations and properties of Sturmian words, as well as many
references and historical remarks, see [1], chapter 2.

The best known example of a Sturmian word is the Fibonacci word which has a
lot of beautiful properties. In particular, in [7], the authors establish a decomposition
of this word in what they call “singular words”.

The Fibonacci word is generated by a morphism which is Sturmian, i.e., a mor-
phism that preserves Sturmian words. It is proved in [3] that these morphisms are
obtained by composing in any number and order three particular morphisms, but
such a decomposition is in general not unique for a given Sturmian morphism (see
[5]). Standard morphisms are a particular subset of Sturmian morphisms, using only
two of the three particular morphisms. In [6] and [1], it is proved that any Sturmian
morphism can be obtained as a right conjugate of a standard one.

We begin in Section 2 by presenting a few preliminary definitions and a basic
result (Lemma 2.2) which allows us to compute the image of the word generated
by a standard morphism associated to each right conjugate of this morphism. Then
in Section 3 we give a construction of Sturmian morphisms as right conjugates of
standard ones which allows to associate canonically to each Sturmian morphism a
unique decomposition. Using this, in Section 4 we compute the sequence of conju-
gates of a power of the Fibonacci morphism (4.1) and then we extend the notion
of singular words and of decomposition of the conjugates of the Fibonacci word in
such factors (4.2).

2 Preliminaries

The terminology and notations are mainly those of Lothaire, 2002 [1].

Let A be a finite set called alphabet and A∗ the free monoid generated by A.

The elements of A are called letters and those of A∗ are called words. The empty
word ε is the neutral element of A∗ for the concatenation of words (the concatenation
of two words u and v is the word uv), and we denote by A+ the semigroup A∗ \ {ε}.

If u ∈ A∗, then |u| is the length of u (in particular |ε| = 0).

Let w ∈ A∗. The inverse of w, say w−1, is defined by ww−1 = w−1w = ε. Note
that this is simply notation, i.e., for u1, u2, w ∈ A∗, the words u−1

1 w and wu−1
2 are

defined only if w starts with u1 and ends with u2. Remark that if w = uv then
wv−1 = u and u−1w = v.

A word w is called a factor (resp. a prefix) of u if there exist words x, y such that
u = xwy (resp. u = wy). The factor (resp. the prefix) is proper if xy 6= ε (resp.
y 6= ε).
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An infinite word (or sequence) over A is an application a : IN → A. It is written
a = a0a1 . . . ai . . . , i ∈ IN, ai ∈ A.

The notion of factor is extended to infinite words as follows: a (finite) word u is a
factor (resp. a prefix) of an infinite word a over A if there exist n ∈ IN (resp. n = 0)
and m ∈ IN, m = |u|, such that u = an . . . an+m−1 (by convention an . . . an−1 = ε).
If a = ua′, u ∈ A∗, then u−1a = a′.

In what follows, we will consider morphisms on A.

A morphism on A (in short morphism) is an application f : A∗ → A∗ such that
f(uv) = f(u)f(v) for all u, v ∈ A∗. It is uniquely determined by its value on the
alphabet A. If w is a (finite) word over A and f a morphism on A then f(w−1) is
defined as [f(w)]−1.

A morphism is prolongable on x0, x0 ∈ A, if there exists u ∈ A+ such that
f(x0) = x0u. If, for all n ∈ IN, the word fn(x0) is a proper prefix of the word
fn+1(x0) then the sequence (fn(x0))n≥0 converges to a unique infinite word

x = x0uf(u)f 2(u) . . . fn(u) . . .

which is the limit of the sequence (fn(x0))n≥0. We write x = fω(x0) and say that x
is generated by f.

From now on, A will be the two-letter alphabet A = {a, b}.

2.1 Sturmian words and morphisms, standard morphisms

A Sturmian word is an infinite word over A which contains exactly n + 1 distinct
factors of length n for every positive integer n. A morphism f : A∗ → A∗ is Sturmian
if f(x) is a Sturmian word whenever x is.

We define on A the following three morphisms:

ϕ : ϕ(a) = ab, ϕ(b) = a

ϕ̃ : ϕ̃(a) = ba, ϕ̃(b) = a

E : E(a) = b, E(b) = a

We denote by St the monoid of Sturm, i.e., the set of all the morphisms obtained
by composing ϕ, ϕ̃ and E in any number and order: St = {E, ϕ, ϕ̃}∗.

Theorem 2.1 ([3]). A morphism f is Sturmian if and only if f ∈ St.

Example. The morphism ϕ, called the Fibonacci morphism is Sturmian. It generates
the Fibonacci word F = ϕω(a). Moreover, for any n ∈ IN, ϕn is a Sturmian morphism.

A morphism is non trivial if it is different from E and IdA.

A Sturmian morphism f is standard if f ∈ {E, ϕ}∗.

2.2 Conjugate words and morphisms

Two words u and v over A are conjugate if there exists s ∈ A∗ such that su = vs.

Let k ∈ IN. The k-th conjugate of an infinite word x over A is the infinite word
x′ such that x = ux′ where u ∈ A∗, |u| = k.
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Let f be a morphism on A. A morphism g is a right conjugate of f if there is a
word w such that

f(x)w = wg(x) for all words x ∈ A∗.

A morphism f has at most |f(ab)| different right conjugates (including itself
when w = ε). Indeed, if |w| ≥ |f(ab)| then w = f(ab)w′ = w′g(ab) for some word
w′ and, since f(ab)w = wg(ab) = f(a)wg(b), this implies f(a)w′ = w′g(a) and
f(b)w′ = w′g(b). So all the right conjugates of f are given by words w such that
|w| < |f(ab)|. When it exists, the right conjugate obtained with such a w is called
the |w|-th conjugate of f and is denoted by f|w|. For a general study see, e.g., [4].

We first prove a useful lemma.

Lemma 2.2. Let f be a morphism on A which generates an infinite word t. Let
i ∈ IN, 0 ≤ i < |f(ab)|, and denote by u the prefix of t of length i. If it exists, fi is
such that fi(t) = u−1t (and w = u).

Proof. Let i ∈ IN, 0 ≤ i < |f(ab)|, and suppose f has a i-th right conjugate fi, i.e.,
there exists a word w such that |w| = i and f(x)w = wfi(x) for all words x ∈ A∗.

Then, for any sequence x1 · · ·xp of words over A, wfi(x1 · · ·xp) = f(x1 · · ·xp)w.

Expanding to infinity, this implies that if x is an infinite word over A then wfi(x) =
f(x). Thus wfi(t) = f(t) which implies that w is the prefix of length i of t (w = u)
and fi(t) = w−1f(t) = u−1t (f(t) = t because t is generated by f). �

Example. It is known [6] that a standard morphism f generates an infinite (Stur-
mian) word if and only if f ∈ {ϕ, Eϕ, ϕE, EϕE}+ \ ({Eϕ}+ ∪ {ϕE}+).

Let us consider the morphism f = ϕϕEϕ : a 7→ ababa, b 7→ ab. The morphism f

is standard, and it generates the infinite word fω(a) = ababaabababaabababaabab . . .

The right conjugates of f (except itself) are the following five morphisms (see,
e.g., [6]).

f1 = ϕ̃ϕEϕ : a 7→ babaa, b 7→ ba (u = w = a)

f2 = ϕϕEϕ̃ : a 7→ abaab, b 7→ ab (u = w = ab)

f3 = ϕ̃ϕEϕ̃ : a 7→ baaba, b 7→ ba (u = w = aba)

f4 = ϕϕ̃Eϕ̃ : a 7→ aabab, b 7→ ab (u = w = abab)

f5 = ϕ̃ϕ̃Eϕ̃ : a 7→ ababa, b 7→ ba (u = w = ababa).

For 1 ≤ i ≤ 5, fi(f
ω(a)) = u−1fω(a).

From [1], chapter 2, we know the following: the number of distinct right con-
jugates of a standard morphism f is |f(ab)| − 1 (they are the morphisms f0 to
f|f(ab)|−2). This means that, for all 0 ≤ i ≤ |f(ab)| − 2, the right conjugates fi of
f exist and are pairwise different. Conversely fi is a Sturmian morphism whenever
the morphism f is a standard morphism. In this case fi is obtained by replacing
some occurrences of ϕ by ϕ̃ in the decomposition of f over {E, ϕ}.

In this particular case (illustrated in the previous example), Lemma 2.2 is very
interesting. It means that if f is a standard morphism which generates an infinite
word x then the result of applying the i-th right conjugate fi of f to x only consists
in deleting the first i letters of x: it is not useful to know explicitly fi.
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3 Computing the right conjugates of a standard morphism

Our aim in this section is to realize a recursive construction of all the right conjugates
of any given non trivial standard morphism.

Convention. Associated to each decomposition of a Sturmian morphism g as g =
g1 ◦ g2 ◦ · · · ◦ gn with gi ∈ {E, ϕ, ϕ̃} is a word, also denoted by g, written over the
alphabet {E, ϕ, ϕ̃} (here E, ϕ, ϕ̃ are considered as letters): the word g is written
as g1g2 · · · gn. In what follows, since there is no ambiguity, we will consider such a
g either as the morphism, or as the associated word, and speak of the writing of a
morphism.

We know from [5] that, in St, the only non trivial generating relations are those
of the set

{ϕ̃(ϕ̃E)kEϕ = ϕ(ϕE)kEϕ̃ , k ∈ IN}.

This implies that a given Sturmian morphism can have many different decompo-
sitions over St, thus many different writings. Our first aim is to realize a construction
which allows to associate to each morphism of St a unique writing.

To do that we will make a recursive construction of the set of all the right
conjugates of a standard morphism in order that two writings of the same morphism
never occur together (in fact, it is not difficult to verify that a factor of the form
ϕ̃(ϕ̃E)kEϕ never appears in the writing that we obtain for the morphisms).

We recursively construct a (ordered) sequence Xf associated to a non trivial
standard morphism f as follows:

• Xϕ = (ϕ, ϕ̃);

• if Xf = (f0, . . . , f|f(ab)|−2) then

XfE = (f0E, . . . , f|f(ab)|−2E),

Xfϕ = (f0ϕ, . . . , f|f(a)|−1ϕ, f0ϕ̃, . . . , f|f(ab)|−2ϕ̃).

We will prove that, for any non trivial standard morphism f , the elements of Xf

are, in this order, exactly the right conjugates of f.

(Remark that the construction chosen for Xfϕ was not the only possible one: Xfϕ =
(f0ϕ, . . . , f|f(ab)|−2ϕ, f|f(b)|−1ϕ̃, . . . , f|f(ab)|−2ϕ̃) was another possibility.)

Proposition 3.1. Let Rf = (f0, . . . , f|f(ab)|−2) be the sequence of all the right con-
jugates of a non trivial standard morphism f. Then Xf = Rf .

Proof. The property is true for ϕ by construction because ϕ0 = ϕ and ϕ1 = ϕ̃.

Now, suppose f is a standard morphism and Xf = Rf . This implies that, for
each fi ∈ Xf , 0 ≤ i ≤ |f(ab)| − 2, there exists a word w, |w| = i, such that
f(a)w = wfi(a) and f(b)w = wfi(b).

Since f is a standard morphism, fE and fϕ are also standard morphisms.
Thus they have respectively |fE(ab)| − 1 and |fϕ(ab)| − 1 different right conju-
gates (see 2.2). Since f has |f(ab)| − 1 different right conjugates (f0 to f|f(ab)|−2),
fE also has |f(ab)|−1 different right conjugates, (fE)0 to (fE)|f(ab)|−2, and fϕ has
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|f(aba)| − 1 different right conjugates, namely (fϕ)0 to (fϕ)|f(a)|−1 and (fϕ)|f(a)| to
(fϕ)|f(a)|+|f(ab)|−2.

The proposition will be proved if we state the following:

1. fiE = (fE)i, 0 ≤ i ≤ |f(ab)| − 2,

2. fiϕ = (fϕ)i, 0 ≤ i ≤ |f(a)| − 1,

3. fiϕ̃ = (fϕ)|f(a)|+i, 0 ≤ i ≤ |f(ab)| − 2.

1. For x ∈ {a, b} and 0 ≤ i ≤ |f(ab)| − 2, fE(x)w = f(y)w = wfi(y) = wfiE(x)
where y ∈ {a, b}, y 6= x. Thus there exists a word of length i, namely w, such
that for any u ∈ A∗, fE(u)w = wfiE(u), which means that fiE = (fE)i.

2. For 0 ≤ i ≤ |f(ab)|−2, one has fϕ(a)w = f(ab)w = f(a)f(b)w = f(a)wfi(b) =
wfi(a)fi(b) = wfi(ab) = wfiϕ(a) and fϕ(b)w = f(a)w = wfi(a) = wfiϕ(b).
This implies fϕ(x)w = wfiϕ(x) for every word x.

Since |w| = i, this means fiϕ = (fϕ)i, 0 ≤ i ≤ |f(ab)| − 2, so this is true in
particular for 0 ≤ i ≤ |f(a)| − 1 (because |f(b)| ≥ 1).

3. For 0 ≤ i ≤ |f(ab)|−2, one has fϕ̃(a)w = f(ba)w = f(b)f(a)w = f(b)wfi(a) =
wfi(b)fi(a) = wfi(ba) = wfiϕ̃(a) and fϕ̃(b)w = f(a)w = wfi(a) = wfiϕ̃(b).

Since |w| = i, this means fiϕ̃ = (fϕ̃)i, 0 ≤ i ≤ |f(ab)| − 2.

But fϕ(a)f(a) = f(ab)f(a) = f(a)f(b)f(a) = f(a)f(ba) = f(a)fϕ̃(a) and
fϕ(b)f(a) = f(a)f(a) = f(a)fϕ̃(b).

Thus fϕ̃ = (fϕ)|f(a)|, which implies (fϕ̃)i = (fϕ)|f(a)|+i.

Consequently fiϕ̃ = (fϕ)|f(a)|+i, 0 ≤ i ≤ |f(ab)| − 2. �

Thus, given a standard morphism f (over {E, ϕ}), we obtain in a unique way a
decomposition of each right conjugate of f , i.e., of each Sturmian morphism fi (over
{E, ϕ, ϕ̃}), 0 ≤ i ≤ |f(ab)| − 2.

The converse, that is given a Sturmian morphism g to determine the integer
i such that g = fi for a standard morphism f , is given by a construction due to
Richomme [4].

We saw in 2.2 that each Sturmian morphism g is the i-th right conjugate of
a standard morphism for some integer i, 0 ≤ i ≤ |g(ab)| − 2. Let us denote by
NbL(g) this integer i. Since E2 = IdA, one has St = {E, ϕ, ϕ̃}∗ = {E, ϕE, ϕ̃E}∗.
Thus each Sturmian morphism can be decomposed over {E, ϕE, ϕ̃E}. The following
result proves that the integer i is related to the decomposition of the morphism f

in the last basis.

Lemma 3.2 ([4]). Let g = g0 . . . gn−1 with gj ∈ {E, ϕE, ϕ̃E}, 0 ≤ j ≤ n − 1.
Then NbL(g) =

∑

g|0≤j≤n−1|gj=ϕ̃E |g0 . . . gj−1(a)|.
(With |g0 . . . gj−1(a)| = 1 if j = 0.)



Conjugation of standard morphisms and a generalization of singular words 743

This means that if g = fi where f is a standard morphism, then i is obtained
from any decomposition of g over {E, ϕE, ϕ̃E}, g = g0 . . . gn−1, by summing the
lengths of the words g0 . . . gj−1(a) for each j, 0 ≤ j ≤ n − 1, such that gj = ϕ̃E.

Example. Let g = ϕ̃ϕ̃Eϕ̃ = ϕ̃EEϕ̃Eϕ̃EE.

Then, NbL(g) = 1 + |ϕ̃EE(a)| + |ϕ̃EEϕ̃E(a)| = 1 + 2 + 2 = 5.
Indeed, g = f5 with f = ϕϕEϕ.

4 An application to the Fibonacci morphism

4.1 Computing the right conjugates of ϕn

Let us recall that the Fibonacci morphism ϕ is defined by ϕ(a) = ab, ϕ(b) = a. It
generates the Fibonacci infinite word F = ϕω(a).

For any non negative integer n, |ϕn(a)| = fn and |ϕn(b)| = fn−1 where (fi)i≥−1

is the sequence of Fibonacci numbers: f−1 = f0 = 1, fp+2 = fp+1 + fp, p ≥ −1.
If n ≥ 1, the morphism ϕn is of course a non trivial standard morphism. In

this particular case, the construction realized in Section 3 gives the following: the
sequence Xϕn of all the right conjugates of ϕn is recursively defined by Xϕ = (ϕ, ϕ̃) =
((ϕ1)0, (ϕ

1)1) and, for any n ≥ 2,

Xϕn = ((ϕn−1)0ϕ, (ϕn−1)1ϕ, . . . , (ϕn−1)fn−1−1ϕ, (ϕn−1)0ϕ̃, (ϕn−1)1ϕ̃, . . . , (ϕn−1)fn−2ϕ̃)

where (ϕn−1)i is the i-th right conjugate of ϕn−1 (i.e., the i-th element of the sequence
Xϕn−1).

Consequently, one has the following particular case of Proposition 3.1.

Proposition 4.1. For any n ≥ 1, Xϕn is the ordered sequence of all the fn+1 − 1
right conjugates of ϕn: Xϕn = ((ϕn)0, (ϕ

n)1, . . . , (ϕ
n)fn+1−2).

Now, let us recall that the conjugates of ϕn, for all n ∈ IN, are exactly all the
elements of the set {ϕ, ϕ̃}∗. Thus for the converse, i.e., given a Sturmian morphism
g to determine the integer i such that g is the i-th right conjugate of some ϕn, the
situation is simplified because there is no E in the decomposition of the standard
morphism. Then the analogous of Lemma 3.2 is the following.

Lemma 4.2. Let g = g0 . . . gn−1 with gj ∈ {ϕ, ϕ̃}, 0 ≤ j ≤ n − 1 (i.e., g is a right
conjugate of ϕn).

Then NbL(g) =
∑

g|0≤j≤n−1|gj=ϕ̃ fj .

(This means that g is the i-th right conjugate of ϕn with i =
∑

g|0≤j≤n−1|gj=ϕ̃ fj .)

Proof. Since ϕ = ϕEE and ϕ̃ = ϕ̃EE, this result can be obtained as a corollary of
Lemma 3.2. However, we give here an interesting direct proof which uses only the
rank of g in the sequence Xϕn.

The proof is by induction on n.

If n = 1 then either g = ϕ = (ϕ1)0 and NbL(g) = 0, or g = ϕ̃ = (ϕ1)1 and
NbL(g) = f0 = 1. Consequently, the property is true if n = 1.

Suppose now that g is the i-th right conjugate of ϕn+1 for some n ≥ 1 and
0 ≤ i ≤ fn+2 − 2. Then g = g0 . . . gn−1gn with gn = ϕ or gn = ϕ̃. Moreover, we
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suppose by induction that g′ = g0 . . . gn−1 is the NbL(g′)-th right conjugate of ϕn

with NbL(g′) =
∑

g′|0≤j≤n−1|gj=ϕ̃ fj .

We have to prove that i = NbL(g) =
∑

g|0≤j≤n|gj=ϕ̃ fj .

• If 0 ≤ i ≤ fn − 1 then, by construction of Xϕn+1 , g = g′ϕ (gn = ϕ) and g′ is
the i-th right conjugate of ϕn.

Thus NbL(g) = i = NbL(g′) =
∑

g′|0≤j≤n−1|gj=ϕ̃ fj =
∑

g′ϕ|0≤j≤n|gj=ϕ̃ fj =
∑

g|0≤j≤n|gj=ϕ̃ fj .

• If fn ≤ i ≤ fn+2 − 2 then, by construction of Xϕn+1 , g = g′ϕ̃ (gn = ϕ̃) and g′

is the (i − fn)-th right conjugate of ϕn.

Thus NbL(g) = i = fn+NbL(g′) = fn+
∑

g′|0≤j≤n−1|gj=ϕ̃ fj =
∑

g′ϕ̃|0≤j≤n|gj=ϕ̃ fj

=
∑

g|0≤j≤n|gj=ϕ̃ fj. �

Example. Xϕ3 = (ϕϕϕ, ϕ̃ϕϕ, ϕϕ̃ϕ, ϕϕϕ̃, ϕ̃ϕϕ̃, ϕϕ̃ϕ̃, ϕ̃ϕ̃ϕ̃), thus ϕ̃ϕϕ̃ = (ϕ3)4.

From Lemma 4.2, NbL(ϕ̃ϕϕ̃) = f0 + f2 = 1 + 3 = 4.

4.2 Singular words

Set ϕ−1(a) = b. In [7], Wen and Wen introduced the sequence (wj)j≥−1 of the
singular words defined by

wn =

{

aϕn(a)b−1 if n is odd
bϕn(a)a−1 if n is even

, n ≥ −1.

Of course, for any n ≥ −1, |wn| = |ϕn(a)| = fn.

These words have many interesting properties (see [7], and also [2]). In particular,
Wen and Wen proved that the Fibonacci word F is obtained by concatenating all
the singular words.

Theorem 4.3 ([7]). F =
∏∞

j=−1 wj = a b aa bab aabaa babaabab . . .

Our aim in this section is to generalize this construction by showing (Theorem
4.6) that, for each word u, prefix of F, the word u−1F can be obtained by con-
catenating the factors of the infinite sequence [(ϕj)i(a)]j≥p where i and p are fixed
integers depending only on |u|.

First, we apply Lemma 2.2 to the Fibonacci morphism and word.

Corollary 4.4. Let k ∈ IN, and let n ∈ IN be such that 0 ≤ k ≤ fn+1 − 2. If u is
the prefix of length k of F (= (ϕn)ω(a)) then (ϕn)k(F) = u−1F.

Consequently, to apply the k-th right conjugate of ϕn, (ϕn)k, to F is equivalent
to take the k-th conjugate of the word ϕn(F).

Considering the decomposition of F in singular words this gives, for example
when n = 2 (0 ≤ k ≤ 3),

F = (ϕ2)0(F) = a b aa bab aabaa babaabab aabaababaabaa . . .

(ϕ2)1(F) = b aa bab aabaa babaabab aabaababaabaa . . .

(ϕ2)2(F) = aa bab aabaa babaabab aabaababaabaa . . .

(ϕ2)3(F) = a bab aabaa babaabab aabaababaabaa . . .
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Remark that, since ϕn has only fn+1 − 1 different right conjugates (from 0 to
fn+1 − 2), if we want to remove a prefix of F of length k, it is necessary to consider
(ϕn)k with n large enough to ensure that k ≤ fn+1 − 2.

Applying Corollary 4.4 to the decomposition of F in singular words, we obtain
the following result which explains how to remove a prefix to this decomposition.

Proposition 4.5. Let k ∈ IN, and let n ∈ IN be such that k = fn+1 − p with
2 ≤ p ≤ fn−1 + 1. Then (ϕn)k(F) = v−1wn−1

∏∞
j=n wj, where v is the prefix of wn−1

such that |v| = fn−1 + 1 − p.

Proof. Since k = fn+1 − p with 2 ≤ p ≤ fn−1 + 1, one has fn − 1 ≤ k ≤ fn+1 − 2.
Thus, if k = 0 then n = 0 and the result is done.

Now if k ≥ 1 then n ≥ 1 and in this case fn − 1 =
∑n−2

j=−1 fj .

From Corollary 4.4, we know that (ϕn)k(F) is the word obtained from F by
removing its prefix of length k, i.e., of a length at least

∑n−2
j=−1 fj .

Thus, since for any j ≥ −1, |wj| = fj , and from Theorem 4.3, we have that
(ϕn)k(F) is obtained from F by first removing the prefix w−1 . . . wn−2 (the remaining
is wn−1

∏∞
j=n wj), and then removing a prefix of length k−(fn−1) = fn+1−p−fn+1 =

fn−1 + 1 − p. �

The first values are:

F = (ϕ0)0(F) = w−1w0w1w2w3 . . .

a−1F = (ϕ1)1(F) = w0w1w2w3 . . .

(ab)−1F = (ϕ2)2(F) = w1w2w3 . . .

(aba)−1F = (ϕ2)3(F) = a−1w1w2w3 . . .

(abaa)−1F = (ϕ3)4(F) = w2w3 . . .

(abaab)−1F = (ϕ3)5(F) = b−1w2w3 . . .

(abaaba)−1F = (ϕ3)6(F) = (ba)−1w2w3 . . .

(abaabab)−1F = (ϕ4)7(F) = w3 . . .

Now, we are ready to give for any u prefix of F a direct construction of u−1F as
an infinite concatenation of generalized singular words.

Set, for any n ≥ −1, (ϕn)−1(a) = wn.

Theorem 4.6. Let k ∈ IN, and let n ∈ IN be such that k = fn+1 − p with 2 ≤ p ≤
fn−1 + 1. Then (ϕn)k(F) =

∏∞
j=n−1(ϕ

j)fn−1−p(a).

Before proving this result, remark that this means that if u is a prefix of F
then u−1F can be obtained by concatenating the factors of the infinite sequence
[(ϕj)i(a)]j≥p where i and p are integers depending only on |u|. In particular F is
the special case when i = p = −1 (the singular words of Wen and Wen are all the
[(ϕj)−1(a)]j≥−1): F =

∏∞
j=−1(ϕ

j)−1(a).

Proof. From Proposition 4.5, (ϕn)k(F) = v−1wn−1
∏∞

j=n wj = v−1 ∏∈fty
j=n−1 wj where

v is the prefix of wn−1 such that |v| = fn−1 + 1 − p.

If v = ε, then |v| = 0 = fn−1 + 1 − p, which implies fn−1 − p = −1. Hence
(ϕn)k(F) =

∏∞
j=n−1 wj =

∏∞
j=n−1(ϕ

j)−1(a), which gives the result.
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Now, by definition of the singular words there exists, for any n ∈ IN, {α, β} =
{a, b} such that, for any integer p ≥ −1,

wn+p =

{

αϕn+p(a)β−1 if p is even,
βϕn+p(a)α−1 if p is odd.

Consequently,
∏∞

j=n−1 wj = βϕn−1(a)ϕn(a)ϕn+1(a) . . . = β
∏∞

j=n−1 ϕj(a).
Thus (ϕn)k(F) = v−1β

∏∞
j=n−1 ϕj(a) and if v 6= ε then there exists a word v′ such

that v−1β = v′−1. This means v′ = β−1v and one has |v′| = fn−1 − p.

Since, for any m ∈ IN, ϕm(a) is a prefix of ϕm+1(a) and |ϕm(a)| = fm, one has
that for any integer r ≥ n − 1, ϕr(a) = v′vr, vr ∈ A∗. So, by definition of the right
conjugates, (ϕr)fn−1−p(a) = vrv

′.

This implies that v−1β
∏∞

j=n−1 ϕj(a) = v′−1 ∏∞
j=n−1 ϕj(a)

= v′−1ϕn−1(a)
∏∞

j=n ϕj(a)

= v′−1v′vn−1
∏∞

j=n ϕj(a)

= vn−1
∏∞

j=n ϕj(a)

= vn−1v
′v′−1 ∏∞

j=n ϕj(a)

= (ϕn−1)fn−1−p(a)v′−1 ∏∞
j=n ϕj(a)

= . . .

=
∏∞

j=n−1(ϕ
j)fn−1−p(a).

�

Example.

w
−1 w0 w1 w2 w3 w4 . . .

n = 0 F = (ϕ−1)
−1(a) (ϕ0)

−1(a) (ϕ1)
−1(a) (ϕ2)

−1(a) (ϕ3)
−1(a) (ϕ4)

−1(a) . . .

n = 1 a−1
F = (ϕ0)

−1(a) (ϕ1)
−1(a) (ϕ2)

−1(a) (ϕ3)
−1(a) (ϕ4)

−1(a) . . .

n = 2 (ab)−1
F = (ϕ1))

−1(a) (ϕ2)
−1(a) (ϕ3)

−1(a) (ϕ4)
−1(a) . . .

(aba)−1
F = (ϕ1)0(a) (ϕ2)0(a) (ϕ3)0(a) (ϕ4)0(a) . . .

n = 3 (abaa)−1
F = (ϕ2)

−1(a) (ϕ3)
−1(a) (ϕ4)

−1(a) . . .

(abaab)−1
F = (ϕ2)0(a) (ϕ3)0(a) (ϕ4)0(a) . . .

(abaaba)−1
F = (ϕ2)1(a) (ϕ3)1(a) (ϕ4)1(a) . . .

n = 4 (abaabab)−1
F = (ϕ3)

−1(a) (ϕ4)
−1(a) . . .

(abaababa)−1
F = (ϕ3)0(a) (ϕ4)0(a) . . .

(abaababaa)−1
F = (ϕ3)1(a) (ϕ4)1(a) . . .

(abaababaab)−1
F = (ϕ3)2(a) (ϕ4)2(a) . . .

(abaababaaba)−1
F = (ϕ3)3(a) (ϕ4)3(a) . . .

n = 5 (abaababaabaa)−1
F = (ϕ4)

−1(a) . . .

5 Concluding remarks

Theorem 4.6 is a generalization of the result of Wen and Wen (Theorem 4.3). Indeed,
if we call generalized singular words the words (ϕj)fn−1−p(a) involved in Theorem 4.6
then we obtain a decomposition in generalized singular words for each conjugate of
F. Theorem 4.3 deals with the particular case of F itself, and the singular words of
Wen and Wen are the particular case of the generalized singular words here described
when fn−1 − p = −1.
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To end, one can note that other generalizations of singular words have already
been considered. For example, Melançon [2] proposed over two letters a general-
ization of the singular words which gives a decomposition of all the characteristic
Sturmian words (an infinite word x is a characteristic Sturmian word if both ax and
bx are Sturmian words). In the case of alphabets with more than two letters, Wen [8]
has defined singular words to decompose the Tribonacci sequence (i.e., the infinite
word generated by the three-letter morphism a 7→ ab, b 7→ ac, c 7→ a). It could be
interesting, in these cases, to search for properties similar to those we proved above.
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LaRIA, Université de Picardie Jules Verne
5, rue du Moulin Neuf - 80000 Amiens
FRANCE
e-mail: leve,seebold@laria.u-picardie.fr


