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ABSTRACT. In this paper, we compute the fundamental group of the complement of
linear torus curves of maximal contact and we show that it is isomorphic to that of
generic linear torus curves. As an application, we give new two Zariski triples.

1. Introduction

Let C be a curve of degree d in P>. We are interested in two important
invariants of C: the Alexander polynomial 4¢(¢) and the fundamental group of
the complement 7;(P*\C). A plane curve C = P? is called a curve of (p,q)
torus type with p > g > 2, if p, ¢ are positive integers that divide d and there
is a defining polynomial F of C of the form F(X,Y,Z) = Fy;,(X,Y,Z)" -
Fyp(X, Y, Z)? where Fy14, Fq/p are homogeneous polynomials of X, Y, Z of
degree d/q and d/p respectively. This is an important class of plane curves
of degree d. For a given curve of torus type, we consider the intersection

locus {Fy/y = Fyy, = 0} = {P1,..., Py} and the local intersection numbers 7, :=
I(Fyq, Fgp; Py) for j=1,... k. By the Bézout theorem, we have the equality
Zle n; = ;’,—:']. We call .# = {ny,...,n} the intersection partition of C. Con-

sider the pencil C(z):
C(r) ={F(X,Y,Z,t) =1F;,X,Y, Z)"—(1- ) Fyp(X, Y,Z)’ =0}, reC.

We assume that the curve {F,;/, = 0} is non-singular at each P; for j =1,... k.
A singular point P € C is called inner if P € {Fy/, = Fy;, = 0}. Otherwise, P is
called an outer singularity. We say that C is a tame torus curve if C has no
outer singularities. By the Bertini theorem (p. 137 in [3]), C(z) is a tame curve
for a generic t (namely except for a finite number of exceptional values of 7's)
and the topology of (P?, C(z)) does not depend on the particular choice of a
generic 7.
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We say that a curve C of (p,q) torus type is a torus curve of a maximal
contact if {Fy, = Fy, =0} = {&} and {Fy,, =0} is smooth at &. In this
case, the singularity (C,¢&,) is topologically equivalent to the Brieskorn-Pham
singularity B>/, , where we use the notation By, , := {(x, y) € C*|x" + y" = 0}.

Now we are interested in the Alexander polynomial Ac(f) and the
fundamental group 7;(P*\C). These two invariants are difficult to compute
in general but there is a convenient criterion for their computation. Suppose
there is a family of reduced curves C(s), se€ U = C of degree d (U is an open
neighborhood of the origin) such that for s # 0, the topology of C(s) is inde-
pendent of s but C(0) has a bigger singularities. (See [7] for the definition.)
Then we have a degeneration principle:  A¢)(2) | ¢y (1) and 1 (PA\C(0)) is
mapped surjectively onto m (P*\C(s)).

Let .#(p,q;d, ) be the space of pairs of polynomials (Fy, Fq/p) such
that the intersection partition of {Fy/, = F;/, = 0} is equal to .# = {ny,...,m}
and the curve {F;,, =0} is smooth at each intersection points. To such a
pair, we associate a generic torus curve

C(t) = {tFyy(X,Y,2)" — (1 = 1)Fy),(X, Y, Z)" = 0}, reC.

This moduli space .#(p,q;d,.#) has a canonical topology and a structure of
an algebraic variety. (In fact, let P(n) be the affine space of the homogeneous
polynomials of degree n in three variables X, Y, Z. Then we can identify
C(r) as a point (Fyy,, Fy/p,7) € P(d/q) x P(d/p) x C so that the moduli space
can be considered as an algebraic subset of P(d/q) x P(d/p) x C.) Putting
the degeneration principle into the consideration, we have the following basic
problems.
(1) Is M(p,q;d,#) connected? (Or equivalently is the corresponding
moduli space irreducible?)
(2) For a given two partition .#, .#" such that .#’ is a finer partition than
#, and two generic curves C e .4 (p,q;d,#) and C' e .4 (p,q;d, "),
is there a degeneration family C(s), se U such that C(s) = C’' and

C0)=C?

(3) (Sandwich principle) Let C be a generic curve in #(p,q;d, ).
We consider two particular partitions: % ={l,...,1} and .4, =
{d*/pq}. Are there families of degenerations C(s), s€ U and D(s),

s € U with the following properties?

(@) C(s)eM(p,q;d,s) for s #0 and C(0 ):C

(b) D(s)e H(p,q;d,¥) for s+#0, D(1)= and D(0)e
M(p,q;d, In).

() Let C;=C(1)e.#(p,q;d, %) and C,, = D(0) € .4 (p,q;d, I).

Ac, (1) = A, (1), 1 (PA\Cy) = 71 (PP\Cp).
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If these properties are satisfied, we have
Ac(t) = Ac, (1), m(P\C) = m(P\C,).

We call the above two partitions .9, and .4, are called the generic partition and
the maximal partition. The generic partition ., means geometrically that the
associated curves intersect transversely at each intersection point. On the other
hand, the maximal partition .#, means that the associated curves intersect only
one point.

So far, there exist very few known results. In fact, we only know the
following.

* For the generic partition .%, the moduli space .#(p,q;d,.%,) is irre-

ducible and for a generic C € .#(p,q;d,.%,),

(1~ 1)(t - 1)

I
Acll) =G =D -1

where r = ged(p,¢) and the fundamental group is given by:

nl(Pz\C) = G(pqu d/p)

The group G(p,q,d/p) was introduced in [5]. It is known that
G(p,q,d/p) has a cyclic group Z :=7Z/dZ, a :% as the center and
the quotient group G(p,q,d/p)/Z is isomorphic to (Z/(p/r)Z)x
(Z/(q/r)Z) « F(r — 1) where F(n) is the free group of rank n (Oka
[5]. See also [1, 2]).

* For the case of curves of (3,2) torus type of degree 6, the moduli spaces
M (3,2;6,.7) are irreducible for any intersection partition .# and the
above properties (1), (2) and (3) hold true and we have isomorphisms:

Ac(ty =1 —t+1, m(P\C)=Z/2Z+Z/3Z

for any generic C e .#(3,2;6,.7) ([9]).

e Let Jt/(’f/l;p(p,q;d) be the subspace of .#(p,q;d,s,) defined by the

following:  (Fy/, Fy/p) € Md%p(p,q;d) if and only if (Fy,, Fy,)€
M(p,q;d, Im) and I(T¢, Fapp;&0) = d/p where & is the intersection
point {Fy,, = Fy/, = 0} and {Fy/, = 0} is smooth at &, and T, is the
tangent line of {Fy/, = 0} at &, ([1]). The moduli space thd%p(p,q; d)
is irreducible and the normal forms are explicitly obtained (Lemma 2 of
[1]). Take a generic curve Ceﬂfa,[/lép(p,q;d). Then

(4 —1)"(¢ 1)

1
(=D —1)

Ac(1) =
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A typical such curve can be
C:(y¥1 4y — x4 1(y — x¥Uryr =0, teC".

It is also shown that the moduli space .#(d/2,q;d, 7)) = N5} (d/2,q;d)

is irreducible where ¢ divides d (Lemma 2 of [1]).
We can ask the next question: Is .#(p,q;d, %) is irreducible? 1f this is true,
the above result of [1] determines the Alexander polynomial Ac(f) for any
generic C e /4 (p,q;d, %)

In this paper, we consider the following special class of torus curves of

torus type (pgq,q) and of degree pg. The defining polynomial of C in the
affine coordinates takes the following form:

C:f(x,p) = fplx, »)! = (x, »)" =0
where /(x, y) is a linear form. We say such a curve C a linear torus curve of
type (pq,q). We associate to C the following two curves C, := {f, = 0} and
L:={/=0}. If Cis a linear torus curve of type (pg,q), then C generically
consists of ¢ smooth irreducible curves of degree p as

2nv/—1
q

q

f= H(fl’ —{er), where { := exp<

J=1

and the inner singularities of C are situated at the intersection C, N L. For the
generic partition .4, and C € .#(pq, q; pq, ¥;), we call C a generic linear torus
curve. If C is a generic linear torus curve of type (pgq,q), the fundamental
group is given by

m(P\C) = F(q— 1)« Z/pZ
and the Alexander polynomial Ac(f) is given by ([5, 1])

(1= 1) (1)
11 —1 '

Ac([) =

Let C be a tame (pq,q) linear torus curve of a maximal contact with
degree pg. Then C has g components of degree p which intersect at one point
with intersection multiplicity p? each other. In this paper, we compute that
fundamental groups of P?\C and C?*\C and also the Alexander polynomial
Ac(l).

Our main result is the following:

THEOREM 1. Let C be a tame (pq,q) linear torus curve of a maximal
contact. Then the fundamental group m;(P>\C) is isomorphic to that of generic
linear torus curves. Namely
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nl(CZ\C) ;<g17~--7gq;w|w:gl-~-gq’ [gjawp} :evj: 177‘1>
1 (P\C) = <gi,....gp 0|0’ =e,0=gi...9,) = F(q— 1)+ Z/pZ

where [g;, w?] is the commutator of g; and w?. The Alexander polynomial A¢(t)
is equal to that of the generic curve. Namely it is given by the following:

(71— 1) (e - 1)

Aclt) = 19— 1

We also show the irreducibility of the moduli space .#(pq, ¢; pq, #) for an
arbitrary intersection partition .# (Proposition 2). Thus one of the important
application of Theorem 1 is the following.

COROLLARY 1. Let C be a generic curve in #(pq,q;pq,¥) for an
arbitrary partition .#. Then the fundamental group m;(P*\C) is isomorphic
to F(q—1)*xZ/pZ and the Alexander polynomial Ac(t) is given by the
following:

(-1 (- 1)

Ac(t) = Py

As a second application, we will give new two Zariski triples. See §4.

2. Preliminaries

2.1. Van Kampen-Zariski Pencil method. Let C be a reduced plane curve of
degree d in P2. To compute the fundamental groups 7;(P?\C) and 7;(C*\C),
we use the so-called van Kampen-Zariski pencil method. We recall it briefly
in the following ([7]). We fix a point By € P*\C and we consider the set of
lines ¥ = {L|seP'} through By and % is called a pencil. Taking a linear
change of coordinates if necessary, we may assume that By =[1:0:0] and L;
is defined by L, = {Y —sZ =0} in P> where (X,Y,Z) is the fixed homoge-
neous coordinates. Take L., = {Z = 0} as the line at infinity and assume that
L., intersects transversely C. We consider the affine coordinates (x,y) =
(X/Z,Y)Z) on C>=P>—L,. Let F(X,Y,Z) be the defining homogeneous
polynomial of C and let f(x, y) = F(x, y,1) be the affine equation of C. We
use the following notations:

C*=CncC?  LY=L,NC
We identify Ly and L¢ with P' and C respectively and the pencil line L

is defined by {y=s} in the affine coordinates (x,y). We use x as the
coordinates of L.
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A pencil line Ly is called singular with respect to C if Lg passes through a
singular point of C or L, is tangent to C. Otherwise, we call L; is generic.
Hereafter we assume that L., is generic and By is not contained in C.

Let C, be the space of the parameters of the pencil with coordinates
y and let ¥ = {seC,|Ly is a singular pencil line} and suppose that X =
{s1,...,8} = C,. We fix a generic pencil line L, (so sp € C,\2) and put
L‘NC*={Qy,...,04} where d is the degree of C. We take a base point

S0
x0 € Ly \Lg NC* on the real axis that is sufficiently near to By and %o # By.

50
We take a large disk 4z = L such that L NC* < Ag and %o ¢ 4g.  We may
assume that Az = {(x,s0) € L |[x| < R} with a sufficient large R. We orient
the boundary of A counter-clockwise and we put 5 = 04g. Join the circle
Z to the base point by a line segment L connecting %y and = along the real
axis. Let Q be the class of this loop LoZo L™ in 7;(LE\LE N C;x). We
take free generators ¢, ...,gq of m (Lg)\Lg) N C; %) so that g; goes around Q;
counter-clockwise along a small circle and we assume that w = g, . ..¢, taking

a suitable ordering of gi,...,gs if necessary.

Fig. 1. L,NC

Hereafter we denote a small lasso oriented in the counter clockwise
direction by a bullet with a path in the following figures. Thus
indicates —O.

The fundamental group 71(C,\2;s0) acts on 7y (Lg\Lg N C;%). We call
this action the monodromy action of n;(C,\2;sp). For details, we refer to [7,
6]. Note that 7 (Lg\Lg NC;xo) is a free group of rank d with generators
g1,---,9ga- The result of the action of o € 71 (C,\ 25 50) on g € 7y (Lg \Lg N C; o)
is denoted by g°.

Let .# be the normal subgroup of 7;(Lg\Lg NC;*o) that is normally
generated by

#={9"9"|gem(LE\L

S0

2N C;x), gem(C\2;s50)}

S0

and we call .# the group of the monodromy relations. Put

’%(O_i) = {gjilg;i |] = 1a o 7d}
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Then it is easy to see that the group .# is normally generated by U;;l M (o).
By the definition, we have the relation

9 =9 R(0))
in the quotient group 7 (LI\LY N C;x9)/ 4. We call R(o;) the monodromy

S0 S0

relation for ¢;. Let j:Lg¢\LiNC — C>\C“ and 1: C*\C* — P?\C be the
respective inclusions.

ProrosiTioN 1 ([12, 11, 10]). Under the above situations, the following
hold.
(1) The canonical homomorphism jy : i (Lg \Lg N C; ) — m (C?\C% xg)
is surjective and the kernel Ker j, is equal to M. Thus we have the
isomorphism.

1 (C\C% o) = 7 (LE\LE N C; %) /A .

S0 S0

(2) ([4) The canonical homomorphism 1, : 1 (C*\C% %) — 1 (P*\C; o)
is surjective and the kernel Ker 1y is generated by a single element
w=gg...g1 which is in the center of m(CZ\C”) and Ker 1y =
{w) = Z. Thus we have an isomorphism

nl(Pz\C; %) = T (Cz\Ca; *0)/{w)

3. Proof of Theorem 1

Let (x,y) be affine coordinates such that x = X/Z,y=Y/Z on C?:=
PA\{Z =0}

3.1. Construction of curves. In this section, we construct a linear torus curve
C of a maximal contact and investigate its local properties. First we introduce
a plane curve D, = {g,(x, y) =0} of degree p where the defining polynomial
gx(x,y) is defined by

gu(t, ¥) =u—=y(y, ), Y(y,0)=y-opf,  aeC.
Now we consider the p-fold cyclic covering ([6]) defined by
Py C? - C?, 9,(x,¥) = (u, ), u=x>.

To distinguish two affine planes, we denote the source space of ¢, by Cf
with coordinates (x,y) and the target space of ¢, by sz with coordinates
(u,y). Hereafter we simply denote C? instead of C?

Let C, := ¢~ !(D,) be the pull-back of D, by ¢, and let f,(x, y) = gu(x”, y)
be the defining polynomial of C,. Note that

Ju(x, y) = %" = Y(p, ).
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By the defining equation of C,, we see that the set of parameters that
correspond to the singular pencil lines for C, is given by

2y ={yeCly(y,a) =0}

(cf. [5]). Fix a complex number y such that *~! =1/a. Then we factorize
V(y,a) as follows:

p—2 /=1
V(o) =y [J0EF =0, <= exp<2 1).
=0

p—1

Then we can see that O = (0,0) and Oy = (0,7¢X) for k =0,..., p — 2 are flex
points of C, of flex order p —2 and their tangent lines are nothing but the
singular pencil lines through these points and they are given by y =0 and
y = p&X respectively.

Now we are ready to define a reduced curve C. Take ¢ non-zero mutually
distinct complex numbers oy, ..., %, and put D; = {g, (x, y) =0} for j=1,...,¢
and put D= J!, D;. Then put C; =g, (D)) for =1,...,¢ and finally we
define

C=9¢,'(D)=CU---UC,.

The defining polynomials f;(x,y) and f(x,y) of C; and C respectively are
given as follows.

ﬁ(xay):xp_lp(yvaj)7 f(xvy): fj<x7y)‘

=1

Put U = {(a1,...,00) € C*¥|o; # 0, for any i # j}. It is known that the em-
bedded topology of C = C? does not depend on the choice of (o1,...,0q) €U
(see [2]).

LemMA 1. The reduced curve C can be a (pq,q) linear torus curve of a
maximal contact for a certain choice of (oy,...,0,).

Proor. We take (ay,...,0,) = (1,{,... ,C”*I) € U, then we claim that C =
{f(x,y) =0} is a (pq,q)-linear torus curve of a maximal contact. Indeed,
f(x,y) takes the form:

Sy =TJW¢W v =y +x7)
=1
= ()~ (=)

=y —(y—x")".
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This expression shows that C is a (pg,q) linear torus curve of a maximal
contact. O

For practical computations, we suppose hereafter that oy,..., o, are real
numbers such that oy >--->a, >0. Let y; be a real positive number such
that y]‘.”fl =1/o; for j=1,...,q. By the assumption o >--- >, >0, we
have

0<y < o <y

As C;NC; = {0} for any j # i, the possible singular pencil L, = {y = s} is
either {y =0} or L, is tangent to one of C; outside of O.

LemMaA 2. Under the above situation, the local data of C for the calculation
of the fundamental group of P*\C is the following.
(1)  Singular pencil lines are y =0 and y:yjék for j=1,...,q and
k=0,....,p—2. The pencil lines y = yjék is tangent to C; at Q; i =
(07 yjfk)'
(2) Two curves C; and C; (j#1i) intersect only at OeC* and
1(G;, C;;0) = P
(3) The singularity type C at O is given by (C,0) ~ By ,.
3.2. Calculation of the fundamental group 7;(P*\C) and 7;(C*\C). For the
calculations of the fundamental groups 7z;(P*\C) and 7;(C*\C), we use the
van Kampen-Zariski pencil method. We take the base point By =[1:0:0] in
P? and consider the pencil ¥ = {L|se C} through By with L, = {Y = sZ}.
The line at infinity L, is given by {Z =0}. Then L., is generic with respect
to C. Affine pencil is ¢ = {L%} _ with LY = {y =s}. (By abuse of nota-
tion, we consider this pencil ¥ = {L;|seC} in C> and C2) By Lemma 2,
the set X' = C, of parameters that correspond to singular pencil lines for C is
given as follows:

2:={0,7,¢" eCylk=0,....p-2,j=1,....q}.
Take the base point y, of C,\2 on the real axis so that 0 <y, <7y,. As
Y(0.9) = Y0, o) = (o —oy)yg >0 if i<,
we have
0 < (o, o) <W(o,22) <=+ < (7o, ).

We take the base point ¢ = (70,7,) Where 7o is a sufficiently large positive
number. As C is the pull-back of D by the p-fold cyclic covering ¢, : (x, y)
(x”, ), the monodromy relations for 7;(Ly \ Ly N C; o) are essentially obtained
by taking lifting the monodromy relations for 7;(Ly \(Ly ND)U{0};*,) by ¢,
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where the base point *, is a real point defined by *, = (¢{,7,) ((6]). This is the
basic idea for the computation of the fundamental groups.

We first take loops by, ... by of mi(Ly\(Ly ND)U{0}, %) and put 7:=
bi...b, as in Figure 2.

Fig. 2. The loops by,...,b, in {y=1y,}NC?

Let a] ; and o; be the pull-back of b; and 7 by ¢, respectively starting from
% := (n'10,70) with i =0,..., p — 1 where 7 := exp(2nzv/—1/p) and let a; ; and
w; be the loop /ioa] jo/i’l and /o w!o /! where 4 is the arc of the circle
|x| = 7o from % to x; as in Figure 3. Hereafter we identify ai’ﬁj and q; ; in this
way.

Fig. 3. The loops a;; and w; in {y = 7} NC?

First we see the monodromy relations on the real axis in C, that cor-
respond to singular pencil lines y =0 and y =y, for j=1,...,4. To see these
monodromy relations, we consider following loops oy and o; in C, for j=
1,...,q. First we define the loop g9. Let Ky be the line segment from y, to
0 — ¢ on the real axis and let Sy be the circle |y| = ¢ where the circle is always
oriented counter-clockwise. Then gy is defined as the loop (see Figure 4)

o) :ZK()OS()OK(;I.
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Next we define loops g; for j=1,...,9. Let S; be the loop that is represented
by the circle |y — ;| = ¢ oriented counter clockwise. Let K; be the modified

line segment from y, to y; —&.  The segment [y; — &,v; + ¢ is replaced by the
lower half circle of S;. Then og; is defined as the loop (see Figure 4)

O'j::Kjononfl.

O Vi
Yo st Y2
S L] ° ° [ n
(= ) s

Fig. 4. Loops in C,

Case 1: First we see the monodromy relations at y = 0. By the definitions of
C;’s and Lemma 2, the origin O is a flex point of C; such that {y = 0} is the

tangent line for j=1,...,¢ and C; and C; intersect with intersection multi-
plicity p? at O for each i # j and the topological type of C at O is B,y 4 To

see that monodromy relations, we look at the Puiseux parametrization of
each component C; at O. Consider that curves D; and D whose defining
polynomials are g;(x, y) = x — y(y,o;) and g(x,y) = H;’:l gj(x, y) respectively.
By the definitions, y(y, o) = y(y — ap?~Y), fi(x,y) = g;(x?, ), we have x* =
y(1 - ocjyl”l). By the generalized binomial theorem, we can solve x” =
y(1 —opP~1) as follows.

a.
x=g,(0), ¢;(1) = t<1 —E’ﬂ’@*” +> i=1...,q

, , 1
(2) L—=- :;(oc,'—ozj)tP(P*l)—k---, J#I

Note that the leading term of ¢;(7) is ¢ which is independent of index j=
1,...,q. The topological behavior of the centers of the generators, pg points
CN{y=ceexp(v/—10)}, looks like the movements of satellites around planets
with 0 < 0 <2zn. For a fixed y, there are p choices of 7 so that y =¢’. We
take ¢ so that 0 <argr<2n/p. Thus planets are the points P; = (t5', ")
for i=0,...,p—1 and the satellites around P; are {(p;(7'),")|j=1,...,4}
where 1 = exp(2nv/—1/p).

Above conditions (1) and (2) say that p planets moves an arc of the angle
27/p centered at the origin when ¢ = ¢!/? exp(v/—10/p) moves from 0 =0 to
2n.  Then the satellites, which are the center of loops {a;;|j=1,...,q}, are
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rotated (p — 1)-times around P; simultaneously for i =0,...,p — 1. Hence we
have the monodromy relations:

n—1 —(p-1) .
(1-1) a;;=a’ = Oft i1, O=<i<p=2 j=1,...,q
' " .Qa){'*lao,j(wa*l)_l i=p—1,

where a;"} is the monodromy action by gy on a@; ;. See Figure 5 for the case

p=3and g=2.

Fig. 5. The case p=3 and ¢ =2

On the other hand, we get the relation w; =w; =---=w, when y =
¢ exp(2nv/—10) moves around the origin once. Hence we have

Q=w’, W=w =0y = =)
We can rewrite the relations (1-1) as follows:

o’ a0~ 0<i<p-2,

2ol j=1,...,q.

(1-2) ai;= {

oy jo~ @D j=p—1,
Case 2: Next we consider the monodromy relations at y =y, for j>1. In
this case, the pencil line L, is tangent to C; and C;NL, ={Q; 0} = {(0,7,)} is
a flex point of C; of flex order p —2. On the other hand, the pencil line L, is
generic with respect to other C; for i # j.

First we consider the case j = 1. Recall that the defining polynomial of
C,‘ is

p—2
fit,y)=x (o) =x" =y [[0:" =»),  i=1....¢q
k=0
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We take the local coordinates (x,y;):= (x,y — ;) centered at Q;o. By an
easy calculation,

(IL=p)y1 +Hi(y1), i=1,
fi(x’yl—i_yl):()@xp:{y—‘(oq—oci)-i-Hi(yl) i#1 M)

o

and o —o; >0 where ord, Hy >2 and ord, H;>1 for i>2. The first
coefficients 1 — p and ;'—ll(oq — ;) are obtained from the equalities:

{tﬁ(yl +yn00) = =1 + )31 [es1 (15 = »1 =),
Yy + o) = (1 + ) — (v +91)”

and
W +ysm)|  _dy(y o)
dyy 71=0 dy sy,
Y, 0u) = 5 (o — o).

:1_[7,

Now we consider the monodromy relations at y =y;. First, the action of
o1 on by,...,b, is sketched as in Figure 6. Thus we see that the generators
that are topologically deformed are {a;|i=0,...,p— 1} under the rotation
y1 = —eexp(v/—10) with 0 <0 <2z. The other generators are unchanged.
Namely a;‘/ =a;jfori=0,...,p—1and j>2. To simplify the monodromy
relations, we introduce an element gy := by ...b,. Then 7 =bi1g;. See Figure

Fig. 6. {y=y —¢}NC?

Let ¢;1 be the pull-back of g; starting from x; for i=0,...,p—1.
More precisely, gi1=a;>...a;4, and w; =a;19;1. When yi=y—y =
—eexp(v/—160) moves from 6 =0 to 27, the generators ao,1,-..,dp—1,1 MOVES
an arc of the angle 27/p centered at the origin (the lifts of 5{') and the other
generators do not move. Thus we have following monodromy relations:

_] .
9it1,1%i+1,19i+1,1 0<i<p-2,

(2-1) a1 =al} = o
i1 anﬁllao’l(an’ll) bi=p—1

and g7} =g;1 for i=0,...,p—1. See Figure 7.
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01

Fig. 7. The action of g

By the previous argument, we have w; = w and Q = w”. Hence we can
rewrite the relations (2-1) as follows:

(22) ay=a® = o a0 0<i<p-2,
b i1 o’ ag 10~ P) i=p—1.
Now we consider the case j > 2. First we deform the pencil from y, to
7; — ¢ along K;. Note that

<0 k<j,
l//(y,OCk){ S0 k>
where y €[y, +¢7; —¢. Thus the generators by,...,b, are deformed as in

Figure 8 where y; := Y/(y, ).

DRI >< ] :
Y1 Yi—1 Yy Yjt1 g *y
Fig. 8. {y:yj—s}ﬂ(E,z
When y moves along S; : |y — 7| = ¢, the single root of g, (x,y) =0 that

is near the origin goes around the origin once and the other roots g, (x, y) =0
(k # j) do not move as in Figure 9 where ¥; := ¢(y, ).

Fig. 9. {y=y—-¢nNC;
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This implies, by taking p-fold covering, the corresponding generators

ao,j,-..,ap-1,; of by moves an arc of the angle 27/p centered at the origin. To
see it more precisely, we put new loops:

hole j=1, bbby T<j<q-1,

/ bl...bj;l 2£j£q’ % e j:q.

By the definitions, we have t = h;b;g;. See Figure 10.

Fig. 10. New loops

We take the local coordinates (x, ;) := (x, y — ;) centered at Q;o. Then

(L =p)y;+H(y) =],

(X, v, Y)=0& x? =<, ’ : . .

fits 1) ) {%(“j—“i)JrHi(J%/) i# ]
where ord,, H; > 2 and ord,, H; > 1 for i # j. By the assumption, we have
o —o; >0 or o —a; < 0 corresponding to either i > j or i < j respectively.
Thus we can see that the generators that are deformed under this monodromy
are {a;;|i=0,...,p—1} when y; moves around the circle |y;| =e. Thus
asz:ai7k for k# j. Let h;; and ¢g;; be the pull-back of #; and g; re-

spectively. By the definition, we have

h["j =dj1...4ij-1
9ij = dij+1-.-Aig

where h;1 =e and g;, = e and we put w; = h; ja; ;g; ;.

When y moves around the circle |y —y,[ = ¢ once, the generators ag j, . . .,
a,-1,; moves an arc of the angle 27/p centered at the origin. Thus we have
following monodromy relations:

—1 .
(2-3) @, =a” = { (Gis1,jhi ;) @iv1, jGiv1, jhi j 0<i<p-2,
- ij = %ij = —1 -1 —1 “1y—1
hy 2y 19290 50, (h, "y 240 5) " i=p—1

and g, = gi; and b =h;; for i=0,...,p—1. See Figure 11.
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Fig. 11. The action of g;

Other cases: Finally we read the monodromy relations at y =y where y e X
with y #0, 7;,...,7,. Recall that the set 2 = C, of parameters that corre-
spond to singular pencils are given by

20v/—1
E= {0, eClk=0,...,p—2,j=1,....q}, f:exp(Z_l )

Then the pencil line L, o= ={y= yjfk} is singular with respect to C; and
G ﬂL =10k} ={(0 yjék)} is a flex point of C; of flex order p —2 for
k= 1 ..,p —2. Note that the pencil line L y e is generic with respect to other
C; for i # j.

First we consider the case k = 1. That is, we consider the monodromy
relations at y =y,{. We take a path L; which connects y, and 7, as in
Figure 12.

106
% Ly
................... X'..... e e e e e e eee
0 Y0

Fig. 12. The loop L,

Then the loops bi,...,b, are deformed as in the left side of Figure 13.

We take new loops ci,...,c, as in the right side of Figure 13. Here &, =
(€, Epy)-
m - kf*t
er/Je ™
o 0

Fig. 13. New loops ¢y, ...

»Cq
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They are related by the following.
cj:r’lbjr, j=1,....q. (2)

Let dyj,...,dp—1; be the pull-back of ¢; by ¢, for j=1,...,q. Then the
relation (2) implies

di,j = afla,»_ja). (3)
Now we consider the loops agl), cey o-f,l) in C, with base point y,¢ as in Figure
14.
7i&

o /(Z>,
mE

"
O

Fig. 14. The loop ajm

We will see that the monodromy relations are exactly as (2-3). To see
this assertion, we take the modified coordinates (X, y) defined by

o (271\/7) -
X:=exp| ——~ | x, y=2<y.

p(p—1)
In these coordinates, the loops O'EU, . .,a[(,l) coincide with o1,...,0, and C; is

defined by the same equality:

Cj: 5 = p(1 —oypr ).

The situation of loops ¢y,...,c, are the same with that of by,...,b, and the
p q q
situation of loops d;;, i=0,...,p—1, j=1,...,q are the same with that of
aij, i=0,...,p—1, j=1,...,q. Therefore we obtain the relations
. = =1 - 7 .
(23) di; = (i1 jhi ) dis1 jGisn jhij 0<i<p-2 i ‘
- i,j — 7 _ ~ T = =1 . 9 — Ly
It 200 o (L Qg0 5) " i=p—1
where il,"j = d,‘j] . d[,j—l; gi.j =dijy1 - di,q and Q =0 'Quw. Now we

claim the following.
LemMA 3. The relation (2-3)" is the same with the relation (2-3).

Proor. First we consider the relation d; ; = (gm‘,jiz,;j)_ld,»+1,.,»g,-+1ﬁjl~z,-,.,» in
(2-3)'. By the relation (3), we have
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T -1 ~ -1
hi,j =w h,-ﬁjw, givj = g,-_,jw.

Thus d; ; = (giﬂﬁjhi‘j)*ld,-H,jgl-ijh,-,j can be translated as follows

dij=w e jo = (G i) div1 i jhi g
= (0 " gir1,0) (@ h j0) (0 a1, j0) (0 i, o) (0 hi jo)
=0 (gi+1,jhi,j)71ai+1,jgi+l,jhi,ja)

which implies (2-3). For the relation d;; = ', Qgitdo ;(h", ;Q3y1)~", the
argument is the same. This completes the proof. O

Next we consider general cases k > 2. That is, we consider the mono-

dromy relations at y = yjcfk. Then we take a path L; which connects y, and
k
708"

Fig. 15. The loop Ly

By the exact same arguments as in the case k = 1, we see that no new
monodromy relations are necessary.

3.3. The group structures of 7;(C*\C) and 7;(P?\C). In this section, we
consider the group structures of 7;(P?\C) and 7;(C*\C). First by previous
considerations, we have proved that

nl(CZ\C) = <waai,jai: Oy"'ap_ 1;]: 17"'3Qa |(1'2)7(2'3)a(S)> (4)

where

o'l o) 0<i<p-2, .
(1-2) af,j:{wzpla ( 2p—1\—1 i— 1 ) ]:17,‘]
0,j(w ) I=p )
)3 | (G ihi ) i gis i 0<i<p-2 _q
(') ajj = hil 971 ‘h71 Q,l —1 . -1 ’ J=1...,9
1,720 40.5(h, 2 29, ;) L=p

Cl):a()’l...a()’q. (S)
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Note that last relations in (1-2) and (2-3) are unnecessary as they follow from
previous relations. By the definitions of g;; and /;; and (1-2), we have the
following inductive relations.

(5)

{hiﬂ‘j = o P Vhy b iy = 0P g jor!
gir1,hi ;= w*(P’l)g,;jwl’*lh,-’j

First we examine the relation (2-3) for a fixed i < p — 2 using (1-2). The case
j =1 gives the equality:

a1 = (giv11)  @ir11gis1 (as hj1 =e)
= (0 " Vg 10 Y N " Va 10PN (@ P Vg 0P
= wf(%l)g,fllaiJgipr*l
= Pa; 100,
This implies w” and @; 1 commute. Now by the induction on j, we show that
@i j, "] = e, j=1,...,q (R))

where [a,b] = aba~'b~'. 1In fact, assuming a;i,...,a; ;-1 commute with w?,
we get

ai; = (g jhi )" i, jgier, jhi
= (w*(f’”)g,»’jwl’*lh,»,j)’l(w*<1’*1)ai7]~w1’*1)(w*(l’*l)g,»,jwl’*lh,-’j)
— h:/l w*(ﬂfl)g;} ai.,jgi,jwpilhi,j
= h;/!w—(p—l)g;} (h;}hi,j)ai,jgi.jwp_lhi,j
= h;}w’ph,ﬂ-aiﬂjh;}w”hi’j (as [h;j, 0] =e)
=w"a; jw".

Thus we get [q;;,w”] =e for all j=1,...,4q.
The relation (R;) for i=0,...,p—1 implies w” is in the center of
7 (C*\C). Using relations (1-2) and (R;), we have

-1 . .
Aip1,j = 04 jO~, i=0,...,p—-2,j=1,...,q.

Thus we get

a; ;= w'a o, i=0,....,p—-1,j=1,...,q. (6)
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Hence we can take ag1,...,a0,, as generators. They satisfy the relations

lag,j, '] = e, j=1,...,q. (Ry)

It is easy to see (and we have seen implicitly in the above discussions) that the
relations (1-2) and (2-3) follow from (Ry), (S) and (5). Thus we have shown

m (C?\C) = ajj(i=0,....,p=1,j=1,...,q9),0|(1-1),(2-3),(S), (5))
= a1, - - -, a0,¢, 0| (Ro), (S))
m(P\C) = Cag 1, ..., 04,0 | 0" = e, (Ry), (S))
~ Caots ... o g 0| = e, (S)
= ao,1,-..,a0,4-1,0|0F =€)
~F(q—1)*Z/pZ.

This completes the proof of Theorem 1.

4. Applications

This section is a joint work with Mutsuo Oka. We give some applications
of the main result.

4.1. Degeneration of linear torus curve. Consider a linear torus curve
C: fplx, )+ (x, )" =0 ()

where (f,,/) € #(pq,q; pq,.#). We assume that C is a generic member of the
linear system C(t) defined by

T.fli(xa y)q + (1 - T)/(xa y)pq = 0.

Let C,NL={Py,...,P} and put m; =I(C,,L; P;) for i=1,...,k so that
J={mi...,m}. We always assume that C, is smooth at each P; for
i=1,... k.

PROPOSITION 2. The moduli space 4 (pq,q; pq,¥) is irreducible.

Proor. We may assume that L = {y =0}. Then by the assumption on
the intersection partition, we can write

fP(xv 0) = (x - Oﬁl)ml - (x — o{k)mk
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with mutually distinct complex numbers «;,...,o up to a multiplication of a
non-zero constant. Thus f, takes the form

Fo(xX,9) = 1 (o, p) + (x —o)™ Lo (x — o)™,

where f,_i(x,y) is a polynomial of degree p — 1. By the assumption,

Uy

oy (@ 0) =S (2,0) £ 0, if i =2,

By a small perturbation of f,_i(x,y), we may also assume that f,_i(x,0) is
a polynomial of degree p — 1. This description implies the irreducibility of
M (pq,q; pq,-#). In fact, we only show the connectivity of the moduli space
AM(pq,q; pq,¥). Take another linear torus curve

C':gp(x, p)T—yP1 =0 where

9p(%,¥) = ygp1(x,¥) + (x = )" (x = B)™,

with (g, y) € A4 (pq,q; pq,#). We consider the linear family
.ﬂ?(xv Y, S) = y(sfpfl(xv y) + (1 - S)g])fl(xv y))

+fo s+ (1 —8)B )™, seC.

Consider the polynomial
hi(s) = sfp-1(s2i + (1 = 5)B;,0) + (1 = 5)gp-1 (50 + (1 — 5)B;, 0).

As 1;i(0) = g,—1(f;,0) and h;(1) = f,—1(2;,0), hi(s) is a non-zero polynomial
in 5. Consider the set 4; = C define by 4; = {se C|hi(s) =0}. As h(s) is
a non-zero polynomial in s, 4; is a finite set. Put 4 = Uf‘:l A;. Thus we
can take a path in the parameter space C from s=1 to s=0 avoiding
the exceptional set 4. This shows the connectedness of the moduli space

M (pq, q; pqg, I ). [

LemMa 4. For any (f,,/) € M (pq,q; pq,F), there is a degeneration family
Cy, te U with 1€ U so that Cy is the linear torus curve that corresponds to
(fp:¢) and Cy is a linear torus curve of the maximal contact.
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Proor. We assume that L = {y =0}. The assumption implies that

Jo(x, 3) = 3fp-1(x, ) + (x = o)™ o (o — o)™

We may assume for simplicity that f,_;(0,0) # 0 and we consider the family of
curves C,; defined by {f,(x, y,t) =0} where

nmy my

So(x, . 0) := yfpo1(x, ¥) + (x — to)™ Lo (x — toy) ™, teC.

Then C, is defined by
Jp(x:3,0) = ¥fp-1(x, y) + 27 =0

and we see that (f,(x, »,0),y) € M(pq,q; pq, %). Consider the corresponding
linear torus curve

Ctifp<x7y7[)q—c1ypq:()7 C1 GC*.

First choosing a generic ¢; and fixing ¢, we may assume that C; and Cy have

only smooth components. There exists at most a finite number of t =1;,...,%
such that C, has some singular points by the Bertini theorem ([3]). Then we
may simply consider the restriction of the family over U := C\{r,...,}.
This gives a desired degeneration. O

It is easy to show that we can also degenerate a linear torus curve with the
generic partition (1,...,1) to our curve C. (Essentially we use the degener-
ation y(x,s) = y;(x,5) ...y (x,s) where y;(x) = (x —o;)" —es,i=1,...,k fora
sufficiently small ¢ > 0.) Thus by the degeneration principle ([7]) and Theorem
1, we obtain Corollary 1.

4.2. Zariski triples. Consider a pair of smooth curves C;, C, of degree p
and let .# be the intersection partition {I(Cy, Cy; P)|Pe C;NC>} of p?. The
topology of C;U G, is not determined by .#. For example, consider the case
4 ={p?}. In [1], they showed that there are at least § configurations with
different topologies where f is the number of positive integers n such that
1 <n< pand n divides p. The defining polynomial of C) can be written as

CU [ (x, y) + £ (x, ) = 0.

These curves {C" |1 <n < p,n|p} come from torus curves of different types.
More precisely, the curve C™ belongs to the moduli space .#(2p/n,2;2p,{pn})
where n is an positive integer such that 1 <n < p and » divides p. (In [8],
Oka has proved that there exists another configuration whose complement has
an abelian fundamental group for p = 3,4,5.)

The same discussion works for non-maximal partitions. For simplicity,
we consider the case p = 6.
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Suppose that the intersection partition .# is {18,18} of 36. First we
consider a linear torus curve CU) e.#(12,2;12, #) with ¢ = {3,3} that is
associated with (fém7 L)ye #(12,2;12, ¢) with

c :fé”(x, )2 —Lx,y)? =0 where
S0 = (=1 4y 455 L y) =

Then the Alexander polynomial of C(!) is given by:

(12 - 1)t —1)

e (t) =—5"

Next we consider a (2,6) torus curve C?(s)e.#(6,2;12,2.#) of degree 12
defined by
Cc@(s) : fs(Z) (x, 1,8 = folx, »)* =0 where
20 ==90"+y-x"  fly)=y-x’, seC

This family degenerates into a maximal contact curve C®(0). Thus by the
sandwich principle, the Alexander polynomial of C®)(s) is given by

6 _ —
e

The third one is a (2,4) torus curve CO)(s) e .#(4,2;12,3 #) defined by
C<3)(S) : f6(3)(xv Y, S)Z - f3(x7 Y, 5)4 =0 with
f6(3)(xa y,5) = ¥° = 3s7xp° + 65t x2pt — SxsO(2x? — 3s7)y?
+ 510752 — 6y)x%py — s'(8x% — 95H)x? — 5" — fi(x, »,5),

S3(x, p,8) =y = x(x = s)(x +9).
This family degenerates into a maximal contact curve C®(0). Thus by the
sandwich principle, the Alexander polynomial of C®)(s) is given by

4 _ _
don () = 2T,

Therefore the triple {CV, C?)(1),CP)(1)} is a Zariski triple which are distin-
guished by the Alexander polynomials. Their graphs are as in Figure 16.

In Figure 16, C(V, C?(1) and C®(1/2) have two irreducible components
which are tangent at (+1,0), (+1,1) and (+1/2,0) with the respective inter-
section number 18 respectively.
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C®(1/2)

Fig. 16.

Case 2. Next we consider the case . = {12,12,12}. We consider
the following three torus curves: (DU (s), DP(s),DP)(s)) where D (s) e
M(12,2;12, 7), DP(s) e .4(6,2;12,2.#) and DO)(s)e.#(4,2;12,3 #) where
J ={2,2,2}. They are defined by

DW(s):g Dix, y,5)2 - L(x, »)? =0 with
X ,8) = —y+ P =9 (x+9°  Lixy) =,

( )
( )

D(2>(S) : 962>(x1 y,s)z — g2(x, y,S)6 =0 with
P (x, 3, 5)

9a(x,y,8) =y —x* + 57,

DOs): g (x, 7,8 = g3(x, 7,8)* =0 with

3
g0, p,5) = 0+ g3(x, ), galx,ps) =y —xP +
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As three families degenerate into maximal contact curves in JVII(IZ, 2;12),
A/22(6,2;12) and 1/1/33(4,2;12) respectively, their topology are distinguished
by the Alexander polynomials. Thus the triple {D)(1), DP (1), D (1)} is a
Zariski triple.
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