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Introduction

The aim of this paper is to study the Matlis duality and some related topics
concerning artinian modules over a commutative noetherian ring.

In § 1, we give some results on the Matlis duality. First, we generalize the
Matlis duality which is known for noetherian local rings to the case of noetherian

semi-local rings. Secondly, we examine the problem on the self-duality. As
is well-known, a finite dimensional vector space over a field k (resp. a finite abelian

group) is isomorphic to its Matlis dual, i. e. its /c-dual (resp. its character group).
We determine the class of noetherian rings for which the self-duality holds with

respect to the Matlis duality. It turns out that, in case of domains, it characterizes
the class of rings of the above-mentioned type.

§ 2 is preparatory. We prove some properties of attached primes, the notion

of which has been recently introduced by I. G. Macdonald and R. Y. Sharp.

In §3, we define coregular sequences, the width of a module and the cograde

of a module. These are dual notions to those of regular sequences, the depth of a
module and the grade of a module respectively. The first two notions have been
already introduced (in different terminologies) by E. Matlis (cf. [5]). We in-

vestigate, by using the results of § 2, some properties of these notions. Especially,

we characterize the cograde (resp. the width) by the vanishing of Tor modules,
and the relationships between the cograde and the grade (resp. the width and the

depth) with respect to the Matlis duality are established. Finally, we calculate

the width of certain local cohomology modules.
We are very grateful to Professor M. Nishi for his valuable advices during the

preparation of this paper.

§1. Matlis duality

1. Throughout this section, we denote by A a commutative noetherian ring

with unit. Let EA be the module ©EA(Alm), where m runs over the set of maxi-

mal ideals of A. Then EA is an injective cogenerator for A; namely, (a) EA is
injective and (b) any /1-module can be embedded in a product of EA (cf. Sharpe,

Vamos [7] Chap. 2). Let ^ denote the category of ^-modules of finite length.

PROPOSITION 1 .1 . Suppose that D is a contravariant, left-exact, A-lincar



574 Akira OOISHI

functor from Ή into itself. Then the following statements are equivalent:
(1) DD(M) is canonically isomorphic to M for any Metf.
(2) D is exact and D(A/m) is ίsomorphic to A/m for each maximal ideal

m of A.

(3) D is represented by EA i.e. D(M) is functorially isomorphic to Hom^
(M,EA)for each Metf.

The arguments in A. Grothendieck [1], §4, are applicable to this case; there-
fore we omit the proof.

DEFINITION 1.2. We call a functor D (unique up to a functor isomorphism)
satisfying the equivalent conditions of Prop. 1.1. the dualizing functor for A.

For example, if A is an equi-codimensional Gorenstein ring with dim (A)
= /ι, then D(M) = ExtA (M, A) is the dualizing functor for A. (A is said to be equi-
codimensional if dim(y4m) is constant for each maximal ideal m of A.

2. In this paragraph, we show that the usual Matlis duality for noetherian
local rings can be generalized to the case of noetherian semi-local rings. The
following lemma is due to R. Y. Sharp (cf. [6]).

LEMMA 1.3. Let M, N and E be A-modules', suppose that M is finitely gener-
ated and E is injective. Then the following (functorial) isomorphism holds:

M®AHomA(N, E)^HomA(HomA(M,.N), E).

Let M be an A-module. We call the module D(Λf) = Hom4(Λf, EA) the Mat-
lis dual of M.

COROLLARY 1.4. Let M and N be A-modules; suppose that M is finitely
generated. Then the following (functorial) isomorphism holds'. M®AD(N)

COROLLARY 1.5. Assumptions being the same as in Lemma 1.3., we have
Tor^(M, HomA(N9 E))^HomA(ExtA(M, N), E) (functorially). In particular,
Tor^(M, D(N))^D(Ext"A(M9 N)) (functorially).

PROOF. Let P. = (Pf) be a resolution of M by finite free ^-modules. Then
P.®AHomA(N, E) is isomorphic to HomA(HomA(P.9 N), E) as complexes.
Therefore, Tor£ (M, Horn^ (N9 £)) = Hn(P.®A Hom^ (N, E)) ^ Hn (HomA (HomA

(P., TV), E))^HomA(H»(HomA(P.9 TV)), E) = Hom^ (Ext£ (M, N), £).

In the rest of this paragraph, we denote by A a noetherian semi-local ring and
by ModF04) (resp. Modc(/4)) the category of finitely generated (resp. artinian)
/4-modules.
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THEOREM 1.6. (Matlis duality) (1) EndA(EA) is isomorphic (as A-
algebra) to A, the completion of A with respect to its Jacobson radical.

(2) // M is finitely generated A-module, then D(M) is an artinian A-
module.

(3) Assume that A is complete. If M is an artinian A-module, then D(M)
is finitely generated A-module.

(4) If M is finitely generated A-module, then DD(M) is isomorphic to M

(5) If M is an artinian A-module, then DD(M) is isomorphic to M.
(6) Assume that A is complete. Then D is an exact, A-linear anti-equiva-

lence from MoάF(A) to Modc(A), namely, D is a contravariant, exact, A-linear
functor which is faithful, full and representative.

(7) Modc(A) and ModF(^4) are equivalent to each other.
(8) For any A-module M, ann/1(M) = ann/4(D(M)). In particular,

PROOF. (1) Let m l 5..., mn be the maximal ideals of A. Then HomA(EA(A/
nt;), EA(A/mjJ) = Q for i^j, and EndA(EA(A/mi))^Am. for any i, where Λmι

stands for the completion of Am. with respect to its maximal ideal (cf. Matlis [4]

Th. (3.7)). Hence we have Endx(£JsΠ?-ι EndA(EA(Ajmί)) = Amι x .» xAmn

= A.

(2) If Ar-*M-+Q is exact, then Q~^D(M)^D(Ar) = Er

A is exact. Since EA

is artinian, D(M) is also artinian.
(3) If Q-+M-+Er

A is exact, then Ar = D(Er

A)-*D(M)-+Q is exact, showing that
D(M) is finitely generated.

(4) DD(M) = HomA(Hom/1(M, EA), EA)^M®AHomA(EA, EA)^M®A A.
(5) If Q-^M-*Er

A-+Es

A is exact, then the isomorphism DD(M)^M follows
from the following commutative diagram :

0
' 2*1 > UA

I l
> DD(M) > DD(Er

A) —

' ^A

1<
-> DD(E*A).0

(6) It suffices to show that D is faithful and full. Let M, TV be finitely gener-
ated ^[-modules. Then HomA(D(N), D(M)) = HomA(HomA(N, EA),HomA(M,
EA))*HomA(HomA(N, EA)®AM, EJsHomA(HomA(M, JV), EA), EA)^

HomA(M, N)(by(4)).

(7) Modc(/4) is equivalent to Modc(^) and Modc(^3) is anti-equivalent to
ModFG4).

(8) ann/4D(M)=>ann>ι(M) is evident. Conversely, let a be an element of
ann4D(M) and suppose Q-+M-^-*EA is exact. Then f(ax) = (fi(ax))ie[ = ((afί)
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(x))ί6/ = 0 for any x e M. Hence αx = 0 for any x e M.

Let R be any (not necessarily commutative) ring. Then it is known that each
finitely generated K-module has the projective cover if and only if

(1) R/Rad(R) is semi-simple,
(2) Any idempotent element of R/Rad(R) can be lifted to an idempotent

element of R.
When A is a noetherian complete semi-local ring (e.g. an artinian ring), it

is easily verified, by Th. 1.6., that for any finitely generated ^-module M, the
canonical homomorphism P = D(EA(D(M)))-*M is the projective cover of M.

3. If M is an ^[-module of finite length, then so is its Matlis dual D(M),
and both are of the same length. But, in general, D(M) and M are not necessarily
isomorphic. In this paragraph, we determine the class of noetherian rings for
which the self-duality holds with respect to Matlis duality.

THEOREM 1 .7. For a noetherian ring A, the following statements are equiva-
lent'.

(a) Any A-module of finite length is isomorphic to its Matlis dual.
(b) A is the product of a finite number of artinian local principal ideal rings

and a finite number of Dedekind domains. (In particular, if A is a domain, A
is afield or a Dedekind domain.)

PROOF. (a)=>(b): We prove this in several steps.
(1) For any ideal α of A with dim(^4/α) = 0, A/a is a Gorenstein ring. In

fact, by the primary decomposition and the Chinese Remainder Theorem, we may
assume that α is m-primary for some maximal ideal m of A. From the hypothe-
sis, D(A/a) is isomorphic to A/a. On the other hand,

D(A/a) = HoιMΛ/α, EA) = HomA(A/a, EA(A/m)) * EA/a(A/m)

Thus, A/a is isomorphic to EA/a(A/m), and this implies that A/a is a Gorenstein
local ring.

(2) dim(y4)^ 1 and for any maximal ideal m of A of height one, Am is a regu-
lar local ring (i.e. discrete valuation ring). In fact, let m be a maximal ideal of
A. From (1), A/m2 is a Gorenstein local ring. Therefore,

A/m ^ HomA(A/m, A/m2) ^ (m2: m)/m2 z> in/in2-

Hence, we get I^dimx / m(m/m2)^ht(m). This shows that dim 04)^1 and for
any maximal ideal m of height one, Am is a regular local ring.

(3) A is isomorphic to B x C, where B is an artinian ring and C is an equi-
codimensional regular ring of dimension one, with the proviso that B or C may
be a -zero-ring. This follows from (2) and the following fact due to 8. Koch.man:
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Any noetheriaπ ring is the direct product of a zero-dimensional ring and a ring
in which every maximal ideal has height at least one (cf. [9] 3-3, Ex. 15).

(4) The required statement follows from (3) and the following facts. The
artinian ring B is the direct product of a finite number of artinian local rings Bt.
Since B^a is Gorenstein for any ideal α of B^ Bt is a principal ideal ring. (cf.
Sharpe, Vamos [7] 6.1. Lemma 6.6.) The regular ring C is the direct product of
a finite number of regular domains Cj. Since dim(C/)= 1, CΊ is a Dedekind do-

main.

(b)=>(a): It suffices to prove the statement when A is an artinian local princi-
pal ideal ring or a Dedekind domain. Such a ring A has the following properties:

(1) For any ideal α of A9 A/a is a Gorenstein ring.
(2) Any A-module of finite length is the product of a finite number of cyclic

modules. The conclusion follows immediately from these properties.

We give an application of the above theorem. When A is a domain it gives
a characterization of Dedekind domains.

THEOREM 1.8. For a noetherian ring A, the following statements are equiva-
lent:

(1) A is an equi-codίmensίonal regular ring of dimension one.
(2) For any A-modules M and N of finite length, Exti(M, N), E\t\(N,

M), Torf (M, JV), Horn^CM, N), HomA(N, M) and M®AN are all isomorphic
to one another.

(3) For any A-modules M and N of finite length, Ext^(M, N) and Hom^M,
N) are of the same length.

(4) For any A-modules M and N of finite length, Tor^(M, N) and M®A N
are of the same length.

PROOF. (1)=>(2): First, for any non-negative integer rc, we have Tor^(M,
N) = Tor;J(M, D(N)) = D(Ext"A(M, N)) = E\t"A(M, N). Hence, it suffices to show
that Tor? (M, N) is isomorphic to M®A N. We can assume that A is a Dedekind
domain. Since Tor? (A/a, A/b) = (a Π b)/αb for any ideals α, b of A, we have
Torf (A/mm, y4/m") = (mm n m")/mm+" = y4/mm® j 4v4/m / l for any maximal ideal m
and positive integers m, n. This implies the required fact.

(2)=>(3) and (3)=>(4) are clear.

(3)=>(1): It suffices to show that Am is a regular local ring of dimension one
for any maximal ideal m of A. Put k = A/m. Fix a positive integer n. Then,
from the exact sequence 0->mM-> yl-^^/m"->0, the following sequence is exact:

0 > Homx(v4/mn, k) > HornA (A, k) > Hom^m", fc)

> Ext^ (Aim", k) > 0
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Since ExtJKΛ/m11, k) and HomA 04/m", k) are of the same length by the assump-
tion, we get dim fcHom^(mM, fc)=l. In particular, Homx(m, k) = k. If dim^m/
m2 = w, then ^m = HomA(m/m2, A:) c Hom^ (m, k) — k. Hence, d im^ m gm^l .
Suppose dimy4m = 0. Then Am is artinian and m^ = 0 for a sufficiently large /.
But this contradicts the fact that HomAm(ml

m, k) = k. Therefore, dimΛ(m/m2)
= dim(y4m)=l, namely, Am is a discrete valuation ring.

The proof of (4)=K1) is similar to that of (3)=>(1).

§ 2. Attached primes

In this section, we denote by A a commutative ring with unit. Let M be an
^4-module.

DEFINITION 2.1. We say a prime ideal p of A is an attached prime of M,
if there exists a submodule N of M such that p = ann^(M/JV). We denote by
Att^(M) the set of attached primes of M.

When M is representable in the sense of [2] (e.g. artinian), our definition of
Attx(M) coincides with that of Macdonald, Sharp [2], [3].

For example, if α is an ideal of A, then Attκ (A/ a) is the set F(α) = {p e Spec (A)\

PROPOSITION 2.2. Let p be a maximal element of the set {annA(M/N)\N
is a submodule of M, N^M}. Then peAttA(M).

PROOF. We prove that p is a prime. Let p = ann^ (M/ JV0) and suppose ab
ep, a, btξp. If we put N1=N0 + aM9 then N^M. In fact, if N0 + aM = M9

then bM = bN0 + baM<=:bNQ + N0 = No. This implies b e annA (M/JV0) = p, con-
trary to the assumption. Since annx(M/ΛΓ

0)c:ann>1(M/ΛΓ

1), we get annκ(M/N0)
= annA(M/N1) by the maximality of annκ(M/JV0). But, in this case, aMaaM

N1. Therefore, we have a eanny 4(M/7V1) = p, a contradiction.

COROLLARY 2.3. Suppose that A is noetherian. Then AttA(M) = φ if and
only if M = 0.

DEFINITION 2.4. We say that an element a of A is M-coregular if M =
aM. We denote by WA(M) the set {aeA\M^aM}.

PROPOSITION 2.5. If M is finitely generated (e.g. noetherian), then any
M-coregular element is M-regular. If M is artinian, then any M-regu.lar
element is M-coregular.

PROOF. The statements follow from the following more general fact: Let
M be an /1-module and/e End^ (M). (1) If M is finitely generated and/is surjec-
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tive, then /is an isomorphism. (2) If M is artinian and /is injective, then /is an

isomorphism, (cf. [10] Prop. .1.1.)

PROPOSITION 2.6. We assume that A is noetherian. Then WA(M) =

PROOF. Suppose a is an element of WA(M). Then, by Cor. 2.3., we can take
an element p of Attx (M/αM). Write p = annA(M'/N'), where N' = N/aM is a sub-
module of M1 = M/aM. Since αM c N and M'jN' ^ M/JV, we get α e p = ann^ (M/
TV) e AttA (M). Conversely, suppose α e p e Attκ (M) and p = ann^ (M/N). Then

NpM, showing that α e

We recall some results of I. G. Macdonald and R. Y. Sharp, (cf. [2], [3])
We assume that A is noetherian. For an ^-module M, we denote by 9l(M) (the
nilradical of M) the ideal ^/annA(M) of A. M is said to be secondary if the mul-
tiplication of M by each element of A is surjective or nilpotent, in other words,

WA(M)c:<3l(M) (i.e. J^(M) = 9l(M)). In this case, ρ = 9l(M) is a prime ideal of
A and M is called p-secondary. The family {M1?..., MJ of submodules of M
is said to be a secondary representation of M if (1) M = M X H ----- hMΛ, (2) each

MI is secondary. If, moreover, the conditions (3) M fφ Σ^j f°r eacn *> (4)
/ * '

^(Mj) Φ yi(Mj) for ϊVj are satisfied, then the representation is called minimal.
If M = M 1H ----- \-Mn is the secondary representation of M and p^^M;), then
AttA(M) = {plv.., pj. Any artinian module M has a secondary representation,
whence Attx(M) is a finite set. For an artinian ^4-module M, we have
= n {pIpeAtt^M)} and dim/1(M) = max{dim(^/p)|p6 AttA(M)}.

PROPOSITION 2.7. Let A be a noetherian semi-local ring and M a finitely
generated A-module. Then AssA(M) = Att/4(D(M)).

PROOF. In case A is local, this is Th. (2.3) of Sharp [6]. The proof of
the semi-local case can be done quite similarly. If A is complete, then the
assertion follows easily from the Matlis duality. The general case follows

from the next facts: Assx(M) = {φ n A\φe Ass^M)} and Attx(D(M)) = {φ n

For example, if A is a noetherian semi-local ring, then AttA(EA) = AssA(A).

DEFINITION 2.8. Let A be a commutative ring. For an A-module M,
we set Cosupp^ (M) = V(annA (M)) = {p e Spec 04) |p => ann^ (M)}.

PROPOSITION 2.9. (1) Cosupp^ (M) = φ if and only if M = 0. (2) SuppA

(M)cCosupp^(M). If M is finitely generated, then Supp^ (M) = Cosupp^ (M).
(3) AttA(M)c:CosuppJ4(M). (4) For any submodule N of M, CosuppA(M) =

Cosuρp^(JV) U Cosuppκ(M/N).
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PROOF. (1), (2) and (3) are clear from the definition. (4): Since ann^M)
c annA (N) Π ann^ (M/N), Cosupp^ (M) => Cosuppx (N) U Cosupp^ (M/N). Con-
versely, suppose a is an element of ann^(JV) n annA(M/N). Since αMc JV, α2M

= 0 and this implies # e ^/annA (M). Hence ann^ (N) n annκ (M /N) c
, showing that Cosuppy4(N) U Cosupp^(M/N)iDCosυpp^(M).

PROPOSITION 2.10. Suppose A is a noetherian ring and M an artinian
A-module. Then, any minimal element ofCosuppA (M) is an element ofλttA(M).
Moreover, the set of minimal elements of Cosupp^ (M) coincides with that of
AttA(M).

PROOF. Let p be a minimal element of Cosuppx(M). Since p
= n {q|q e Att^ (M)} and Att^ (M) is a finite set, there exists q 6 Att^ (M) such that
piDq. But q e Cosupp^ (M) from Prop. 2.9. (3). Therefore, p = q by the mini-
mality of p.

As for the second assertion, if p is a minimal element of Cosupp^ (M) and
qcp, q e Attx(M), then, similarly as above, we have p = q. Hence p is a minimal
element of Attx(M). Next, suppose p is a minimal element of Att^M) and
qcp, q e Cosupp^ (M). Take a minimal element q' of CosuppA(M) such that
q'czq. Then, q'eAtt^M) from the first assertion. By the minimality of p,
we get q r = q = p. This completes the proof.

PROPOSITION 2.11. Suppose A is a noetherian semi-local ring and M
a finitely generated A-module. Then Supp^ (M) = Cosupp^ (D(M)).

PROOF. Clear from the fact that ann^ (M) = annyl(D(M)).

PROPOSITION 2.12. Let A be a complete noetherian semi-local ring and
M, N A-modules. Suppose that M is finitely generated and N is artinian.
Then,

Cosupp^ (Hom^ (M, N)) = Cosupp^ (M) n Cosupp^ (N) .

PROOF. We know that D(Hom^(M, N)) is isomorphic to M®AD(N) (cf.
Cor. 1 .4.) and that D(N) is finitely generated. Thus, we have Cosupp^ (Hom^(M,

N)) = SuppA (D(HomA (M, N)) = SuppA (M®A D(N)) = SuppA (M) n Supp^ (D(JV))
= Cosuppx (M) n Cosupp^ (N).

Note that the above equality is not true for a general noetherian ring (even if
A is a semi-local domain). In fact, when A is a noetherian semi-local domain and
mί9 m2 are two different maximal ideals of A, take M = A/ml and N = EA(Aj\\\2).
Then Cosupp^ (Hom^ (M, N)) = φ and Cosuppκ(M) n Cosuppy4(ΛΓ) = {m1}.

PROPOSITION 2.13. Suppose A is a noetherian ring, M a finitely generated
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A-module and N an artinian A-module. Then, M®AN is artinian and AitA(M

®A N) = Supp^ (M) n Attx (N).

PROOF. If An-+M->Q is exact, then Nn^>M®AN-*Q is exact, showing that
M®AN is artinian and MtA(M®AN)<=AttA(N") = MtA(N). Next, take any

element p of Attx (M® A N). Since p => 9l(M® A N) z> 9Ϊ(M), p e F(5tt(M)) =

SuppA(M). Conversely, let p be an element of Suppx(M) n MtA(N). Then,
there exist an exact sequence JV-*L->Ό such that L is p-secondary and a non-zero

homomorphism w from M to /4/p (cf. Bourbaki [8] Chap. 2. §4.4. Prop. 20).
If we set 5 = w(M), then M®^ N-»S®AL->0 is exact. On the other hand, since

Ass^(5) = {p}, we have an epimorphism S-^A/p. Hence S®ΛL->L/pL->0 is

exact and L^pL. In fact, if L = pL, then there exists an element a of p such that
L = αL. But this implies aφWA(L) = p9 a contradiction. Therefore, peλttA(L/
pL) c= Att^ (S® ̂  L) c Att^ (M ® ̂  JV).

§ 3. Coregular sequences and the width of modules

Let A be a commutative ring and M an ^-module. For an ideal α of A,

we denote by M(α) the submodule {xeM|αx = 0} of M, which can be identified
with HomA(Aja9 M). When α is generated by aί9...9an, a^A, we also write

M(a j,..., απ) in place of M(α).

DEFINITION 3.1. The ordered sequence of elements (aί9.. ., απ) of A is

said to be an M-coregular sequence if

(a)

(b) α f is an M(ai,...9ai,i)-coregular element (ί = l,...,n).

DEFINITION 3.2. Lei α be an ideal of A. We denote by Widtha(M)

the length of the longest M-coregular sequences in a. (If such sequences don't
exist, then we write Widtha (M)= oo.)

PROPOSITION 3.3. If M is finitely generated, then Widtha(M) = 0.

PROOF. Suppose M = aM for some element a of a. This means that the mul-

tiplication of M by α is surjective. Since M is finitely generated, it is necessarily
an isomorphism. Thus we get M(α) = 0, and there are no M-coregular sequences.

In the rest of this section, A stands for a noetherian ring.

The following proposition is due to Matlis (cf. [5] Th. 2). We give here a

different proof by using our

PROPOSITION 3.4. Let α be an ideal of A and M an artinian A-module.

Then, the following statements are equivalent:
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(1) There exists an M-coregular element in α.
(2) M®AA/a = Q.

PROOF. (1)=>(2): Suppose aea and M = aM. Since M=
M=αM. This implies that M®AA/a = Q. (2)=>(1): Suppose M^aM for any
a of α. Then, acWA(M)=* U {p|p e Att^(M)}. Since Att^CM) is a finite set,
there exists p such that αc=p, pe Attyl(M). If we put p = annx(M/N), then αM
cpMc JV^M, contrary to the assumption.

PROPOSITION 3.5. Let (A, m) be a noetherian local ring and M a non-
zero artinian A-module. Then the following statements are equivalent:

(1) Widthm(M) = 0.
(2) meAtt^M).
(3) WA(M) = m.

PROOF. (1)=>(2): First, we note that M^mM. In fact, if M = mM,
then there exists an element α of m such that M = aM. By the assumption, M(ά)
= 0 and this contradicts the assumption that M is non-zero. Since there exists
an epimorphism M-^M/mM->^/m, me Attκ(^4/m)c=Attκ(M). (2)=>(3): WA(M)
= U {p|p e AttA (M)} =m. (3)=>(1) is clear.

PROPOSITION 3.6. Let α be an ideal of A, M an artinian A-module and
(α lv.., 0Π), 0f e α an M-coregular sequence. Then,

(1) Tor/(M, y4/α) = 0 for any

(2)

PROOF. We prove both of (1) and (2) by the induction on n. When n = 0,
there is nothing to prove. Suppose n>0. Then, from the exact sequence 0->

M(a1)-^M -̂ L> M->0, we get the exact sequence

... -̂  Tor^(M, A/a) - > Ίor^, (M(a,\ A/a) - > Ύor^, (M, A/a)

-^ Tor^! (M, A/a) — > Tor^.2 (M(βl), X/o) — - .

By the induction assumption, we have

Tor/ (M(a x), A/ a) = 0 for any i < n - 1

29...9 an)®AA/a.

Since the multiplications by aί in the above exact sequence are zero, we get Tor/
(M,A/a) = Q for any i<n and Tor;J(M, ^/α^Tor^ (M^J, A/a)^M(a1)(a29

COROLLARY 3.7. Suppose a is an ideal of A9 M an artinian A-module and
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that M(α)^0. Then, Widthα (M) = Inf {n^O|Tor;}(M, A/α)^0} and is finite.

Note that if A is semi-local, M^O and α is contained in the Jacobson radical
of A, then the assumption M(a)^0 is always satisfied.

PROPOSITION 3.8. Let M and N be A-modules and suppose that M is finite-
ly generated and N is artinian. Then the following statements are equivalent:

(1) There exists an N-coregular element in ann^M).
(2)

PROOF. We put α = annA(M). Then,

AitA(M®AN) = SuppA(M) n Att^(N) = Supp^/α) n Attx(N)

Therefore, M®AN = 04=Φ AttA(M®AN) = φ

and the equivalence of (1) and (2) follows immediately from these relations and
Prop. 3.4.

THEOREM 3.9. Let α bean ideal of A and N an artinian A-module. Then,
the following statements are equivalent:

(1) Tor^(M, N) = 0 for any finitely generated A-module M such that
Suppyt(M)c:F(α) and for any i<n.

(2) Tor/G4/α, N) = 0/or any i<n.
(3) Tor^M, iV) = 0/0r a finitely generated A-module M such that SuppA

(M)=F(α) and for any i<n.
(4) There exists an N-coregular sequence (aί9..., an) in α.

PROOF. (1)=>(2)=>(3) are trivial. (3)=>(4): We prove the statement by the
induction on n. When n = 0, there is nothing to prove. Suppose n>0. Then,
from Prop. 3.8, there exists an N-coregular element a in α. Since the sequence
0->JV(α)-»N— ϋ-»N->0 is exact, Torf (M, Λf(0)) = 0 for any ΐ<n- l . By the
induction assumption, there exists an Λf(α)-coregular sequence (a2,>..,an) in α.

The sequence (a, 02> » fl«) is a required N-coregular sequence in α. (4)=>(1):
Induction on n. When n = 0, there is nothing to prove. If n>0, then (a29...,
an) is an Λ/Xα^-coregular sequence in α. By the induction assumption, Torf (M,
N(α1)) = 0 for any i <n — 1 and any M as in (1). On the other hand, we have the
following exact sequence for each i < n :

N) -^-> Ύorf(M, N) - > Tor^ (M, N^)) = 0
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Since al e αc9t(M), a^M = Q for a sufficiently large m. Thus the multiplication
of Tor/ (M, JV) by af is surjective and a zero-map. Therefore, we get Tor/ (M,

ΛΓ) = 0 for

DEFINITION 3.10. Lei M and N be A-modules', suppose that M is finitely
generated and N is artinian. We denote by cograde^M) the length of a maxi-
mal N-coregular sequence in annA(M). (Note that all such sequences are of
the same length.)

COROLLARY 3.11. Let the assumptions be the same as Def. 3.10. Then,
cograde^ (M) = Inf (n ̂  0|Tor^ (M, N) Φ 0} .

Note that Widtha(N) = cogradeN(/4/a).

THEOREM 3.12. Let Abe a noetherian semi-local ring and M, N be finitely
generated A-modules. Then we have cograde^^ (M) = grade^ (M). In par-
ticular, cograde£>1(M) = grade>1 (M).

PROOF. From Cor. 1.5, Tor^(M, D(N)) is isomorphic to D(Ext^(M, N)).
Therefore, cogradeD(N)(M) = Inf{«^0|Tor^(M, D(N))^0} = Inf {n^O\Ext"A(M,
N) ^0}= grades (M).

COROLLARY 3.13. Width βD(M) = Depthβ(Λί).

For example, if (^4, m) is a noetherian local ring, then Width EA(A/m) =
Depth (X).

As is seen from Th. 3.9, cograde^ (M) (resp. Widthα(ΛΓ)) does not depend on
M (resp. α), but on SuppA(M) (resp.

PROPOSITION 3.14. Let A be a noetherian semi-local ring and M an
artinian A-module. Then, M®AΆ is isomorphic to M, and M is also artinian
as an A-module. Moreover, Width^(M) is equal to Widthx(M). (Here,
Width^ (M) means WidthΛβlM) (M).)

PROOF. The first assertion is obvious. As for the second one, since Ύor*(A/
α, M)®AA^Ύor*(A/a, M®AΆ)^Ίor*(Ά/a, M), where a = Rad(A), and A
is faithfully flat over A, the assertion follows from Cor. 3.7.

PROPOSITION 3.15. Let α be an ideal of A and M an artinian A-module.
If a e α is an M-coregular element and M(α)^0, then Widthα (M) = Widthα (M(α))

+ 1.

PROOF. The exact sequence 0-»M(α)-»M— £-»,M-»0 leads to the following
exact sequence :

(M, A/a) -S-> Tor^+1 (M,
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In the above sequence, the multiplications by a are all zero-maps. The assertion

follows from this and Cor. 3.7.

PROPOSITION 3.16. Let α be an ideal of A\ lei M', M and M" be artinian
A-modules. Suppose that M'(α), M(α) and M"(a) are non-zero. If 0->M'
->M-»M"— >0 is exact, then the following statements hold:

(1) // Width, (M)< Width, (M'), then Width, (M) = Width, (M")
// Width, (M)> Width, (M'), ίΛen Widthα (M") = Width, (M') + 1.
// Width, (M) = Width, (M'), then Width, (M")^ Width, (M).

(2) // Width, (M)< Width, (M"), then Width, (M) = Width, (M').
// Width, (M) > Width, (M"), then Width, (M") = Width, (M') + 1 .

// Width, (M) = Width, (M"), then Width, (M)^ Width, (M')+l.
(3) Width, (M)^min (Width, (M'), Width, (M"))

PROOF. (1) Suppose Width, (M)>0 and Width, (M')>0. Then, α is con-
tained neither in WA(M) nor in WA(M'). Therefore, α is not contained in WA(M)
U WA(M') (cf. Prop. 2.6. and [9] 2-2, Th. 81). Hence, we can take an element

a of α which is M-coregular and M'-coregular. Then, from Prop. 3.15., Width,
(M'(α)) = Width, (M') -1, Width, (M(α)) = Width,(M) - 1, Width, (M" (α)) =

Width, (M")-l and 0->M'(α)-*M(α)-»M"(α)-*0 is exact by the snake lemma.
Hence, by the induction, we can assume that Width, (M) = 0 or Width, (M') = 0.

Case 1) Width, (M) = 0: It suffices to show the first statement. By the
assumption, α is contained in WA(M). Therefore, there exists a prime ideal pe
Att^(M) such that αcp. Suppose p e Att^M'), then aaWA(M'). Hence, we
have Width, (M') = 0, a contradiction. Thus we get p e Att^M"). This implies
α d WA(M"\ namely, Width, (M") = 0.

Case 2) Width, (M') = 0: We have only to show the second statement.

Firstly, we have the exact sequence :

---- »Tor? (M", Aja) - >M'®AA/a - > M®AA/a - > M"®AAla - > 0.

By assumptions, Mf®AA/a^Q and M®AA/a = Q. Therefore Torf (M", A/a)
7^0 and M"®AA/a = Q. Thus we have Width α(M")=l.

The assertions (2) and (3) follow immediately from (1).

THEOREM 3.17. Suppose A is a noetherian local ring and M is an artinian
A-module. Then for each peAttκ(M), we have Width, (M)^ dim (A/p)^
dim^(M).

PROOF. The last inequality follows from 9l(M)= n {pipe Att^(M)}. Next,
let p be an element of Att^M). Since Att4(M)= {^ n A\ty e Att^(M)},. we can
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take φeAtt^(M) such that p = ̂ βnA. Then dim^ (A/φ) g dim^ (A/pA) =
dimA(A/p) and Width^(M) = Width^(M), Hence we can assume that A is com-
plete. We prove the first inequality by the induction on Width^ (M). If Width^
(M) = 0, then the assertion is obvious. Suppose Widthx(M)>0 and take an M-
coregular element a in m. Since peAtt^(M), a is not contained in p. Let q
be a minimal prime ideal over (p, a).

LEMMA 3.18. Let A be a noetherian complete semi-local ring, M an ar-
tinian A-module and aeA an M-coregular element. Let peAtt^M) and q
a minimal prime over (p, a). Then q e Att^ (M(α)).

PROOF. We can take an exact sequence 0-»M'->M->M"-*0 such that Attx

(M") = {p) and Attx(M') = AttA(M)-{p}. In fact, if M = M1 + +Mπ is a mini-
mal secondary representation of M and M± is p-secondary, then put M' = M2

H ----- hMM and M" = M/M'. Since a is M-coregular, a is also M'-coregular. (Be-
cause Attx (M) = MtA (M'} U AttA (M"), WA(M) = WΛ(Mf) U WA(M"). Since α is not
in WA(M\ a is not in WA(M').) Then by the snake lemma, the sequence 0-»M'(α)
->M(α)->M"(α)->0 is exact. We show that q is a minimal element of Cosupp^

(M"(α)) = Cosupp^ (Hom^ (X/αX, M/r)) = 7(α) Π Cosupp^ (M"} (cf. Prop. 2.12.).
In fact, since a e q, pciq and AttA(M") = {p}, q is an element of Cosupp^(M''(0)).
On the other hand, if q'ciq and q' is an element of Cosupp^ (M"(d)\ then q'
=>(p, α). Thus q = q' by the minimality of q. Therefore, by Prop. 2.10, q

By the above lemma, q is an element of Att^(M"(α)). Then, by the induction

assumption, Widthα (M) - 1 = WidthQ M(α) ̂  dim (A/oί) g dim (X/p) - 1 . There-
fore, Widthα(M)^dim(X/p) and this completes the proof of Th. 3.17.

PROPOSITION 3.19. Let (A, m) be a noetherian local ring and M a Cohen-
Macaulay A-module with dimx(M) = n. Then Widthm(#ϋ(Af)) = n.

PROOF. We prove the statement by the induction on n. If n = 0, then
#£(M) = M is of finite length. Thus Widthm(#£(M)) = 0. Suppose n>0 and a

is an M-coregular element in m. Then M/aM is Cohen-Macaulay and dim(M/
aM) = n — 1. From the exact sequence 0->M— ̂ -»M-»M/αM-»0, we have the

following exact sequence :

0 = #»- ! (M) - > Hn

m~ 1 (M/aM) - > Hi (M) -£-, Hn

m (M) - > Hn

m(M/aM)

= 0.

This implies that a is #£(M)-coregular and Hn

m~l(MlaM}^Hy(M)(ά). By the
induction assumption and Prop. 3.15., we get Widthm(//J(M)) =

=(n- 1)4- 1 = n.
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