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Regularity criteria for the rational large eddy simulation model
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ABSTRACT. We consider the Rational Large Eddy Simulation (RLES) model intro-
duced by Galdi and Layton (Math. Models Methods Appl. Sci. 10 (2000) 343-350).
Various regularity criteria for the strong solution of this model are established here,
which improve previous ones.

1. Introduction

The well-known incompressible Navier-Stokes (NS) equations reads:

u,+u~VufﬁAu+Vp:0,
divu=0 in (0, 0) x R?,
ul,_g = uo(x) in R?,

where # and p are the velocity and pressure of the fluid, and Re > 0 is the
Reynolds number. The phenomena of instability of fluid motion at high
Reynolds number lead to the study of turbulent flows. The main idea underly-
ing the study of turbulent motion can be traced back to Leonardo da Vinci [3]
(at the beginning of the 16th century), who was the first to observe that the
motion of vortices trailing a blunt body can be understood as a mean motion
plus some turbulent fluctuations. The first mathematical model using this idea
was introduced by Reynolds [12]. In fact, Reynolds proposed to consider the
velocity as decomposed in

u=u-+u,

where @ is the mean velocity, while u’ represents the turbulent fluctuations.
In this paper, we consider the RLES model introduced by Galdi and
Layton [5]:
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1
we+w-Vw + div(I — 524) " [VwVw] — R—eAw +Vqg=0, (1)
divw=0 in (0,00) x R, (2)
Wl,_o =wo in R3. (3)

Here w and ¢ are the approximations of the averaged flow variables # and p.

J is a positive constant, / is the identity operator, and [VwVw]; := o
' k=1"% 7%

For simplicity we take 6 = Re = 1.

The existence and uniqueness of local strong solutions to the problem (1)—
(3) were proved by Berselli-Galdi-Iliescu-Layton [2] when wy e H'. Further-
more, the following results are also proved in [2]:

THEOREM 1. Let w be a strong solution to (1)-(3), and suppose that T* is
the finite maximal existence time, then

lim, [7(0)],2 =+, @)
r 2.3
J [Vw(z)||;.dt = o0,  for PR 2,1<s<0,3/2<r<ow, (5
0

-
2

J lcurl w(z)||;,dt = o0,  for E—l—%: 2,1<s<00,3/2<r<ow. (6)

0

Furthermore, there holds the following blow-up estimate

C
Ww()l|,. = ———=., t< T (7)
P
Before writing down the main result of our paper, let us list some regularity
conditions of the strong solution to the Navier-Stokes equations. The first
result in this direction is obtained independently by Serrin [13] and Struwe [16]
(see also [11]) which states that if weak solution u satisfies

2 2
ueL*(0,T;L"(R*)  with SHo=13<r<o, (8)

then u is smooth in space. After that there are further developments and
refinements by Fabes, Jones, and Riviere [4], Giga [7], Sohr and Von Wahl [14],
and Galdi and Maremonti [6], which concluded that u(x, ) € C*((0, T] x R?)
with smooth initial data. H. Beirdo da Veiga [1] obtained the following reg-
ularity criterion

2
Vue L0, T: L'(R%))  with E*% _2.32<r<w. 9)
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Kozono-Ogawa-Taniuchi [8] refined (8) in the case s =2, r = co and (9) in the
case s =1, r= oo by the following condition

ue L*(0,T; ng(m)) (10)
and
Vue L'(0,T;BY, (RY)) (11)

respectively, where Bg’m denotes the homogeneous Besov spaces.
Kozono-Shimada [9] refined (8) by the following condition

we LU0, T;F,%,)  for 0< o<, (12)

where F,”  denotes the homogeneous Triebel-Lizorkin space. Other regular-
ity criteria for the Navier-Stokes equations can be found in the recent papers
[18, 19, 20, 21] by the last author.

The purpose of this paper is to establish regularity criteria for the RLES
model in the homogeneous Besov space BY . and homogeneous Triebel-
Lizorkin space F,” . We now state our main result in this paper.

THEOREM 2. Let woe H' and divwy =0 in R3.  Assume that one of the
following conditions is satisfied by the solution w(x,t) to the RLES model:

we L*(0, T;L'(RY)  with %'f’%: 1,3<r< oo (13)
we L*0,T; B, (RY)); (14)
Vwe L'(0,T; B, (RY)); (15)
curl we LW—“)(O, T; F;‘m) with 0 < a0 < 2, (16)

then there is no singularity up to T ((20) holds).

REMARK 1. The criterion (16) is interesting, because the vorticity curl w
attracts attention from engineers.

2. Proof of Theorem 2

Before going to the proof, let us first recall the definition of the
homogeneous Besov space BSO and homogeneous Triebel-Lizorkin space
Fr,.

, 00
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DeriNniTioN 1 ([17]). - Let {4;},., be the Littlewood-Paley dyadic de-
composition of unity that satisfies supp{(/ﬁ}C(Bz\Bl/z) ¢j() ¢(2 /5)

and Zqﬁ]( )=1 for any £#0. The homogeneous Besov space BY‘ =
JjeZL
{fed  |\fllg < oo} is introduced by the norm
P:q

1/q
115, = (Z 1279, *fllﬂ)

JjeEZL

for seR, 1< p,gq<oo. The homogeneous Triebel-Lizorkin space Fp“;q =
{fed |\fllgs < oo} is introduced by the norm
p.q

1/q
£l = <Z 2%, *fl")

JjEZL L

for seR,1 < p,qg < 0.
A basic estimate for product functions reads

LEmMMA 1 ([9]). Let 1<p<oo, l<g< oo and s>0, >0, f>0, and
choose 1 < py <o, 1<py<oo and 1<r <o, 1<r,<oo so that l

1 1 _ 1,1 +¢ +
ot =5+ Then for any feFS ’ﬂF ﬂoc and g € pzwﬂFfzf we have

fg e F; g With the estimate

1folle;, < CO Mgz gl + 111 Nl (17)

Since it is well-known that (see [2]) there are a 7 > 0 and a unique strong
solution w to the problem (1)—(3) in (0, 7], in the following calculations, we
assume that the solution is sufficiently smooth on [0, 7.

Testing (1) by (I — 4)w and using (2), we see that

% %sz + |Vw|dx + J V| + |Aw|*dx

= J(W -Vw - dw dx — Jw diviVwVwldx =: I(t). (18)

(1) Firstly, let us assume that (13) holds true. In the following calcu-
lations, we will use the following Gagliardo-Nirenberg inequality

V]l 2o < CIVW[L AWl (> 3). (19)

Using (19), we estimate I(¢) as follows.
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1() < Clwll o - VWil 2o - [ AW 2

1-3/r 1+3/r
Cllwll,. - IVwll>" - 14w}

IA

2
LAIVwlize.

IA

1 2
§||AWHL2 + C||w]

Inserting the above estimate into (18) and using the Gronwall’s inequality lead
to

Wl 2= 0, 7. ) 2200, 7 12) < C (20)

(2) Let us assume that (14) holds true. Noting that

J(w V)w- Aw dx = ij,ﬁiw . aiw dx = — Z J Orwi - iw - Orw dx,  (21)
ik ik

and

ow; 0w
— | wdiv[VwVw]dx = J& Wi — - —2 dx, 22
Jowaiviatas =37 fom- 52852 @)

we bound I(¢) as follows:

2
1(0) < CIVwlp2 - [[Vwlze < Cliwligo - [[Vwllza - [[ 4wl

IA

1 2 2 2
EHAWHLZ + CHW”B&%HVWHLL (23)

Here we have used the Machihara-Ozawa’s inequality [10]:
IVwize < Cllwllg - 4wl (24)

Inserting (23) into (18), we get (20) due to the Gronwall’s inequality.
(3) Let us assume that (15) holds true. Using (21), we bound

J(w VIw-dw dx = — Zjakwi - 0w - Orw dx
ik
as follows. We decompose Jxw as follows
0w = Z ¢/ * Opw = Z ¢j * 0w + Z ¢/*akW+Z¢/ * Okw,
j=—o0 Jj=—N J>N

where N is a positive integer to be chosen later. Plugging this decomposition
into [(w-V)w-Aw dx, we get
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J(W Viw-Aw dx = — Z Zjﬁkwi 0w - ;% Opw dx

J<—N ik

N
Z Zjékwi 0w - @ * Opw dx

J=—N ik

- Z Zjakwi 0w - @ * Opw dx

J>N ik

=L+ 5L+ 15 (25)
Recalling the Bernstein’s inequality [17],
¢ Sl e < C23j(1/p71/q>||¢j * fllpos l<p<qg<oo, (26)

with C being a positive constant independent of f and j, we apply Holder’s
inequality to deduce that

o< > lloewill iz 0wl - Y (1 dewll
ik J<—N

< ClVwlz - > 20||g; « Vi
j<—N

L2

< C2 BNy 3,

N
< 3 0wl ol D s dewl
ik =N
< NIl - [Vwl .

and

L< Y (l0kwill o - 190wl - D Ny * dewll o
ik

Jj>N

< CIVWwlge - VWil - Y272y Vil

j>N
1/2 12
< Cllawllpz - IVwll. (Z 2j> : (Z 27|¢; = VWIIiz>
J>N J>N

< C27 V2|Vl s - || AW fo
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Now we choose

1
12 < 3, to conclude

J(w -V)w - dw dx

< CIVwlz: + ClVwlg HVWMzbgHAWMJ+ 14wl (27)

Similarly, using (22), we infer that
—JW div[VwVwldx < the right hand side of (27). (28)

Inserting (27) and (28) into (18), we arrive at (20) by the Gronwall’s inequality.
(4) Finally, let us assume that (16) holds true. Applying curl to (1), we
find that

d; curl w+w -V curl w — 4 curl w+ curl div(I — 4) ' [VwVw]

= (curl w-V)w. (29)
Testing (29) by (I — 4) curl w, we see that
3 ng lcurl w|* + |V curl w|?dx + J V curl w|® + |4 curl w|dx

= —|(curl w-V)w- A4 curl w dx + J(w -V)curl w- 4 curl w dx
— | curl-div- (I — 4)"'[VwVw] - (I — 4) curl w dx

+ [(curl w-V)w - curl w dx

=Ji+h+J3+Js (30)

Using Lemma 1 and the interpolation inequality, we bound J; as follows.

Ji = J(Curl w-Vw) - A% curl w dx (4:= (=)'

= JAI*“(curl w-Vw) - A curl w dx

< |4 (curl w-Vw)| 2 - || 4 curl w]|,»

< Clleurl w-Vw| g - | A" curl |,

1
< C([leurl wl|p-s HVW”FZ‘,Z + ”VW”F;,% |lcurl WHFZ{Z)HA  curl wl|,»
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< Cllcurl w||z—- - ||V curl w[,. - |4 curl w||,»

< Clleurl w] g ||V curl wl[72* - [|4 curl w]7

1 —a
< 7¢ll4 curl w72 + Clleurl wl| ™|V curl w]7.. (31)

Here, we have used the following inequalities [15]:
|4l < Clf s VSl < Clleurl £l

and

1971151, < Clicurl £l .

By integration by parts, we rewrite J, as

J = Z w;0; curl w - 8,3 curl wdx = — ZJW,’ curl w- (3,-6,3 curl w dx
ik ik

Orw; -curl w- 0;0; curl w dx

|

A 0wy - curl w) - 80k (—4) " A curl w dx

I
M

A" (@ - curl w) | - [0 (—4) " - 4" curl w]

IA
=

i,

< CZ [[(@wi - curl w)| g1 - | A" curl |,
ik

and we obtain, in the same way as that of Jj,

J» < the right hand side of (31). (32)

By integration by parts, we bound J; as follows.

Jy=— J[VWVW] -V curl® w dx
=— JAI’“[VWVW] A% Aw dx

= JAI_“[VWVW] - ATV dx
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and we get, in the same way as that of Jj,
J3 < the right hand side of (31). (33)

Finally, we bound J; as follows.
Jy = JAI"“(curl w-Vw) - A% curl w dx

< |4 (curl wWVw)|

12 477 curl w
< CllA"*(curl w-Vw)|| 2 - | 4%W]| .2
and we get, in the same way as that of Jj,
Jo < Clleurlwllyo - [Vwllzy, - [ 4°W] 12
< Clleurlwil.. - [[4w] 2 - [ A%w]-

< Cl||curl w|

go (IwlZ + 114wl72) (34)

On the other hand, from (18), (21) and (22), we find that in the same way as
that of Jy,

4
dt

N —

J|w|2 + |Vw|2dx + J |Vw|2 + |Aw|2dx

< the right hand side of (34). (35)

Combining (30), (31), (32), (33), (34) and (35) and using the Gronwall’s
inequality, we arrive at

Wl 20, 7. 12y 2200, 7183 < €

This completes the proof. O
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