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Regularity criteria for the rational large eddy simulation model

Huiling Duan, Jishan Fan and Yong Zhou

(Received December 21, 2009)

(Revised September 9, 2010)

Abstract. We consider the Rational Large Eddy Simulation (RLES) model intro-

duced by Galdi and Layton (Math. Models Methods Appl. Sci. 10 (2000) 343–350).

Various regularity criteria for the strong solution of this model are established here,

which improve previous ones.

1. Introduction

The well-known incompressible Navier-Stokes (NS) equations reads:

ut þ u � ‘u� 1
Re
Duþ ‘p ¼ 0;

div u ¼ 0 in ð0;yÞ � R3;

ujt¼0 ¼ u0ðxÞ in R3;

8><
>:

where u and p are the velocity and pressure of the fluid, and Re > 0 is the

Reynolds number. The phenomena of instability of fluid motion at high

Reynolds number lead to the study of turbulent flows. The main idea underly-

ing the study of turbulent motion can be traced back to Leonardo da Vinci [3]

(at the beginning of the 16th century), who was the first to observe that the

motion of vortices trailing a blunt body can be understood as a mean motion

plus some turbulent fluctuations. The first mathematical model using this idea

was introduced by Reynolds [12]. In fact, Reynolds proposed to consider the

velocity as decomposed in

u ¼ uþ u 0;

where u is the mean velocity, while u 0 represents the turbulent fluctuations.

In this paper, we consider the RLES model introduced by Galdi and

Layton [5]:
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wt þ w � ‘wþ divðI � d2DÞ�1½‘w‘w� � 1

Re
Dwþ ‘q ¼ 0; ð1Þ

div w ¼ 0 in ð0;yÞ � R3; ð2Þ

wjt¼0 ¼ w0 in R3: ð3Þ

Here w and q are the approximations of the averaged flow variables u and p.

d is a positive constant, I is the identity operator, and ½‘w‘w�ij :¼
P3
k¼1

qwi

qxk

qwj

qxk
.

For simplicity we take d ¼ Re ¼ 1.

The existence and uniqueness of local strong solutions to the problem (1)–

(3) were proved by Berselli-Galdi-Iliescu-Layton [2] when w0 A H 1. Further-

more, the following results are also proved in [2]:

Theorem 1. Let w be a strong solution to (1)–(3), and suppose that T � is

the finite maximal existence time, then

lim
t%T �

k‘wðtÞkL2 ¼ þy; ð4Þ

ðT �

0

k‘wðtÞks
Lrdt ¼ y; for

2

s
þ 3

r
¼ 2; 1a s < y; 3=2 < ray; ð5Þ

ðT �

0

kcurl wðtÞks
Lrdt ¼ y; for

2

s
þ 3

r
¼ 2; 1 < s < y; 3=2 < r < y: ð6Þ

Furthermore, there holds the following blow-up estimate

k‘wðtÞkL2 b
C

ðT � � tÞ1=4
; t < T �: ð7Þ

Before writing down the main result of our paper, let us list some regularity

conditions of the strong solution to the Navier-Stokes equations. The first

result in this direction is obtained independently by Serrin [13] and Struwe [16]

(see also [11]) which states that if weak solution u satisfies

u A Lsð0;T ;LrðR3ÞÞ with
2

s
þ 2

r
¼ 1; 3 < ray; ð8Þ

then u is smooth in space. After that there are further developments and

refinements by Fabes, Jones, and Riviere [4], Giga [7], Sohr and Von Wahl [14],

and Galdi and Maremonti [6], which concluded that uðx; tÞ A Cyðð0;T � � R3Þ
with smooth initial data. H. Beirão da Veiga [1] obtained the following reg-

ularity criterion

‘u A Lsð0;T ;LrðR3ÞÞ with
2

s
þ 3

r
¼ 2; 3=2 < ray: ð9Þ
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Kozono-Ogawa-Taniuchi [8] refined (8) in the case s ¼ 2, r ¼ y and (9) in the

case s ¼ 1, r ¼ y by the following condition

u A L2ð0;T ; _BB0
y;yðR3ÞÞ ð10Þ

and

‘u A L1ð0;T ; _BB0
y;yðR3ÞÞ ð11Þ

respectively, where _BB0
y;y denotes the homogeneous Besov spaces.

Kozono-Shimada [9] refined (8) by the following condition

u A L2=ð1�aÞð0;T ; _FF�a
y;yÞ for 0 < a < 1; ð12Þ

where _FF�a
y;y denotes the homogeneous Triebel-Lizorkin space. Other regular-

ity criteria for the Navier-Stokes equations can be found in the recent papers

[18, 19, 20, 21] by the last author.

The purpose of this paper is to establish regularity criteria for the RLES

model in the homogeneous Besov space _BB0
y;y and homogeneous Triebel-

Lizorkin space _FF�a
y;y. We now state our main result in this paper.

Theorem 2. Let w0 A H 1 and div w0 ¼ 0 in R3. Assume that one of the

following conditions is satisfied by the solution wðx; tÞ to the RLES model:

w A Lsð0;T ;LrðR3ÞÞ with
2

s
þ 2

r
¼ 1; 3 < ray; ð13Þ

w A L2ð0;T ; _BB0
y;yðR3ÞÞ; ð14Þ

‘w A L1ð0;T ; _BB0
y;yðR3ÞÞ; ð15Þ

curl w A L2=ð2�aÞð0;T ; _FF�a
y;yÞ with 0 < a < 2; ð16Þ

then there is no singularity up to T ((20) holds).

Remark 1. The criterion (16) is interesting, because the vorticity curl w

attracts attention from engineers.

2. Proof of Theorem 2

Before going to the proof, let us first recall the definition of the

homogeneous Besov space _BB0
y;y and homogeneous Triebel-Lizorkin space

_FF�a
y;y.
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Definition 1 ([17]). Let ffjgj AZ be the Littlewood-Paley dyadic de-

composition of unity that satisfies suppff̂fgH ðB2nB1=2Þ, f̂fjðxÞ ¼ f̂fð2�jxÞ,
and

P
j AZ

f̂fjðxÞ ¼ 1 for any x0 0. The homogeneous Besov space _BBs
p;q :¼

f f A S 0 : k f k _BBs
p; q

< yg is introduced by the norm

k f k _BBs
p; q

:¼
X
j AZ

k2 jsfj � f kq
Lp

 !1=q

for s A R, 1a p; qay. The homogeneous Triebel-Lizorkin space _FF s
p;q :¼

f f A S 0 : k f k _FF s
p; q

< yg is introduced by the norm

k f k _FF s
p; q

:¼
X
j AZ

2 jqsjfj � f jq
 !1=q������

������
Lp

for s A R; 1a p; qay.

A basic estimate for product functions reads

Lemma 1 ([9]). Let 1 < p < y, 1 < q < y and s > 0, a > 0, b > 0, and

choose 1 < p1 < y, 1 < p2 ay and 1 < r1 ay, 1 < r2 < y so that 1
p
¼

1
p1
þ 1

p2
¼ 1

r1
þ 1

r2
. Then for any f A _FF sþa

p1;q
V _FF�b

r1;y
and g A _FF�a

p2;y
V _FF sþb

r2;q
we have

fg A _FF s
p;q with the estimate

k fgk _FF s
p; q

aCðk f k _FF sþa
p1 ; q

kgk _FF�a
p2 ;y

þ k f k _FF�b
r1 ;y

kgk _FF sþb
r2 ; q

Þ: ð17Þ

Since it is well-known that (see [2]) there are a T > 0 and a unique strong

solution w to the problem (1)–(3) in ð0;T �, in the following calculations, we

assume that the solution is su‰ciently smooth on ½0;T �.
Testing (1) by ðI � DÞw and using (2), we see that

1

2

d

dt

ð
w2 þ j‘wj2dxþ

ð
j‘wj2 þ jDwj2dx

¼
ð
ðw � ‘Þw � Dw dx�

ð
w div½‘w‘w�dx ¼: IðtÞ: ð18Þ

(1) Firstly, let us assume that (13) holds true. In the following calcu-

lations, we will use the following Gagliardo-Nirenberg inequality

k‘wkL2r=ðr�2Þ aCk‘wk1�3=r

L2 kDwk3=r
L2 ðr > 3Þ: ð19Þ

Using (19), we estimate IðtÞ as follows.
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IðtÞaCkwkLr � k‘wkL2r=ðr�2Þ � kDwkL2

aCkwkLr � k‘wk1�3=r

L2 � kDwk1þ3=r

L2

a
1

2
kDwk2L2 þ Ckwk s

Lrk‘wk2L2 :

Inserting the above estimate into (18) and using the Gronwall’s inequality lead

to

kwkLyð0;T ;H 1ÞVL2ð0;T ;H 2Þ aC: ð20Þ

(2) Let us assume that (14) holds true. Noting thatð
ðw � ‘Þw � Dw dx ¼

X
i;k

ð
wiqiw � q2kw dx ¼ �

X
i;k

ð
qkwi � qiw � qkw dx; ð21Þ

and

�
ð
w div½‘w‘w�dx ¼

X
i; j;k

ð
qjwi �

qwi

qxk
� qwj

qxk
dx; ð22Þ

we bound IðtÞ as follows:

IðtÞaCk‘wkL2 � k‘wk2L4 aCkwk _BB0
y;y

� k‘wkL2 � kDwkL2

a
1

2
kDwk2L2 þ Ckwk2_BB0

y;y
k‘wk2L2 : ð23Þ

Here we have used the Machihara-Ozawa’s inequality [10]:

k‘wk2L4 aCkwk _BB0
y;y

� kDwkL2 : ð24Þ

Inserting (23) into (18), we get (20) due to the Gronwall’s inequality.

(3) Let us assume that (15) holds true. Using (21), we boundð
ðw � ‘Þw � Dw dx ¼ �

X
i;k

ð
qkwi � qiw � qkw dx

as follows. We decompose qkw as follows

qkw ¼
Xþy

j¼�y

fj � qkw ¼
X
j<�N

fj � qkwþ
XN
j¼�N

fj � qkwþ
X
j>N

fj � qkw;

where N is a positive integer to be chosen later. Plugging this decomposition

into
Ð
ðw � ‘Þw � Dw dx, we get
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ð
ðw � ‘Þw � Dw dx ¼ �

X
j<�N

X
i;k

ð
qkwi � qiw � fj � qkw dx

�
XN
j¼�N

X
i;k

ð
qkwi � qiw � fj � qkw dx

�
X
j>N

X
i;k

ð
qkwi � qiw � fj � qkw dx

¼: I1 þ I2 þ I3: ð25Þ

Recalling the Bernstein’s inequality [17],

kfj � f kLq aC23jð1=p�1=qÞkfj � f kLp ; 1a pa qay; ð26Þ

with C being a positive constant independent of f and j, we apply Hölder’s

inequality to deduce that

I1 a
X
i;k

kqkwikL2 � kqiwkL2 �
X
j<�N

kfj � qkwkLy

aCk‘wk2L2 �
X
j<�N

2ð3=2Þ jkfj � ‘wkL2

aC2�ð3=2ÞNk‘wk3L2 ;

I2 a
X
i;k

kqkwikL2 � kqiwkL2 �
XN
j¼�N

kfj � qkwkLy

aCNk‘wk2L2 � k‘wk _BB0
y;y

;

and

I3 a
X
i;k

kqkwikL6 � kqiwkL2 �
X
j>N

kfj � qkwkL3

aCk‘wkL6 � k‘wkL2 �
X
j>N

2 j=2kfj � ‘wkL2

aCkDwkL2 � k‘wkL2

X
j>N

2�j

 !1=2
�
X
j>N

22jkfj � ‘wk
2
L2

 !1=2

aC2�N=2k‘wkL2 � kDwk2L2 :
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Now we choose N so that C2�N=2k‘wkL2 a
1
4 , to concludeð

ðw � ‘Þw � Dw dx

aCk‘wk2L2 þ Ck‘wk _BB0
y;y

� k‘wk2L2 log
þkDwk2L2 þ

1

4
kDwk2L2 : ð27Þ

Similarly, using (22), we infer that

�
ð
w div½‘w‘w�dxa the right hand side of ð27Þ: ð28Þ

Inserting (27) and (28) into (18), we arrive at (20) by the Gronwall’s inequality.

(4) Finally, let us assume that (16) holds true. Applying curl to (1), we

find that

qt curl wþ w � ‘ curl w� D curl wþ curl divðI � DÞ�1½‘w‘w�

¼ ðcurl w � ‘Þw: ð29Þ

Testing (29) by ðI � DÞ curl w, we see that

1

2

d

dt

ð
jcurl wj2 þ j‘ curl wj2dxþ

ð
j‘ curl wj2 þ jD curl wj2dx

¼ �
ð
ðcurl w � ‘Þw � D curl w dxþ

ð
ðw � ‘Þ curl w � D curl w dx

�
ð
curl � div � ðI � DÞ�1½‘w‘w� � ðI � DÞ curl w dx

þ
ð
ðcurl w � ‘Þw � curl w dx

¼: J1 þ J2 þ J3 þ J4 ð30Þ

Using Lemma 1 and the interpolation inequality, we bound J1 as follows.

J1 ¼
ð
ðcurl w � ‘wÞ � L2 curl w dx ðL :¼ ð�DÞ1=2Þ

¼
ð
L1�aðcurl w � ‘wÞ � L1þa curl w dx

a kL1�aðcurl w � ‘wÞkL2 � kL1þa curl wkL2

aCkcurl w � ‘wk _FF 1�a
2; 2

� kL1þa curl wkL2

aCðkcurl wk _FF�a
y;y

k‘wk _FF 1
2; 2

þ k‘wk _FF�a
y;y

kcurl wk _FF 1
2; 2
ÞkL1þa curl wkL2
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aCkcurl wk _FF�a
y;y

� k‘ curl wkL2 � kL1þa curl wkL2

aCkcurl wk _FF�a
y;y

� k‘ curl wk2�a
L2 � kD curl wka

L2

a
1

16
kD curl wk2L2 þ Ckcurl wk2=ð2�aÞ

_FF�a
y;y

k‘ curl wk2L2 : ð31Þ

Here, we have used the following inequalities [15]:

kL1�af kL2 aCk f k _FF 1�a
2; 2

; k‘f k _FF�a
y;y

aCkcurl f k _FF�a
y;y

;

and

k‘f k _FF 1
2; 2

aCkcurl f k _FF 1
2; 2
:

By integration by parts, we rewrite J2 as

J2 ¼
X
i;k

ð
wiqi curl w � q2k curl w dx ¼ �

X
i;k

ð
wi curl w � qiq2k curl w dx

¼
X
i;k

ð
qkwi � curl w � qiqk curl w dx

¼
X
i;k

ð
L1�aðqkwi � curl wÞ � qiqkð�DÞ�1 � L1þa curl w dx

a
X
i;k

kL1�aðqkwi � curl wÞkL2 � kqiqkð�DÞ�1 � L1þa curl wkL2

aC
X
i;k

kðqkwi � curl wÞk _FF 1�a
2; 2

� kL1þa curl wkL2

and we obtain, in the same way as that of J1,

J2 a the right hand side of ð31Þ: ð32Þ

By integration by parts, we bound J3 as follows.

J3 ¼ �
ð
½‘w‘w� � ‘ curl2 w dx

¼ �
ð
L1�a½‘w‘w� � La�1‘Dw dx

¼
ð
L1�a½‘w‘w� � L1þa‘w dx
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and we get, in the same way as that of J1,

J3 a the right hand side of ð31Þ: ð33Þ

Finally, we bound J4 as follows.

J4 ¼
ð
L1�aðcurl w � ‘wÞ � La�1 curl w dx

a kL1�aðcurl w‘wÞkL2 � kLa�1 curl wkL2

aCkL1�aðcurl w � ‘wÞkL2 � kLawkL2

and we get, in the same way as that of J1,

J4 aCkcurl wk _FF�a
y;y

� k‘wk _FF 1
2; 2

� kLawkL2

aCkcurl wk _FF�a
y;y

� kDwkL2 � kLawkL2

aCkcurl wk _FF a
y;y

ðkwk2L2 þ kDwk2L2Þ ð34Þ

On the other hand, from (18), (21) and (22), we find that in the same way as

that of J4,

1

2

d

dt

ð
jwj2 þ j‘wj2dxþ

ð
j‘wj2 þ jDwj2dx

a the right hand side of ð34Þ: ð35Þ

Combining (30), (31), (32), (33), (34) and (35) and using the Gronwall’s

inequality, we arrive at

kwkLyð0;T ;H 2ÞVL2ð0;T ;H 3Þ aC;

This completes the proof. r
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