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Introduction

Let X be a real Banach space and let A be a multivalued operator from X
into X, that is, to each xe X a subset Ax of X be assigned. We define D(4)=
{xeX; Ax+¢}, R(A)= \J Ax and G(A)={[x, x’]e X x X; x’ € Ax}. We denote

by F the duality mappmg of X into the dual space X*, i.e., it is defined by Fx=
{x*e X*;, <x, x*>=|x||?=||x*||*} for x€X, where < , > denotes the natural
pairing between X and X* and ||-|| denotes the norms in X and X*. An operator
A is called accretive in X, if for any [x;, x;]€ G(A4), i=1, 2, there is an element
feF(x;—x,) such that <x} —x},, f> >0, or equivalently,

.1
® llmT[|IX1—X1+h(x'1—x'2)”_Hx1_x2“]20
hi0

(see R. H. Martin, Jr. [7]). An accretive operator A is called m-accretive, if
R(A+D)=X.

It was shown in [6; THEOREM 1] that, under the uniform convexity of X*,
an accretive operator A4 is m-accretive if and only if it is demiclosed (i.e., for any
sequence {[x,, x,]1}cG(A), x,—x strongly and x;,—x’ weakly in X imply that
[x, x’1€ G(A)) and for each z€ X and each x& D(A), the initial value problem:
w' (t)+ Au(t)+z30, u(0)=x has a strong solution on [0, o). In this note we
do not require the uniform convexity of X* and shall show an analogue of the
above result in more general spaces, namely, in reflexive Banach spaces, by making
use of the inequality (1) for accretiveness.

1. Main results

Let A be an operator from X into X and Q=[O0, r) or [0, r] where 0<r< oco.
Then an X-valued function u on Q is called a strong solution of the initial value
problem

u'(f)+ Au(t)>0, u(0)=a,

if u(?) is strongly absolutely continuous on any bounded closed interval contained
in Q, u(0)=a and the strong derivative u’(t) exists, u(t) € D(A) and v’ (t) + Au(t)=0
for a.e. te Q. We denote by D(A) the set
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{x= X there is a sequence {[x,, x,]} < G(A4) such that
X, > x in X as n—»oo and {||x}||} is bounded},

where “ —— ” means convergence in the strong topology. We say that A is
almost demiclosed, if D(A)=D(A). It is obvious that if A4 is demiclosed, then it is
almost demiclosed, provided that X is reflexive.

THEOREM 1. Suppose that X is reflexive. Let A be an accretive operator
from X into X. Then the following statements are equivalent to each other:

(a,) A is m-accretive.
(a;) A is almost demiclosed, and for each x< D(A) and each z€ X the initial

value problem
u' (t)+ Au(t)+ 230, u(0)=x

has a strong solution on [0, ).
(as) For each xe D(A) and each z€ X, the initial value problem

)] w(t)+ Au()+z>0, u(0)=x
has a strong solution on [0, o).

Let X, be a subset of X and let T={T(t); >0} be a family of singlevalued
operators from X, into X,. We say that T'is a contraction semigroup on X, if

(G T@+t)x=T@E®T{)x for t, >0 and xeX,,
() |T@Ox—TEOy|< |Ix=yl| for t>0 and x, yeX,,
(iii) TO)x=x for xeX,,

(iv) the function t—T(f)x is strongly continuous on [0, o) for each x& X,.
We define the strong (resp. weak) infinitesimal generator G, (resp. G,) of T by

Gsx=s-]im,ﬂ_t)_x___x_. <resp. G, x= w-lim_@ti)

tio t ti0 t
whenever the limit exists. Here, the symbol “s-lim” (resp. ‘“w-lim”’) means
convergence in the strong (resp. weak) topology.

THEOREM 2. Suppose that X is reflexive. Let A be an accretive operator
from X into X. Then the following statements are equivalent to each other:
(b)) A is m-accretive.

(by) For each z€ X, there is a contraction semigroup T®={T®(); t>0} on
D(A) such that G(—G®)c G(A+z) and

3 D(A)c{xem; liminf—”T—(z)—(t)—x_x—”<oo},
ti0 t

where G® is the strong infinitesimal generator of T,
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(b3) For each ze X, there is a contraction semigroup T® ={T)(); t>0}
on D(A) with the property (3) such that G(—GP)C G(A +z), where G is the
weak infinitesimal generator of T(?),

The following two corollaries are obtained from Theorem 2 by the same
method as in the proofs of Corollaries 1 and 2 in [6].

CorOLLARY 1. (F. E. Browder [2]) Suppose that X is reflexive. Let
A be a singlevalued accretive operator from X into X. Then A is m-accretive
if and only if for each z€ X there is a contraction semigroup on D(A) whose
weak infinitesimal generator is —(A+z).

For an operator B from X into X we define B® by B°x={x'&Bx; ||x'||=
IIBx|||}, where |||E|||=inf]||y|| for a subset E of X.
yeE

COROLLARY 2. Suppose that X is reflexive and X and X* are strictly
convex. Let A be an accretive operator from X into X. Then A is m-accretive
if and only if for each ze X the operator (A+z)° is singlevalued, D((A+z)°)=
D(A) and there is a contraction semigroup on D(A) whose weak infinitesimal
generator is —(A+2z)°.

2. Proof of Theorem 1.

Hereafter we assume that X is reflexive. For the proof of the assertion
(a,)—(a,) of Theorem 1 we first show the following lemma.

LemMmA 1. If A is m-accretive, then it is almost demiclosed.

Proor. First we recall the generation theorem by M. G. Crandall and
T. M. Liggett [3; THEOREM I]. The theorem says that if 4 is m-accretive, then
there is a contraction semigroup T'={T(f); t>0} on D(A) such that

T(t)x=s-lim(1+—tn—A)*"x for t>0 and xeD(d)

and this contraction semigroup has the following property:
IT@x—T@)x||<|||Ax]|| |t—¢'| for t,#>0 and xe&D(A).

Now, assume that [x,, x,]€ G(A4), x, —=> x as n—o and ||x,||<M for all n.
Then, from the above property of T it follows that ||T(f)x,— x,|| < ||x ||t for >0.
Hence, letting n—o, we have ||T()x—x||<Mt for t >0. By Corollary 1 in
I. Miyadera [8] we have xe D(A4). Thus A is almost demiclosed. g.e.d.

The assertion (a;)—(a,) of Theorem 1 easily follows from the above lemma
and Theorems I and II in [3], and the assertion (a,)—(a;) of Theorem 1 is trivial.
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Next we shall prove the assertion (a;)—(a,) of Theorem 1 by means of a
sequence of lemmas which are valid under the assumption (a;). Thus, hereafter,
assume (a3).

LemMMA 2. («) A is closed (i.e., [x,,x,]1€G(A), x, —~ x and x|, = x’
in X imply that [x, x'] G(A)).
(B) Let A be any accretive operator such that G(A)> G(A). Then D(A)N\D(A)
=D(A) and Ax=Ax for every x< D(A).

ProOF. Assume that [x,, x,]1€G(4), x, =~ x and x, %> x’ in X as
n—oo. Then x&D(A). By (a;), the initial value problem: u’(f)+ Au(t)—x' =0,
u(0)=x has a strong solution u(t) on [0, o). Let B be the operator given by
G(B)=G(A)\U{[x, x']}. Then u(t) is also a strong solution of the initial value
problem: u’'(f)+ Bu(f)—x' =0, u(0)=x. Therefore, since B is also accretive,
the uniqueness of a strong solution (cf., T. Kato [5; LEmmA 6.2] or H. Brezis
and A. Pazy [1; LEMmMA 2.2]) implies that u(f)=x for all t>0, and hence
[x, x*1=G(4). Thus («) is proved, and (f) is also proved just as (a).

q.e.d.

Now we consider the initial value problem
()] uw () + Au() +u()>0, u(0)=a

and shall show that (4) has a strong solution on [0, o) for each a= D(A).
Let aeD(4). For a positive integer n we define an X-valued function u,
as follows. Let v(f) be a strong solution of (2) with x=z=a and choose a posi-

tive number 6! such that -rlz——% <é} g%, —v'(0))e Av(6})) + a and

lr@D)II=l| Av(8L) +a||<||Aa+a]|. In fact, in view of Lemma 2.2 in [1],
such 6! exists. Let us define u,(f)=uv(?) if t[O0, t1], t!=0.. Next we assume
that u, is already defined on [0, t¥], 1<k<n. Let w(f) be a strong solution of

(2) with x=z=u,(t%), and choose a positive number §%*! such that %——nl—z

<ot S%, —w (St ) EAw(Sit ) +u,(t) and |w 8K+ 1) [|=Aw (65*1) +u, (DI
< Au, (1) +u, (29|l Let us define u, () =w(t—tk) if t& [k, tk+1], th+1=5k+1 ¢k,
Thus by induction u, is defined on [0, t#]. Clearly 1 ———:;—S t"<1. We see that
u, is strongly absolutely continuous on [0, "] and satisfies

ul () + Au, () +u, ()20 a.e. on [tk tk+1]
for k=0, 1, ..., n—1.

LemMmA 3. Set K=|||Aa+al|. Then for each n
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0) ludll<eK  ae. on [0, ]

This lemma is obtained by a simple modification of the proof of Lemma 6
in [6].

LeEMMA 4. The sequence {u,}%, is strongly uniformly convergent on
[0, 1), and the limit u(t) satisfies

6) lu(@®—u@)||<eK|t—t]|  fort, >0,
) u(0)=a and u(t)e D(A4) for all t>0.
ProOF. Set Pn,m(t) = ” un(t)_um(t)” on |:0, 1 _%——;’1‘1—:' If se (t:;, t£,+1],

se(tl, ti+1], w,(s)+ U(s)+u,(t1)=0 and u,(s)+ U,(s)+u,(ti)=0, where U,(s)
€ Au,(s) and U, (s) € Au,(s), then

Py n(8)=lim = —-L[14,(5) = )+ HUS) +,(t5) — Up(5) = (1) |
~ )= un(1]
<lim = [14,(5) = )+ KU+ ,(8) = Un®) = (5D |

= [1u1,(8) = ()1 + l[() — (D + et m(8) — (D).

Now, U,(8)+u,(s)e(Ad+Du,(s) and U,(s)+u,(s)e (A+Du,(s). Since A+I
is also accretive, it follows from (1) in the introduction that

lim— - 15) = 4nS) + B(U(5)+(5) = U = ()|
— llun(s) — un(s)1I1= 0.
Hence, by (5),

Pl () 1(5) = (1) 1+ )~ (1) | S K (1)

Thus,

d 1o 1, IR
a () um(t)||£eK(n +m) for ae. te[(),l T‘Tn']'

- 1.1 - _1
Hence ||u,(t) u,,,(t)llSeK( ot m) for all te[O,l n ——”T] and hence

[un(8) — 1, (8)|| >0 uniformly on [0, 1) as n, m—oo. Let u(f) be the limit. Since
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|u () —u,(t)||<eK|t—¢t| for any t, t’e[O, 1—%] by (5), by letting n— «

we have (6). Clearly u(0)=a. The fact that u(t)e D(4) for all >0 follows
from (5). Thus we have (7). q.e.d.

We define <x, y>,= sup <x, y*> forx, yeX. Then <, >;: X xX—
y*eFy

(— o0, o0) is upper semicontinuous in the strong topology of X x X(see [3; LEMMA
2.16]). Then the limit function u of {u,} has the following property:

LemMMA 5. For any [x, x’]1€G(A) and any t, s€[0, 1) with t>s,
®) () — x||? — [u(s)— x||2 <2 S‘< — X' —u(@), u(t)—x> .

Proor. By the definition of u,, u,(f)+ U,(t) +u,(t*)=0 a.e. on [tk tk*+1],
k=0,1, ..., n—1, where U,(f) = Au,(t) a.e. on [0, t*). For each t, by the accretive-
ness of A, there is S,(t)€ F(u,(t)—x) such that <U,(t)—x’, S,(tf)> =>0. Hence,
by using Lemma 1.3 of T. Kato [4] and Lemma 3, we have

L) %112 = <uy(®), S,()>
=<- Un(t) - u,,(t’,‘,), Sn(t) >

< < =x"=u,®), S, (> + <u,(t)—u,(th), S,()>

< < =% = (D), (D)= x>+ ()]

< , ek

S<—Xx'- un(t)a un(t)_x >S+T(|]x|| + ”a “ +€K)
Integrating the first and the last members of the above inequalities on [s, £], we have

® llun() = %12 = [[un(s) — x]|?

SZS! < —x'—u,(7), u,,('r)—x>sd‘r+—’2—1—eK|t—sl(||x|l+ lla]| +eK).

On the other hand, since u, —— u and {u,} is uniformly bounded on [0, 1), it
follows from Fatou’s lemma and the upper semicontinuity of <, >,: X x X—-R
that

limsup St < =X —u,(7), u,(r)—x>dt

n—ro

< Stlimsup < =x"'—u,(1), u,(t)— x>z

s n—

< gt < —x"—u(t), u(x)— x> dr.
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Therefore, letting n— oo in (9), we obtain (8). q.e.d.

LEMMA 6. u(t) is a strong solution on [0, 1) of w'(t)+Au(t)+u(t)=>0,
u(0)=a.

Proor. We shall prove that
(10) <—uw@®—ul®)—x, u@®)—x>,=0 forae. t€[0,1)

for any [x, x’1€ G(A4). In fact, let [x, x’]= G(A) be an arbitrary element. Then
we first observe that for s, t >0 with s>t

<u(s)—u(t), u(t)—x>,
< <u(9)—x, u())— x>, ju(H) x|
< [ju(e) = x| lla(®) Il ju() x|
<) = |12 =~ lu()) x|
Hence from (8) we obtain

<M, u(t)—x>sS—-1—Ss< —x' —u(1), u(t)— x> dr.
S—1 S—1t );

Here, if u is strongly differentiable at ¢, then we infer from the above inequality

and the upper semicontinuity of <, > that

<u'(f), u(t)—x> < < —x"—u(t), u()—x>,.

Thus (10) holds. Next, fix any ¢ at which u is strongly differentiable and define
an operator 4 by G(A)=G(A)\J{[u(t), —w ()—u()]}. Then (10) implies that
A is accretive. Applying (B) of Lemma 2 for this 4, we have u(f)e D(4) and
Au(t)= Au(t), since u(t)e D(4) by (7). Thus

—u'()—u(t) e Au(r) a.e. on [O0,1).

ProoF of the assertion (a3)—(a,;) of Theorem 1: We have seen that for each
a< D(A) the initial value problem (4) has a local strong solution u(f). By using
a standard argument we deduce that u(¢) can be extended to a strong solution of
(4) on [0, ). Therefore, by Lemma 9 in [6] and (&) of Lemma 2, 0 R(4+1).
For an arbitrary point z€ X, replacing A by A—z in the above argument, we
conclude that ze R(A+1I). Thus R(A+1)=X. q.e.d.

ReMARK. The assertion of Theorem 1 is false without the reflexivity of the
space X; in fact there are a non-reflexive Banach space X and an m-accretive
operator A in X such that the Cauchy problem: u/(f)+ Au(¥)=0, u(0)=a does
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not have a strong solution, even if aD(4). For an example, see G. F. Webb

[9].
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[91]

3. Proof of Theorem 2.

We can prove Theorem 2 just as Theorem 2 in [6], using Theorem 1.
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