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Recently, one of the present authors [4] has studied various forms of maxi-
mal and minimal asymptotic behavior of positive solutions of the nonlinear
differential equations

ym +f(t, y) =0, ym —f(t, y)=0.

This paper extends the results of [4] to much more general differential equations
of the form

" Ly+fty=0
(1_) Lny —f(ta y) =0
where n>2 and

-1 d_ 1 d d 1 d_ -
" pa(0) dt p,i(t) didt pi() dt po(t)

2) L

It also establishes criteria for the absence of various forms of asymptotic behavior
among the eventually positive solutions of (1*) and (17) and, in some cases, the
complete absence of eventually positive solutions.

We always assume that:

(a) pieC([a, OO), (O, OO)), 0 i< n;
(b) feC([a, ) x (0, 00), (0, 00)).

We introduce the notation:

(3

1 d .

4 Ly =29 ryo=-1_“91 0, 1<i<n.

The domain 2(L,) of L, is defined to be the set of all functions y: [T, 0)-R
such that L;y(f), 0<i<n, are continuous on [T, ©). By a positive solution of
(1*) [(17)] we mean a function y € 2(L,) which satisfies (1*) [(17)] and is positive
for all sufficiently large ¢.
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1. We first consider the case where
) Swp,-(t)dt —w for 1<i<n—L

LemMA 1. Let ye 2(L,) satisfy y(t)>0 and L,y(t)<0 on [ty, ), to=>a.
Then there exist an integer ke {0, 1,..., n—1}, k¥ n(mod 2), and a t,>t, such
that

Ly(t) >0 on [t;,©) for 0<Li<k,
(6)
(=D)*Liy(t) >0 on [t;,0) for k+1<i<n.

LEMMA 2. Let ye 2(L,) satisfy y(t)>0 and L,y(t)>0 on [ty, ). Then,
either

7 Lyt) >0 on [t;,,©) for 0<Li<n,

or there exists an integer k€ {0, 1,..., n—2}, k=n(mod 2), such that (6) holds on
[t,, o), where t,>t, is sufficiently large.

The set of all positive solutions of (1*) [(17)] is denoted by 2. The set of
all positive solutions of (1*) [(17)] satisfying (6) for some ke {0, 1,..., n—1}
[ke{0, 1,..., n—2}] is denoted by £,; the set of all positive solutions of (17)
satisfying (7) is denoted by £,. From Lemmas 1 and 2 it follows that

P=P,UP3U--U2P,_, for (1*) with n even,
P=PyUP,U--U 2P, for (1*) with n odd,
P=PyUP,U:-U 2P, for (17) with n even,
P=P UP;U--U 2P, for (1) with n odd.

These observations lead us to consider (1*) [(17)] when n is odd [even]. It
is now natural to refer to a positive solution y of (1*) or (17) as minimal in case
Y€ P,, that is, (—1)IL;y(t), 0< i< n, are eventually positive, and the existence of
such minimal solutions follows readily from a theorem of Hartman and Wintner
[1]. Here we need only impose growth conditions on f(t, y) which assure that

solutions of (1) and (17) can be continued to t=00 and consider the vector x
=(Loy, —L,y, Lyy,..., (—=1)" 1L, _,y) which satisfies the first order system

(8) x' = —1(t, x).

Writing v>0 in case all components of v are positive, we note that in (8)
f(t, x)>0 for x>0. According to Hartman and Wintner [1] (see also Kreith
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[3]) this assures the existence of a ‘‘monotone solution” x(f) of (8) satisfying
x(1)>0in [a, o).

We now consider (1*) [(17)] when n is even [odd]. It is clear that if ye 2,
then Lyy(t)=y(t)/po(t) is eventually increasing. Accordingly, for n even [odd]
we refer to positive solutions y(t) of (1%) [(17)] as minimal in case L,y(t) are
bounded and seek growth conditions on f(t, y) which guarantee their existence.

The growth conditions on f(t, y) will be formulated in terms of a continuous
function F(t, y) which is monotone increasing or decreasing in y and satisfies

® f, ) <Ft,y)  for (1, y)ela, o) x (0, ).

The following notation will be employed. Let i e{l,...,n—1}, 1<k<n—1,
and t, se[a, ). We define I;=1 and

t
(10) L, s; pis.-os Piy) = Sspik(r)lk_l(r, 85 Digype-s Pi)Ar, 1< k<n-—1.
For simplicity we put for 0<i<n-—1
Ji(t’ S) = Ii(t’ S5 P1seees pi), J,(t) . Ji(t, a);
(1)
Ki(ta S) = Ii(t’ S5 Pn—15-++» pn-—i)s Ki(t) = Ki(ta a)'

THEOREM 1. Suppose that n is even [odd]. A sufficient condition for
(1%) [(17)] to have a minimal positive solution is that

(12) SwK,,_l(t)p,,(t)F(t, cpo(f)dt < 0 for some ¢ > 0.

SKETCH OF PROOF. Let b=c/2 or b=2c according to whether F(t, y) is
increasing or decreasing in y. Choose T >a so large that

[ Kue OO FC, cpo(iar < L.

Denote by # the locally convex space of all continuous functions y: [T, o)

— R with the topology of uniform convergence on compact subintervals of [T, o).
Consider the set

Y= {ye %”t%po(t) < y(t) < 2bpy(1), t = T} ,
and define the operators ¢ ,: Y- % by
@ 23(0) = bpolt) (= D™po(®) | Koo s(5, 0PI (5, ¥(5)ds.

It is not difficult to verify that @, are continuous and map Y, which is a
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closed convex subset of %, into compact subsets of Y. Therefore, by the
Schauder-Tychonoff fixed-point theorem, @, [® _] has a fixed point in Y, which
provides a minimal positive solution of equation (1*) [(17)]. For the details the
reader is referred to Kitamura and Kusano [2].

Turning now to the concept of maximal solutions, we note that even in the
linear case of y(™ —q(t)y =0 we would not expect to be able to bound the growth
of solutions ye 2, if g(t)>0. Accordingly, we restrict our considerations of
maximal solutions to equation (1*). A positive solution y of (1%) satisfies L,y(t)
<0 and therefore, by integrating this inequality n times, we see that y(f) cannot
grow faster than py(f)J,- () as t—>o0. Thus we define a positive solution ye
2 ,_, to be maximal if it is asymptotic to cpy(t)J, - () for some ¢>0, i.e., if there
exists a constant ¢>0 such that

tlilg L(®/po(DJn-1(D] = c.
The basic result regarding the existence of maximal solutions is the following

THEOREM 2. A sufficient condition for (1*) to have a maximal positive
solution is that

(13) Swp,,(t)F(t, cpo()J,—(1)dt < o for some ¢ > 0.

SKETCH OF PROOF. Let b be as in the proof of Theorem 1, choose T>a
so that

B

" pOFC cpotia, 0 < 5

and define
Z={ye@: L pi, 0 < 30 < 2bpo(®, 10, 12 T}
Consider the operator ¥: Z—% defined by
Py(t) = bpo(t)J,-1(1)
#2001t 55 Do Pa2)pa 9 BADS (0, Y0NS,
Proceeding as in [2], it can be shown that ¥ is a continuous operator map-

ping Z into a compact subset of Z. It follows that ¥ has a fixed point in Z,
which is the desired maximal positive solution of equation (17).

ReEMARK. In case f(t, y) itself is monotone increasing or decreasing in y,
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then the hypotheses of Theorems | and 2 with F replaced by f are necessary as
well as sufficient. See [2] for details.

It may happen that the nonexistence of maximal or minimal positive solu-
tions implies the nonexistence of any other kinds of positive solutions. This is
the case if, for example, f(¢, y) is itself decreasing in y as the following theorem
shows.

THEOREM 3. Let f(t, y) be decreasing in y. Then equation (1%) has no
positive solution if and only if

(14) g“’ pu(Of(t, cpoT o ()t = 0 forall ¢> 0.
ProoF. Suppose y e &, for some ke {0, 1,...,n—1}. Then it follows that
(1s) [ Ku-es0p, 01, 30Dt < o0,

(See [2].) If ye2,, then y(t)<c,po(f) eventually for some c¢,>0, and this
combined with (15) yields

[ Kues0pu0)1 0, expo(0)it < oo,

If ye 2, for some ke{l,..., n—1}, then there are positive constants ¢, and c;
such that

(16) 20— 1(t) < y() < c3po(D)JT(H)

for all sufficiently large . Using (16) in (15), we obtain
[ Kaese a2 01, e3po07,00d1 < co.
In summary, if &, # ¢ for some ke {0, 1,..., n—1}, then
SmK,,_k_l(t)p,,(t) 1(t, epoI ()t < o for some ¢ > 0,
or equivalently, #,=¢ for some ke {0, 1,..., n—1} if
17 SwK,,_k_l(t)p,,(t)f(t, cpo()J(1))dt = oo forall ¢ > 0.

In view of (5) we see that

lim [J;;()[J()] = co and  lim [K;,(1)/K(1)] = 0.
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Using these and the decreasing nature of f, we have

K, k- 1(DP () f(t, cpo(DI(1) < Kyoi s 1(OPAD S (2, cPo(8)T - 2(1)

provided ¢ is sufficiently large, and so (17,) implies (17,_,). Now (14) is nothing
else but (17,-,), and from the above observation it follows that

Ppy =Py 3==P, =¢ if n iseven,
Ppy=Ppy==Py=¢ if n isodd.

This completes the ““if”” part of the theorem. The ‘‘only if” part is contained
in the Remark following Theorem 2.

Noting that (13) is sufficient for equation (17) to have a positive solution
y(t) such that lim [y(t)/po(£)J,-()]=const>0, and that (15) also holds for
t—

solutions of (17) belonging to £,, ke {0, 1,..., n—2}, we have the following
theorem.

THEOREM 4. Suppose f(t, y) in (17) is decreasing in y. If (14) holds for
all ¢>0, then 2=2, for (17), and every positive solution of (17) grows faster
than po(t)J,- (t) as t— 0.

Next we examine the case where f(t, y) is nondecreasing in y. We say that
equation (1) [(17)] is superlinear or sublinear according as f(t, y) satisfies

f&»ly=ft 2z for y>z>0,

or
f@&ny<f@t, 2z for y>2z>0.
THEOREM 5. Let (17) be sublinear. Suppose
(18) lim inf L=t @O Knin(8) S

oo Jp1(B) Ky y—3(2)

for k=1, 3,...,n—=3 if n is even, and for k=2, 4,...,n—3 if n is odd. Suppose
in addition

(19) YAMﬂuwwyrﬂmm=a) forall ¢>0.

Then, 2 =¢ if n is even, and P =P, if n is odd.

THEOREM 6. Let (1%) be superlinear. Suppose

N ()Y RPN ()
20 lim inf Zkt1 n=k=3{) o
20 T T K,sims ()
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for k=1,3,...,n—=3 if n is even and for k=2, 4,...,n—3 if n is odd. Suppose
in addition

(21) Sm K,_,(®p () f(2, cpo(t))dt = o0 forall ¢>0
if n is even, and
22) SwK"_3(t)p,,(t) F(t, cpo(J ()t = 0 forall ¢>0
ifnisodd. Then, 2=¢ if nis even, and P =2, if n is odd.
Proor or THEOREMS 5 AND 6. Let y be a positive solution of (1*) such

that ye &, for some ke{l,...,n—1}. Then, using (15), (16) and the fact that
f(t, y) is nondecreasing, we have

SwK,,_k_l(t)p,,(t) £(t, cpoy—a(D)dt < 0 for some ¢ > 0.
Consequently, #,=¢ if
@30 | K OnOSC epoIi @)t = 0 forall >0,

Let (1*) be sublinear. Then, for any ¢>0 and for all sufficiently large ¢,

Ko k-1(Op, () (2, cpo(©)J - 1(D)

< Koot OPaOFt, cpo(®)Tos(0)- Jo1DRamt=1

It follows that, in the presence of (18), (23,) implies (23,_,). Now condition
(19) means that (23,_,) is valid, so that

Pp1 =Py 3==P,=¢ if n iseven,
9n—1='¢n—3=”'=92=¢ if n is odd.
This completes the proof of Theorem 5.

Let (1*) be superlinear. Then,
K-k 10O, (0S (1, cpo()i-1(1))

< Karses 02101, epo) T (0)- =10 =110

for any ¢>0 and for all large ¢, so that, under condition (20), (23,) implies (23, ,).
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Noting that (21) and (22) agree with (23;) and (23,), respectively, we conclude
that

P =Py==P,_,=¢ if n iseven,
92=94=“'=?n_1=¢ lf n iSOdd,
thereby completing the proof of Theorem 6.

If in particular p(f)=1, 0<i<n, then conditions (18) and (20) are clearly
satisfied, and so Theorems 5 and 6 specialized to the equation

(29) y» +f(t, y)=0
yield the following result.

CoROLLARY 1. (i) Let (24) be sublinear. If
(25) SOO f(t, ct"2)dt = 0 forall ¢ >0,

then 2=¢ if n is even, and P2 =2, if n is odd.

(ii) Let (24) be superlinear. Suppose

(26) Sw:n-z f(t, odt =0 forall ¢>0
if n is even, and
27N Swt"“3f'(t, ct)dt =c0  forall ¢>0

if nisodd. Then, Z2=¢ if n is even, and P =2, if n is odd.
Likewise we are able to prove the following theorems.

THEOREM 7. Let (17) be sublinear. Suppose that (18) holds for k=2,
4,...,n—4 if nis even and for k=1, 3,...,n—4 if n is odd. Suppose in addition
that

(28) Sle(t)pn(t) £(t, cpo(T,_s@)dt = 0 forall ¢> 0.

Then, it follows for (17) that 2=2P,U 2,, if n is even, and P =2, if n is odd.

THEOREM 8. Let (17) be superlinear. Suppose that (20) holds for k=2,
4,...,n—4 if n is even and for k=1, 3,...,n—4 if n is odd. Suppose in addition
that (22) holds if n is even and that (21) holds if n is odd. Then it follows for
(I7) that =2y U 2, if n is even and P =2, if n is odd.
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COROLLARY 2. Let the equation

(29) ym —f@t, y) =0

be sublinear. Suppose
(30) X“’ if(t, ct=3)dt = 0 forall ¢> 0.

Then, =P,y P, if n is even and 2 =2, if n is odd.
(ii) Let (29) be superlinear. Suppose (26) or (27) holds according as n
is odd or even. Then, =2, P, if nis even and P =2, if n is odd.

2. We now turn to the case where condition (5) is not satisfied. Recently,
Trench [5] has shown that any differential operator L, of the form (2) can be
rewritten as

1 4 1 4 .d 1 d -
(D L= 3,00 d Boor@ df " di B di Bo®)

where p; e C([a, o), (0, ©0)), 0<i<n, and
(32) S“’ Fhdt=c0 for 1<i<n-—1,

and that the representation is unique in the sense that the p(f), 0<i<n, are
determined up to positive multiplicative constants with product 1. From this
fact it follows that there exist principal systems for general L,, one of which is

(33) {Po(®), Po(DT 1(1),..., Po()J u=1(D)},

where J(t) are constructed from py(f), 1<i<n—1, according to the rule (11).
Here, by a principal system for L, we mean a set of n positive solutions {Y,(?),
..., Y, (1)} of the equation L,y=0 which satisfy

. Yl(t) = < . . <

imy @ =% l=i<isn
It is known that if {Y,(f),..., Y,(t)} and {¥ ,(®),..., Y (£)} are principal systems for
L,, then the limits

(34) lim Li(®)

<i<
lim 5% >0, 1<i<n,

exist and are finite. (See, for example, Lemma 3 of [5].)

On the basis of the above observation we define minimal and maximal
positive solutions of (1*) and (17) with general L, as follows. Given a principal
system {Y,(?),..., Y,()} of L,y=0, for n even [odd], we say that a positive solu-
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tion y(f) of (1*) [(17)] is minimal if y(f) is asymptotic to cY,(t) for some ¢>0,
that is, lim [y(¢)/Y;(£)]=c. A positive solution y(t) of (1*) is called maximal
t~> 00

if it is asymptotic to cY,(¢) for some ¢>0: lim [y(¢)/Y,(f)]=c.
t—00

All the theorems proven in the preceding section can easily be transferred to
the present situation.

THEOREM 1'. Let {Y(2),..., Y,(t)} be a principal system for L, and let
{Z,(%),..., Z,(t)} be a principal system for the operator L* defined by

1 d_ 1 d d 1 d

(35) L: = I’()T)—Z pl(t) 7;”. _d—t— Pn—l(t) 7 pn(t) )

A sufficient condition for (1*) and (17) to have a minimal solution is that

(36) Sw Z,(OF(t, cY,(1))dt < o0 for some ¢ > 0.

PrOOF. We rewrite L, in the form (31) satisfying (32). Then the operator
L¥* is represented as

1 d_1 d d 1 d -

Let {¥,(9),..., ¥,(¢)} stand for the principal system for L, given by (33), and let
{Z,®,..., Z,(t)} denote the set of functions

(37 {B0), PR, (D),..., B(OK,—1(D},

where K(t) are defined exactly as the functions without tilde. The set of func-
tions (37) is a principal system for L¥.
Theorem 1 states that a minimal positive solution of (1+) [(17)] exists if

Swﬁn_l(t)ﬁ,(t)F(t, cPo(t))dt < o© for some ¢ >0,
or if
(38) Swz,,(t)F(t, ¥ ()dt <o forsome c> 0.

Since the limits (34) and lim [Z(t)/Z(t)]>0, 1<i<n,exist and are finite, (38) is
t—=0
equivalent to (36).

THEOREM 2'. Equation (1*) has a maximal positive solution if

(39) Swzl(t)F(t, cY,(H))dt < o for some ¢ > 0.
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THEOREM 3'. Let f(t, y) be decreasing in y. Equation (1%) has no positive
solutions if and only if

(40) Sle(t) 1t cY(O)dt = 00 forall ¢> 0.

THEOREM 4'. Let f(t, y) be decreasing in y and suppose that (40) holds.
Then any positive solution of (17) grows faster than Y,(t) as t— 0.

THEOREM 5'. Let (1%) be sublinear. Suppose

.. Yo i) Z 11 (1)
4] 1 f k—1 k—1 O
(41) O Y O Zy kst

for k=1,3,...,n—=3 if n is even and for k=2, 4,...,n—3 if n is odd. Suppose
in addition

(42) S”zl(t) f(t, cY,_ ()dt =0 forall c¢>0.

Then, (1%) has no positive solution if n is even, and every positive solution y(t)
of (1) is such that lim [y(¢)/Y,(8)] exists and is finite if n is odd.
t—o00

Similarly, Theorems 6’, 7" and 8’ could be derived from Theorems 6, 7 and 8,
respectively.

ExampLE. Consider the operator L, defined by (2) in which
Swpi(t)dt <o for 1<i<n-—1

Define the functions j,(t) and ky(t) as follows:

[ jO(t) = 1’
Jit) = Smpi(s)ji—l(s)dss 1<i<n-1,
kO(t) = 1’
[ k() = S“’pn_,-(s)k.-_l(s)ds, l<i<n-1.

Then, as principal systems for L, and L} we can take

{Po(t)jn— l(t)3 pO(t)jn—z(t)s"" Po(t)}
and

{Pi(Okn-1(1), POk 2(D)s--.5 Pa(D)} 5

respectively.
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