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§1. Introduction

The Plancherel theorem for Riemannian symmetric spaces has been exten-
sively studied and almost completely established by several authors.

Now we believe that it is interesting and important to verify the analogous
theorem for pseudo-Riemannian symmetric spaces. (For the definition of a pseu-
do-Riemannian symmetric space, see [7]). There have been several results in
this direction; see [2], [3], [4], [10], [12], [13], [14], [15] and [16].

In this paper we prove the Plancherel formula for the pseudo-Riemannian
symmetric space SU(p, 1)/S(U(1)x U(p—1, 1)). Our method, which is mainly
due to the theory of Kokaira and Titchmarsh, may be applicable to more general
pseudo-Riemannian symmetric spaces.

It is my pleasant duty to express my gratitude to Professor K. Okamoto for
his guidance and encouragement.

2. The main result

Let the form [z, w]=2z,W,+--+z,W,—2,,,W,,, be given in the complex
p+ 1-dimensional space C?*1(p=2); let G be the linear group of transforma-
tions which have determinant 1 and leave this form invariant.

The mapping

ag.g— J('g)"J

is an involutive automorphism of G, where J=diag(—1, 1,...,1, —1). The
fixed points of ¢ constitute the subgroup

ei® 0.--0
H=||0 €G;0cR |.

Furthermore there exists a G-invariant indefinite Riemannian metric on G/H
and, therefore, G/H is a pseudo-Riemannian symmetric space.
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The purpose of this paper is to compute the Plancherel measure for C§ (G/H).
Let g be the Lie algebra of G and set

t

0
a= ;teR ).

t

If A€ a*\0, then 4 is called a restricted root if g;={Xeg; [H, X]=AMH)X
for all Hea} is not {0}. Let i, be the linear form on a defined by

t
0

lo: .'. — 1.

t

Then the set of the restricted roots is given by A={+4y, +24,}.
Set

0
U :
K= 0 |;UeU(p)),
0---0det U!
cht sht
1
A=(a = ;teR),
1
sht cht

At = {a,; t > 0},
M = the centralizer of 4 in K,
N =exp(8;, + 8210)>
N =exp(g-;, +8-21)»
mo = diag( -1, — 1, 1,..., 1).
Then the mappings
H x A x N>(h,a, n) — haneG,

K/M x A*>3(kM, a) — kaHe G/H
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are injective diffeomorphisms; furthermore their images are open and dense.
For seC let X, be the set of all C*-functions ¢: G—C such that

P(gma,n) = e"stPtdh(g) (ge G, me M, a,e A, ne N).

Let = (resp. ;) be the left regular representation of G on C®(G/H) (resp. X,).
Define y,: G—C by
elis=Pt (g = han, heH, a,e A, neN),
1(9) =
0 (g HAN).

Normalize the invariant measure dx on G/H so that

S F(x)dx = S dkgw f(ka)(cht)?=1shtdt (feCo(G/H)).
G/H K Jo

Then the operators

2. X,39— | 1 K)9) dk e CH(GIH),

M CE(GIaf — | (=9 (dxe X,

commute with the action of G. (The integrals converge for Ims<2—p, Ims
> p—2 respectively; they are analytically continued to the whole complex plane
as meromorphic functions).

Normalize the Harr measure dii on N so that Sﬂexp {—2pH(i)}dn=1, where

p=ply. Let A;: X,— X _, be the interwining operator defined by
Asd(g) = 2"F(is)‘lgn¢(gmoﬁ)dﬁ (see [6, p. 1056]).

Set ¢(s) = SNexp{ — (ishg + p)H(R)} dFi.
For integer j> — p/2 we set
s() = (p + 2))i,
Uj=ImAy;
and
l_Ij = {r(is)_ln—s}|s=s(j) .

Then Im[]Z=U j (for the proof, see §5). Hence we can define the operator



184 Shuichi MATsUMOTO
[T7: C&(G/H)—X(;)/K; by the rule

Hi' = s(,-)°Hf s
where the operator By ;,: X;/K;—U; is defined by

By ([9]) = Ay (@) ([#] e X,;/K))-

We define the positive definite inner products on C§(G/H), X, and X;)/K;
by

fo={, Jee@ds  (geCHGH),

@ ), = | pWBdk (G, ¥eX, veR)

and

61 WY = { p0 @Rk (91 W] X/K ),

respectively. (For the detail, see [6, p. 1057]).
Now we can state our result.

THEOREM. If fe C3(G/H), then

_ 2 (* dv
(1= G | LA TL

2 L+ D (s, (g
G- DT > TG+ 2) (o + 2yt A TN

§3. The reduction of our problem

As is easily seen, we have only to show that the above theorem holds for all
S in C§(G/H) which is defined as the set of all fe C§(G/H) such that f|xy s =0
for an open neighborhood U of e. Let us consider our theorem in more reduced
form. To this end, we shall make some preparations.

Let K denote the set of equivalence classes of irreducible unitary represen-
tations of K. Fix, for ye K, (n,, V))ey. Put V,,={veV,; n(mo=v for all
meM} and Ko={(n, V,)eK; V,,#0}. Then we can identify K, with the
set

{(m, n); m and n are integers, |[n|] £ m and m — n is even} (see [6], [11]).
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Taking account of this identification, we from now on write n,,,, V,,, and Vo .,
instead of =, V, and V, ,. Set d,,=dimV, , and y, (k)=Trn, (k) (ke K).
Choose e, , € Vo mn such that |e,,l=1. Let C*(G/H),, (resp. X, ,) denote
the set of all functions in C*(G/H)(resp. X,) which transform according to n,,,,.
Let C3(G/H, V,,) be the space of all compactly-supported C>®-functions &:
G/H—YV,,, such that

D(kx) = 7, (k) P(x) (keK, xeG/H).
By C%(G/H, V,,,) we shall understand the space of all @ in C§(G/H, V,,,) such

that @|xy.n)y=0 for an open neighborhood U of e.
For each f in C,(G/H), set

Fu) = | 0 e .
Then it is not difficult to see that

(f’ f) =m§ (fm,m fm,n)a

(TS TLS) = = ([T Ty
and
(I'T’f, 1Y =m§ (T foums T ) -

Hence, in order to prove our theorem, we may assume that the function f
has the property

J(x) = (v, 2(x)),
where veV,,, ®e€Cs(G/H, V,,) and (, ) is the inner product on V,, .

§4. An application of the classical eigenvalue problem

Let Q be the Casimir operator for G. Then

n(Q) = — (s> + pH)/{4(p + 1}.
If fe C*(G/H),,,, using the result of [11, Lemma 3.1], we have

©@f)(a) = T(plTl) (7":2- +2{(p— 1) tht + coth 21} L.

+ {m? — n? 4+ 2p — )m)ch~2¢ — 4n25h‘22t> f@) (t>0).
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Set

D, =-1 _‘£+2{(p—1)tht+coth2t}i
t 4\ dr? dt

+ {m? — n? + 2(p — )m}ch-21 — 4n?sh=221 + s? + p2> (t > 0).

Putting z= —sh?t, we have
= d? _ d

n? mm+2p—2)  (s2+p?

T4z T T 4(i-2) 4
Set
D, = z(1 —Z)i+{y—-(<x+ﬁ+ l)z}—d——aﬂ,
dz? dz
where
o= {m— |n| + is + p}/2,
B={m—In| —is + p}/2,
y =1-—|n|.
Then

(= 2)!"2(1 — 2)™/2D; = Dy( — 2)!"/%(1 — z)™™/2.
Using the above formula, we have D, f3, ,=0, where
fon() =(@hl"lchy"F(@—y+ 1, -y + 1,2 -7y, —sh?¢).
On the other hand, it is well known that
Fa—-y+1L,p—-y+1,2—-92)

F(2—7)F(ﬁ—a) y—a— — —_ -
FB—7+ DI —oy (~ 7 Fe—y+Laa=f+1,:7h

Ir2-—y)(ax—-p) Ny 3 B _
tTa—y+nra—p (" TFE -+ LA f-at 1,27

provided o — f is not an integer. Hence if we put

Q- pre-p)
mn(S) = TG =5 ¥ DI = )




The Plancherel Formula for a Pseudo-Riemannian Symmetric Space 187
and
hy,n(0) = (sht)s=m"P(ch )" F(B —y + 1, B, B — « + 1, — sh™?1),
then we have

f::,n = Cm,n(s)htsn,n + cm,n( - S)h;,sn

and
Dhs, ,=0.
Set
r(t) = (ch )P~ 1/2(sh t)1/2 (t>0)),
qt) = (p2—2p + %)chz - _}‘_ oth?f + 2p — %
—{m? —n?2 + 2(p — )m}ch2¢t + 4n?sh=22¢t (t>0)
and
L=q)- 34
Then
(L — (s> + p?))r = 4rD, on C%0, ©).
Hence

(L= >+ p)(rfrn)=0,
(L= (s* + p?)(rh;,,) = 0.
Moreover, if Ims>0, then
r(O) [, (1) € LX(0, 1),
r(t)hs, (1) e L*(1, ).
The Wronskian of rfs, , and rhs, , is calculated as follows:
W(r fom rhinn) = 1 u(rhy, ) — (0 f5, ) rh,
= 2isCpu( — 5).

Now using the theory of Kodaira and Titchmarsh (see [8], [17]), for any f
in CZ(0, o0) we have
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= | (] 70 ) d

—®© Cm,n(

OO UROS OIS

= i3 {Res L (m20 ] raiRwra

s=5(j) Cm,n( —

+ LR FmR ) du)

=2 o T ) | 100 )
~ i3 {Re o oy /R O], S s,

where the sum is taken over all integers j; —p<2j<m—|n|.

§5. The Plancherel formula for K-finite functions

For ¢ € X,, we define ¢,, ,€ X, ., by

B @) = | tma0109kg) e

Then
Ki={peXyyi bna=0  if 2j<m—|nl},
Uj={peX i $ma=0 if 2jZm— |n]}.

(For the proof, see [6]).

Let ¥

mn’

G-V, be the function defined by
¥s, W(kan) = ets-Pig, (K)e,, (keK,a,eA, neN),

and let ¥, (9)=(enn ¥5..(9)). Then D(2Y5 (a))=0. This implies that
there exists a complex number of, , such that

Pmn(@) = G nf () (> 0).

We shall now compute the constant a3, ,.
If Imss is a sufficiently large negative value, then
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e~ PP s w(a)
= e LG e TR
= e‘“‘“’”& As(@K) (T, n(M0)em s T n(K)epm,) dK
K
= e_(is—p)tSNXs(atﬁ) (nm,n(mO)em,n’ nm,n(k(ﬁ))em,n)e—(‘shﬁ.p)ﬂ(ﬁ) dﬁ
= { 140107) (B0 )em s T e300 di
- SN e_(iSAo+p)H(ﬁ)(nm,n(mo)em,m nm,n(k(ﬁ))em,n) dn
= (e Ta10) | €10 IO, (D) d) (1 — + 0).
Moreover the result of [6] says that
Talmo) | eiopmoIm, (k()ey,
— (- 5)("'-"’/2 2k —2+p+i§ MW 2%k —2+p+i5,
k=1 2k—2+p—i§ k=1 2k—2+p—i§ m.n
Therefore, if Im s is a sufficiently large negative value, we have
e~ PP s w(a)
e(s) mem/2 2k —2 +p—is WWI2 2%k — 24 p—is
k=1 2k—2+p+is k=1 2k—2+p+is
(t— + 0).
On the other hand, if Im s <0, then
e~tsmpife (t)=e" P ey ( ()5, n(1) + Com,n(— )2 0(1))
— 2P7isc, () (t— + ).

Consequently,

” =2“'1’c(s) 1 m=n)/2 2} — 2 +p+is (mtm/2 2f — 2 +p—is
™" Cmn5) ke1 2k—2+p+is k=i 2k—2+p+is’

By the principle of analytic continuation, the above formula is valid for all s in
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C. Using this formula, we obtain
Ker(I'(is) ' 2)|s=sjy = K; .
Hence the operator 2/: X ;,/K;—C*(G/H) is defined by
PI[8]) = @) PI=sp(®) ([P X;/K)).

Now let f(x)=(e,,, ?(x)) (®eCF(G/H, V,,)). Then it is clear that
[Lf(@) =1L/ (e, .(9). Moreover

L@ = 1) (e D) dx

G/

= (aur)| x-Lazk ) nn D(ka)dk

0

[ du ) 1-@5'0 (ke D(a)dk

o

[ aurw @) | 1-Aa3"0 naRemam e dk

o

8

- g dur2(u) f(a,) 205, (a,)

= azt | 1(@) fi a2 du.
Thus
T15@) = (st (@) F3,00W) du 3, 1(0).

In particular we have that In[[Z=U j
We can then prove the following

PROPOSITION. Let f(x)=(v, ®(x)) (veV,,,, ®eC&(G/H, V,,,)). Then

_ 22 (> gy
s =20 So Tty 2L/
L L+ DY i[lif(x) (xeKA*(eH)).

(P DT > T(p+2) (p + 21
Proor. We need only verify that

_ 22 (® gy
fla) = S Xo Tc@)l—z%ﬂvf(a,)
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(p=D! T I(p+2))(p+2)!

2Tl fla) (>0).

Furthermore we may assume that v=e, ,. Then, taking account of the above
results, we have

(PTL @) = G iztal 5 ® | 10 i )
If v is a positive real number,
Bt = 6|2 = 277210l
Hence it follows that
1 -1 v ® v
20 s PTL (@) = [y Fan® @) 02w du.

On the other hand if ¢ € X, ,, then

STy "/22k—2+p /2 —2 4 p—
— Dis 1
A(¢) = 2T (is) c(s) ,‘1;11 2+p+1s kl:[, 2k—2+p+zs ¢

(see [6]).
This implies that

2 (F(p + )2 -
7= DT T(p + 2) (p + 27 7' 11 @)

. 1 1
- ’{s‘i?f-) Con — 5) }cm.n(s(j))
x 520\ r@) iRy du @ <m = nD),
0 @jzm—|nl).

Therefore, owing to the formula derived in §4, we obtain the desirable re-
sult as follows:

f@)= 5\ B 2, TLfla)
2 CES) P
MVE ; TGo+2) (p+20T 2 B ACHE

§6. The proof of our theorem

We are now in a position to prove our main theorem. We easily see that,
if ¢ € X, and fe CF(G/H), then
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[ 2607Gdx = o0 TLI®dk.
G/H K
Therefore, from the definition of the inner products, we have
fo,0 2TLICI®dx = ALLTL,  (veR, feCEGIH)
and
[, n P TUS G dx = TVS.TES  (feCF(GIH)).

Now let f(x) = (v, ®(x)) (veV,,, ®eCs(G/H, V,,). Then, according to
Proposition in § 5, we find that

) =5 () ot 27 dx

2 {L'(p + )} - .
- G—:—mgc/n<§ T(p +2)) (p +2)! gjn’f(x))f(x) dx

= 22p Swlc(v)lz (1_[ f;l_.[ f)\'

2 TG+ DV sty
Y G-DI F TG+ 2 (p + 21 TTA TN

The proof of our theorem is now complete.
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