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Introduction

Let (E, p, B, F) denote a Hurewicz fibration with projection p: E—»B and
fibre F. Then the set of all free fibre homotopy classes of free fibre homotopy
equivalences of E to itself forms a group under the multiplication defined by the
composition of maps. This group is called the group of fibre homotopy equiva-
lences of a Hurewicz fibration (E, p, B, F), and we denote it by Z(E).

The group Z(E) has been studied by several authors, e.g., [5], [6], [15],
[16], [19], [21], [24] and [33]. We notice that for any covering space, this is the
group of all covering transformations.

The purpose of this paper is to study the group .#(E) of a Hurewicz fibration
(E, p, S*, F) over the n-sphere S"(n=1), where the fibre F is assumed to be a
locally compact CW-complex. Let aut F denote the H-space of all free homotopy
equivalences of F to itself with the identity map 1: F—F as the base point. Then
we may consider a Hurewicz fibration

) (Ey, p, S", F) with characteristic map ken,_,(aut F),

because any fibration (E, p, S”, F) is freely fibre homotopy equivalent to such a
fibration by a classification theorem due to Stasheff [25, Th. 1.5-1.6] (for details,
see §§ 1-2).

Now let #(F)=mny(aut F) be the group of all free homotopy classes of free
homotopy equivalences of F to itself, and consider the action of #(F) on the
homotopy group n aut F) by the conjugation denoted by - (see §1). Then, by
using Gottlieb’s theorem ([S, Th. 1]), we can prove the following basic theorem
of this paper in Theorem 2.2 and Corollary 2.5:

THEOREM . For the group %(E,) of fibre homotopy equivalences of a
fibration (1), there holds the exact sequence

n,(aut F) 225, n(aut F) -S, 2(E) Lo #F(F) — 1,

where 0, is given by the Samelson product: 0,(x)=<k, x>, Fi(F)={a e F(F)|

a-k=k}, and J, is the homomorphism obtained by the restriction to the fibre F.
Especially, for the trivial fibration (F x S*, p, S", F) which is the one of

(1) with k=0, this sequence is the split exact sequence ,
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0 — m(aut F) -9, 2(FxS") Lo, #(F) — 1,

where G becomes the homorphism defined naturally and the action &(F) on
n,(aut F) is given by the conjugation.

Now we study the group Z(E,) in the case F =S4, i.e., for a spherical fibration
2) (E,, p, S", S%) with characteristic map ken,_,(aut S9)(n,q = 1),
by investigating in details the exact sequence
A3) n,(aut $9) %, 7 (aut S9) 9, 2(E,) Lo F(S9) — 1

in Theorem I for F=S49. To study the group m,(aut S?) in (3) and (2), consider
the evaluation map w: aut S-S, w(f)=f(*) (* is the base point), and set
aut, S2=w~!(x). Then, by G. W. Whitehead’s theorem ([35, Th. 3.2]), we have
the isomorphism

T: M4 4(S9) = nauty SN 2 1)
and the exact sequence (see (3.6))
@ s m (S lel, (S X, n(aut S1) 2%, m(S) s -

for i1, where ¢, is the homotopy class of 1: S9—S84, [, ] is the Whitehead
product, and i: aut, S7caut S? is the inclusion. In the case g=1, 3 or 7, the
canonical multiplication on S? gives us a cross-section t: S?7—aut S, t(x)(y)
=xy (x, y e §9), and (4) is the split exact sequence

. [0}
) 0 — 74 (S9) 5, m(aut S9) = 1(S9) — 0 (g =1,3,7)
Ix

for i=1 (see (3.10)).

By using these results, we study in §4 the homorphism d,=d{k, > in (3).
When q22, n,(aut S9) =2, ={i,1(n,)} (n,+1(S9)={n,}) by (4) and we have to
investigate the Samelson product

<k, iyt(n)y for kem,_,(autS9)(q = 2).

We can determine it in the case

(A) when n22, q=2 and k=i,t(k’) for some k’'em,,,_,(S9), for instance,
when 2=<n=<gq and k is any element (by (4)),
by Steer’s formula ([27, Th. 5.76]) on Samelson products in n,(aut,S?) and by
using several formulae in the homotopy groups of spheres; and in the case

(B) when n=2 and ¢=3 or 7, then any k can be represented as k=
ixt(k')+t4 (k") for some k'em,,,_,(S9) and k" € m,_(S9) by (5),



On the group of fibre homotopy equivalences 351

by the computations of certain Samelson products in 7,(SO(q+ 1)) based on the
results of R. Bott (cf. [13], [14]) and 1. M. James [14].1) In the case

(C) when n=1, then kemny(autS)=F(S9)=2Z,={4+1}, or when g=1,
we can determine O, by studying the action - of #(S9) on =,(aut S%) by con-
jugation in §5 and by noticing <k, x)=k-x—x when n=1. Thus we have the
following theorem in Theorems 4.3, 4.6, 4.8 and 4.11:

THEOREM II. The homomorphism 0,=<k, > (the Samelson product) in
(3) satisfies the following (A)-(C) in the above cases (A)—(C) respectively.

(A) Cky ixT(M9)) = ixT{kMpsq-1 + (=D)MZK" + [ng, ¢ 1Zha(K")},

where X is the suspension and h, is the generalization of the Hopf invariant due
to Hilton.

. ixT(k' N4 2 —N32ZK") + tu(n3Zk") if g=3,
(B) <k, ’*T(”q)> =1 . , , - 8n ny o
ixT{k'Nps6 =M ZK" + (V7 +87)Z8K"} + t,(n,2K") if q =1,
where n,5(S)=Z,+Z,+Z,={0'n14} +{V;} +{&s} (cf. [31, p. 61]).

(C) (i) If n=q=]1, then Coker 0,=Z, for k=—1, =Z for k=+1.
(i) Cokerd,=Z, ifn=1and q=2, =0ifn=2and q=1.

Furthermore, we can prove the following in Theorems 5.5, 5.4 and (5.3):

THEOREM III. The group F(SY)={axe F(S)|a-k=k}cF(S)=Z, in (3)
is given by the following (A)—~(C) in the above cases (A)—-(C) respectively.
Z if [¢,, ¢,JH(K') = O, especially if2 < n< q,
A FS) = [ ’ -

1 otherwise,

where H is the generalized Hopf invariant.

Z if (¢, ¢ OZK" =0 = 2k",
(B) Fsy=1" -
1 otherwise.
zZ, ifn=1o0rifn=z2,qg=1and k=0,
©) Fi(S9) = )
1 ifn=2,qg=1and k #0.

These two theorems together with (4) and (5) give some informations on
the short exact sequence

0— A—s Z(E) L F(S?) — 1 (A = Coker d))

1) The author is indebted to Professor S. Oka for the improvement of the original manuscript
in these computations; especially Theorem 4.8 for ¢=7 is due to him.
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induced from (3). We consider in § 6 some conditions which imply that J, is
a split epimorphism, and state in § 7 some results on the group Z(E,) for (E,,
p, S", S9) of (2) with n<q or g=1, 3, 7 by giving the groups A and F,(S9)
explicitly.

The author wishes to thank Professors M. Sugawara, S.Oka and T.
Matumoto for their careful reading of the manuscript and many helpful comments
and suggestions, and also Professors S. Sasao and H. Matsunaga for their kind
comments.

§1. Preliminaries

For any CW-complex B and a space Y, let L(B, Y) be the space of all (con-
tinuous) maps of B to Y with compact-open topology, and Ly(B, Y) be its subspace
consisting of all based maps.

We consider the evaluation map

(L1.1) w: L(S", Y) — Y, o(f) = f(*) (* denotes the base point).

As is well-known, this is a Hurewicz fibration with fibre Ly(S”, Y)=w"!(*), and
for any based map ke L,(S", Y), we have the homotopy exact sequence

(12) s T (V) 25 m(Lo(S™, Y), k) 225 m(L(S™, Y), k) 22 1Y) —s -,
Here we quote the following theorems:

THroREM 1.3 (G. W. Whitehead [35, Th. 3.2], [37, (3.1)]). In (1.2), there
exist isomorphisms

iy (Y) = [ST A 8", Y]o = m(Lo(S7, Y), *) = n(Lo(S", Y), K)(i 2 1),
and the composition =10, n;, (Y)-mn,,.(Y) is given by

1710(x) = —[k, x](the Whitehead proudct of ke n,(Y) and xen;, (Y)).

THEOREM 1.4 (S.T. Hu [10, Th. 2.2]). Ifi=1 in (1.2), then

Im {wy: n,(L(S", Y), k) — 7, (Y)} = {aen,(Y)|a-k = k},

where - denotes the usual action of n,(Y) on n,(Y).

By Theorem 1.3, (1.2) for i=1 turns out to the exact sequence
(12) s my (N s (1) B m(L(S™, Y), ) 285 1Y) — e

Now, we can classify Hurewicz fibrations by a theorem of J. Stasheff [25,
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Th. 1.5, 1.6] as follows: Given any locally compact CW-complex F, there
exists a universal Hurewicz fibration

(L.5) Pw: Ew — By, with fibre F,

and any Hurewicz fibration (E, p, B, F) over a CW-complex B is freely fibre
homotopy equivalent to the induced Hurewicz fibration

(1.5), (Ex, Pi» B, F) with classifying map k: B— B,
that is, we have the commutative diagram

E—E -*,E,
bbb
B—B X, B,

where the right square is a pull-back and the left upper map is a free fibre homo-
topy equivalence.

In this paper, we use the following theorem on the group .Z(E,) of fibre homo-
topy equivalences of the Hurewicz fibration (1.5),:

THeoREM 1.6 (D. H. Gottlieb [5, Th. 1). 2(E)%r,(L(B, B.), k).

The proof of this theorem is given by the following process: Let L(B, B, k)
denote the path component of L(B, B,) containing k, and L*(E,, E,, k) the
subspace of L(E,, E,) consisting of all fibre preserving maps f: E,—E,, with the
properties that f covers a map f: B—B, with feL(B, B,, k) and that the
restriction f|p;!(b): pi'(b)—px'(f(b)) (b€ B) to each fibre is a free homotopy
equivalence. Then we have a map

(1.7) ¢: L* = L*(Eky Ecx;a k) -_— L = L(Bv BOO’ k)’ ¢(i() =f;

and ®~1(k) is naturally homeomorphic to the space L**=L**(E,, E,) of all free
fibre homotopy equivalences of E, to itself with compact-open topology.
Gottlieb proved that @ satisfies the quasi-covering homotopy property, and
obtained the exact sequence

s QUL**) — QUL*) —> QL) -Ls @ (L**) — -

of the quasi-homotopy groups. Here Q(L)=mny(L) since B is a CW-complex.
Furthermore he proved that Q(L*)=0 for any i=0 and hence

(+) d: (LB, B, K)) = Qi (L™ (B, E), D) (i 2 1).
When i=1, Qo(L**(E,, E,))=2(E,) by definition, and we have the isomorphism
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d: n,(L(B, By, k)) ~ #(E,) in Theorem 1.6.
The fact that this is a homomorphism is shown by the following

(1.8) For aen(L(B, By,), k), take a representative a: Ix S~'—L(B, B,
k) with (I xS*=1U Ix*)=k and a lifting &: I x Si-1—L*(E,, E,, k) with ®&
=o and @1 xSy Ix*)=k. Then the image d(a) by d in (%) is represented
by &0 x Si=1: Si-1—@~1(k) = L**(E,, E,).

In the above proof, we consider the special case that B=# and k=#. Then
L(B, By, k)=B,, E,=F and L**(E,, E;)=aut F, where aut F is the H-space of
all free homotopy equivalences of F to itself with the identity map 1 as base
point, and (1.7) is the associated principal fibration

(1.9) &: L*(F, E,, *) — B,, with fibre aut F
of (1.5), and (%) is the isomorphism
(1.10) d: n(Bo) = m_(autF) for i=1 (cf.[5,p.49]).

Furthermore, by applying the same proof as that of [3, pp. 813-814] to the as-
sociated principal fibration (1.9), we can prove the following

LemMA 1.11. By the isomorphism d of (1.10), the Whitehead product
[,] in ne(Bs) corresponds to the Samelson product {,) in m,_,(autF), i.e.,

d([x, y]) = (=1)"d(x), d(y)> for xemn(By) and yemyBs).
Let a e aut F be a representative of an element o of the group
F(F) = ny(aut F)
of all free homotopy classes of free homotopy equivalences of F to itself. Let
c,caut F — aut F, ¢, (f) =afa”! for feautF,

be the conjugation by a. Then the induced homomorphism c,4: 7,(aut F, 1)
—mn,(aut F, aa~')=m,(aut F, 1) depends only on the homotopy class «. Hence
we have an action

(1.12) F(F)xmn,(aut F) — m(aut F), a- B = c,(B) (0 € F(F), pen,(aut F)).

We call this & (F)-action on n,(aut F) the action by conjugation.
Regarding a as an element of ny(aut F), we see immediately from the definition
of the Samelson product that

(1.13) (o, B) =a-p— B foraenyautF) = £(F), Pemn autF).
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§2. Fibrations over the spheres

Now we consider Hurewicz fibrations over the n-sphere S* (n=1). Here-
after, by identifying d~!(k) with k by the isomorphism d: n,(B,)==,_,(aut F) in
(1.10), we shall consider the Hurewicz fibration

2.1 (Ey, p, S", F) with characteristic map ke n,_,(aut F),

which is the fibration (E., p,, S", F) with classifying map k’'=d~1(k) e n,(Bs)
of (1.5)..
The following theorem is basic in our study.

THEOREM 2.2. For the group %(E,) of fibre homotopy equivalences of the
fibration (2.1), the sequence

n,(aut F) 2%, n(aut F) -, 2(E,) Ju, #(F) — 1,
is exact, where
0(x) = <k, x) (the Samelson product) for xen,(autF),
F(F) = {oe F(F)(=ny(aut F))|oa-k—k(={a, k)) =0 in m,_,(aut F)}
and J, is the homomorphism obtained by the restriction to the fibre F.

Proor. Consider the diagram (d(k")=k)

72(Bw) L5 7,1 (Boo) 55 7, (L(S", Bo), k') 2% 7,(Buo)
(2.3) dls dlz dls dJ;
n,(aut F) 2%, ,(aut F) ZL(E) 2o #(F)=n,(aut F),
where the upper sequence is the exact sequence (1.2) for the evaluation map
o: L(S", B,)> B, and d’s are the isomorphisms in Theorem 1.6 and (1.10).
Then the left square is commutative up to sign (—1)" by Lemma 1.11, and

so is the right one by [5, p. 52] (cf. [32]). Thus we have the desired exact
sequence by taking

G = di*'td-l

and by proving Im J,=%,(F). The last equality is proved as follows.
By the well-known formula [o, k'] = o’ -k'—k’ (¢’ € ,(B,)) and by the
commutativity of (2.3), Theorem 1.4 and Lemma 1.11, we have

ImJ, = d(Im w,) = {aeny(aut F)|<a, k> = 0}.
Therefore Im J,=%(F) by (1.13). qg.e.d.
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In the case k=0, we have d~!(k) =* by (1.8), and (2.1) is the trivial fibration
(F x S, p, S*, F) (p is the projection onto the second factor).
For this trivial fibration, we can define naturally the homomorphism
2.4) i: m(aut F) — Z(F x S")

as follows: For any aem,(autF), take a representative o: S"—aut F and its
adjoint map &: F x S"—F such that a(x, y)=a(y)(x). Then

(@, p): FxS" — Fx 8", (&, p)(x, y) =(&x, y),y) (xeF, yeS"),

is a fibre homotopy equivalence, and its free fibre homotopy class i(a)=(&, p) is
determined by the homotopy class a.

COROLLARY 2.5. For the trivial fibration (F x S", p, S", F), the homomor-
phism G in Theorem 2.2 is equal to i in (2.4) and the exact sequence turns out
to the split exact sequence

. J
0 — m(aut F) — @(F x S") —= F(F) — 1,
J
where j is a right inverse of J, defined by j(f)=fx‘1 for fe F(F) and the action
of #(F) on m,(aut F) is given by the conjugation - of (1.12).

Proor. Consider the homomorphism i,t in (2.3) where k=0 and k’==x.
Then i,t maps a: (I xS", I x S"U I x ¥)>(By, *) to b: (I, I)>(L(S", B,), *) such
that a is the adjoint map of b by Theorem 1.3. Consider the projection @ of (1.9)
and a lifting a: I x S">L*(F, E, *) with ®d=a and @(1 x S"UIx *)=%. Then
@ is the adjoint map of some b: I—L*(Fx S, E,, *) which satisfies #b=b
(P: L¥(F x S, E,,, *)>L(B, By, *) is the projection in (1.7) for k=%) and b(1)
=%, Thus by (1.8) and the definition of i in (2.4), we see that id(a)=d(b) =di,t(a).
Therefore G=i by the equality G=di,7d™! in the proof of Theorem 2.2, and we
have the desired exact sequence by Theorem 2.2.

Clearly j is a right inverse of J,. Thus the sequence is split, and we see
immediately by definition that the action of & (F) on =m,(aut F) is given by the
conjugation. g.e.d.

In the following sections, we study the case that the fibre F is a sphere.
Here we give a few examples where F is not a sphere.

EXAMPLE 2.6. Let F be an aspherical complex, and consider a fibration
(E, p, S", F) over S" (n=2) with fibre F. Then ¥(E) is a subgroup of % (F)
= Aut n,(F)/Inn n;(F). For the trivial fibration F x S"—S", we have % (F x S")
=ZF(F).
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ProoF. Since w(aut F)=0 for i=2 by [4, Th. 111.2], we have the desired
result by Theorem 2.2 and Corollary 2.5. qg.e.d.

EXAMPLE 2.7. Consider a fibration (E, p, S?, CP") over S? with fibre
CP" (the complex projective space) for even n. Then we have the exact sequence

0—Z,— PE)— Z,.
For the trivial fibration CP" x S2—S2, we have £(CP*x S*)=Z,+Z, (n: -even).

PrOOF. Since =,(aut CP*)=Z,,, and m,(aut CP")=Z, by [23, Prop. 1.2]
and F(CP")=Z,, we see the desired result by Theorem 2.2 and Corollary 2.5.
g.e.d.

REMARK 2.8. (i) Theorem 2.2 remains true if F is a k-space (see [34]).

(ii) If we use the Whitehead and Samelson products in a general form
(cf. [1]), then Theorem 2.2 still holds for fibrations over cogroup-like complexes
(e.g. suspended complexes).

§3. The group =;(aut S9)

For a spherical Hurewicz fibration
(3.1) (E,, p, S", S4) with characteristic map k e, _,(aut S9)
of (2.1) for F=S1%(q=1), we have the following exact sequence by Theorem 2.2:
(3.2) n,(aut S9) 2%, n(aut S9) %, 2(E) Jo, F(S9) — 1.

In the following sections, we shall investigate this sequence in details.
In this section, we study the group n,(aut S?) for i=1. Note that

3.3) no(aut S?) = F(S) =2Z, = {+1}.
Consider the evaluation fibration
(3.4 w: L(S9, S9) — S1 with fibre Ly(S9, S9).

Then the path component of L(S%, S9) (resp. Lo(S%, S9)) of the identity map 1
is contained in aut S7 (resp. aut, S7=(aut S9) N Ly(S9, S‘l)) Therefore the iso-
morphism 7 in Theorem 1.3 is the isomorphism

3.5 T: M4 (S9) = my(Lo(S9, S9), 1) = n(auty S9, 1),
and the exact sequence (1.2)’ is the exact sequence

(:6) o (81 Lo L,y (S9) BT, m(aut ST) 2%, 1 (ST —s -
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(¢4 is the homotopy class of 1: S9—S? and i: aut, S9caut S9).
By the exact sequence (3.6), we see immediately that

(3.7 ni(aut §9) = Z, = {i,t(n,)} for q=22  (cf. [17]),
ix (T4 (S9)) for isq-2,
ixt(M2g-1(SY{[ey €1} for i=q—1,

where 7, is the generator of m,, (59 (¢=2); in particular, we have used the
relation [¢,, ¢;]= +27,.
Furthermore,

(3'8) 7r,~(aut Sq) =

(3.9) when q=1, 3 or 7, the fibering (3.4) has a cross-section
t: S9 — aut S7 < L(S9, S9), t(x)(y) =xy for x, yeSI,
given by the canonical multiplication xy on S1. Thus (3.6) is split and
(3.10) mfaut S) = i, (w1 ,(S9)) + tu(m(SN)(E=1) for g=1,3,7.
T2 (SD{[ee m 1) + Z  for odd g,
ixT(2g(SD/{L¢g g1} Jor even g,

where the second summand Z for odd q is generated by t if q=1, 3,7 and by
the element o with w,(x)=2¢, otherwise.

Lemma 3.11.  m(aut S9) =

ProOF. By the exact sequence (3.6) for i=g, we have only to show that the
kernel of [¢,, ]: m(S9)—mn,,-,(S9) is O for even g, Z generated by ¢, for g=1, 3,
7, and Z generated by 2¢, for odd g#1, 3, 7. This fact is well-known by the
EPH-sequence (cf. [31]). g.e.d.

§4. 0,in (3.2)
In this section, we shall study the homomorphism
4.1) 0,: m,(aut 9 — m,(aut S9) (kem,_,(aut S7))
in (3.2), which is given by the Samelson product as follows:
4.1y O(x) = <k, x) for xemn,(autS1) (see Theorem 2.2).

We first consider the case n>2 and ¢=2. B. Steer [27] represented the
Samelson product on auty S? in terms of the Whitehead products on S? and the
Hilton-Hopf invariants by the following

THEOREM 4.2 (B. Steer [27, Th. 5.76]). Under the isomorphism



On the group of fibre homotopy equivalences 359

T: M (S9) = maut, SN =2 1) of (3.5),
the Samelson product {t(a), ©1(f)) for aem;,(S?) and Bemn;, (89 (i,j=1) is
given by
(20, W)Y = (= 1)2(B Bia—(~1)ia Zf+(~ 1 4DLB, ¢] T hy(@)
—(=1)U*a=D[a, ¢,] Z'hy(B)+ B, ¢,], ¢] Z7hs ()
—(=D¥[La, ¢, ¢] Z'h, (B},
where h, and h,, are generalizations of the Hopf-invariant due to Hilton.

Consider the inclusion map i: aut, S9cautS? and the homomorphism

iy Tt T4 (S9) = mauty S9) -, m(aut S9)(i = 1)
in (3.6). Then we have the following

THEOREM 4.3. Assume that q=2, n=2 and kelmi,, i.e., k=i,t(k') for
some k' € M, ,1(S%. (This assumption is valid for any kif 2<n=q by (3.6).)
Then the homomorphism 0y: my(aut S9)(=i,t(n,,(S9)))—>m,(aut S9) in (4.1)
(see (3.7)) is given by

ak(l*(”q)) = <k’ l*T("q)> = i*T{k’nn+q— 1 +(_ l)qank’+ ['74, ‘q]2h2(kl)} .

PrOOF. We first note that the Samelson product is natural under the H-map
i:autyS7caut S9. Thus by the assumption k=i,7(k’),

Olixt(ng)) = <k, ix7(ny)) = ixCT(K"), 1(0,)) -

Consider the equality in Theorem 4.2 for a=k' (i=n—1) and B=n,(j=1):

(*) k), (> = (= Dir{n,Zk' + (= 1)kt g— 1 + (= 17Ny, ¢ JZho(K)
—(=D"DLK, 12 hy(ng) + [ €], ¢, 12k, (K)
_(— l)n—l[[k" ‘q] ’ ‘q]zn_lhaz(nq)} .

The element h,, lies in m,,(S3772)=0. 3[[n,, ¢,], ¢,J=0 by [7, Th. 6.10].
Thus [[#n,, ¢,], ¢,]=0, because 2n,=0 for g=3 and [n,, ¢,]1=0 ([8, Cor. 2]).
For q=3,n,=2n,-, and hy(n))=0 (cf. [31, p. 22]). For g=2, [K', ¢;]1=0,
since all the Whitehead products vanish except [¢,, ¢,] in 7,(S?) by [8, Cor. 2].
These show that the last three terms in () vanish. Since 27,,,-; =0 and 2[#,,
¢,]=0, we can drop the signs of the coefficiens of the second and the third terms
in (¥). Thus we have the desired equality. g.e.d.

COROLLARY 4.4. In addition to the assumption k=i,t(k") in Theorem 4.3,
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assume that q=3 mod4 or q=2,6, or k'=Zk, for some k,em,,,_,(S97").
Then
O(ixt(n)) = ixT(K'Nlpsq—y + (= 1)n,ZK').

Furthermore, when q=3 or 7, 0,(iyt(n,))=0 if and only if k't ., =12k

Proor. By [9, Lemma 5.1] and [8, Cor. 2], [, ¢,1=0(q=2) if and only
if g=3 mod4 or g=2, 6. On the other hand, if k'=ZXk,, then hy(k')=h,(Zk,)
=0 (cf. [31, p. 22]). When g=3 or 7, iyt in (3.10) is monic. Thus the above
theorem implies the corollary. q.e.d.

Now we consider the case g=3 or 7. Then by (3.10),
Ty—1(aut S7) = iyt(my4,-1(S9)) + ty(m,-,(S9)) (direct sum),

where t: S9—aut S? is the cross-section given in (3.9). Thus any element ke
n,—,(aut S9) can be represented as

4.5) k = iyt(k’) + tu(k") (K €My q—1(S9), k" €,_(5).

Therefore by the well-known formula (k, #) = {i,t(k"), nD> +<{t.(k"), n) and by
Theorem 4.3, we can compute J,(n) for any k if we know

O,y () = <tk 1> (n = iyT(n,)).
We can compute it by the following two theorems.

THEOREM 4.6. Assume that q=3 and n=2. For any kemn,_,(aut S7), let
k'emn,,,(S? and k" e m,_ (S3) be elements in (4.5). Then

Oi(ix7(13)) = i T(K'Nys 2 — 3 ZK") + tu(n3ZK") .
Proor. By Corollary 4.4, it is sufficient to prove
O(ixt(n3)) = <k, ixt(n3)) = tu(n3Zk") if k = t.(k").
By the definition of the Samelson product,
Ctelk"), m) = <, MHZK" (0 = ixt(n3)).

Consider the natural inclusion j: SO(4)—aut S3. Then t=js by the definition of
t in (3.9) where s: S3-S0(4) is a cross-section. Consider the commutative

diagram
1:(SO(g—1)) -5 7,(SO0(q)) - n,(SO(g+1))
@ - b I’

Tirg-1(ST71) N it+q(S9) B, 7,(aut 59)
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for i=1 and q=3 (cf. [36, (9.1)]), where J is the J-homomorphism and the
upper i is the inclusion SO()c SO(I+1). Then n,=J(j,) for a generator j, of
n,(SO0Q2)=Z, and n=i,1(n3)=j«(js) (jo=1i%(j,)). Hence by the naturality of
the Samelson product, we have

<ty = sy Jwlia)> = JukSs ja -

Now consider the natural inclusion j': SU(2)=SO(4). Then s=j's: S3->SU(Q2)
< S0(4) and j,=jyix(j;) where i': SO2)=U(1)c SU(2), and therefore (s, j,>
=j4<s, i%(j2)>. On the other hand, by using a theorem of R. Bott, we can show
that

$sy in(j2)> = sny in my(SU(2)) (cf. [13, p. 167], [14, (19.1)]).
Thus <{t, 1) =jxix(sn3)=1t,(n3) and {t (k"), > =1t,(1:Zk") as desired. g.e.d.

For the elements of the homotopy groups of spheres, we use the notations
given in [31]. We note that n,5(S)=Z,+Z,+Z,={c"n14} +{¥,} + {&5}.

THEOREM 4.8 (S. Oka). Assume that q=7 and n=2. For any ke
n,-(aut S7), let k'emn,,¢S”) and k" emn,_,(S7) be elements in (4.5). Then

OinT(M7)) = ixT{k'Nys6 =11 ZK + (V7 +€7)Z%K"} + 14(n72K").

To prove this theorem, we need some lemmas. We have to compute the
Samelson product of a generator of n,(SO(8))=Z, and the element s e n,(SO(8))
represented by the cross-section

§: 87 — 50(8)’ S(X)(y) =Xy (X, yES7),

as in the proof of Theorem 4.6 for g=3.
Let y: S8—>S0(6) be a map such that p,(y)(p: SO(6)— S5 is the projection)
is a generator of n4(S%)=2Z,,={vs} (see [28], [29]). We note that

(S = Zo+Zg = {e} +{Ve}, 2m1a(S') = Zg = {v,,},
2M14(87) = Zg = {0"}, m,4(S5%) =Z; = {es},
m8(S'0) = Z,+Z, = {Vyo} + {210},
where ,m,(S") denotes the 2-primary component of m;(S").
LEMMA 4.9. Let J: n(SO(n))>n;,(S") be the J-homomorphism. Then
J(s) = 05 (e, 5(S®), the Hopf map), J(y) = V¢ +¢, mod {2V},
where the second equality is the one in the 2-primary component. |

Proof. The first equality is shown by definition. Consider the commuta-
tive diagram
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75(SO(6)) = mg(S°)
b
113(S%) = 7,4(5°) A, T14(SM),

where the lower sequence is exact (cf. [30, Cor. 3.6]). Then HJ(y)=ZX2%p,(y)=
28vs=H(v,) mod {2v,,} in the 2-primary component ([31, p. 53]). Therefore

(*) J(y) = vg+e, or v, mod{2Vs} in the 2-primary component.

On the other hand, consider the commutative diagram

7,(SO(8)) —%5 7,(S0(10)) 2L, 74(SO(10)) = Z, = {i4y} ([28])
4 14 y
”15(58) L’ "17(510) if_” ”18(510) = Zy+Z, = {V10} +{&10},

where i: SO(l)cSO(l+1). Then 2X2J(s)=2X2%03=0,, and o&,o0;7=Vi0+&10
([31, p. 54]). Thus
(%) Vio + &0€lmJ  (J: ng(SO(10)) — m,5(S'9)).

If J(y) =7V, in (), then J(iy)=2%J(y)=Z%V4=7V,,, because 2¥,,=0 and m,4(S'°)
has no odd torsion. This equlity and (**) imply that the right J in the above
diagram is surjective, which is a contradiction. Thus we see the second equality

in the lemma by (*). g.e.d.
Let j, be the generator of #,(SO(2))=Z. Then
n,(SO(r))=Z,={j,} for r=3, where j,=i}"2(j,) (i: SO()= SO(l+1)).
LEMMA 4.10. (s, jg) = idy + sn, (Jg = i§(J2) .

ProoF. Let Vg ,=S0(8)/SO(6) be the real Stiefel manifold, and consider
the commutative diagram

i Y4
S0(7) —é—» SO(8) — §7

s
J ko, |
SG _l___, V. —»p S7
c 8,2 «— ’

v

where p, p, and p’ are the projections, s is a cross-section of p and v is a cross-
section of p’ induced by the natural inclusion SU(4)=SO(8). Then by the split

, DPx
exact sequence 7,(S%) & m4(Vg ;) —— 74(S7), we have
Va

DiS =1 + €i'ng for some e€Z,.
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Therefore by using the relative Samelson product, we see that
P1#<5s jg) = P1x<Ss i3(J6)> = P15, joy (by [14, p. 98])
= v, jo» + &i'Ng, jo> = v, joy + &', jepn, (by [14, (15.11)])
=V, + &i'neh;  (by [14, (16.11)]) = pyu(sn7).

Thus by the exact sequence 15(SO(6)) —» 14(S0)) 2%, mg(Vs ,) and by noticing
n3(S0(6)=Z,,={y} and Im i2=Z, = {ily}, we have

(%) (s, jgy = sn; + xik(y)  for some xeZ,.

Now the image i2{s, jg> =i%{s, i%(j;)) in ng(SO(10)) is O by [14, p. 123], that is,
i3(sn1)+xi4(y)=0. Hence, by Lemma 4.9, we have 0=J(i(sn,)+xit(y))=
Z2J(sM 17+ xZ4J(P)=010N17+X(Fo+E10). But aion7=Vio+&0#0 by [3],
p- 54]. Thus x=1, and we have the desired result by (*). q.e.d.

Now we are ready to prove Theorem 4.8.
PrOOF OF THEOREM 4.8. By Corollary 4.4, it is sufficient to prove
Kk ixT(M9)) = ixT{(V7+&7)Z%K"} + 1, Zk") i k= 1,(K").
In the same way as the proof of Theorem 4.6, we have
Cte(K"), ixt(n7)) = <8, ixT(n7))ZK", ixt(n7) = jx(js) and t=s,
where j: SO(8)caut S7; and hence by Lemma 4.10,
<t ixt(17)) = juls, jg) = Jja(iZ() + tx(17) .

By the commutative diagram (4.7) for i=8 and ¢=7 and by Lemma 4.8, j,(i3y)=
—ixtZJ(y)=iyt(V; +&;), since 2m;5(S7)=0. Thus <k, ix©(n))={ist(n,+e;)+
te(MDIZK" =iy t{(V;+&7)Z8k"} + t,(n,Zk") as desired. g.e.d.

The following theorem is the results in the case n=1 or g=1.
THEOREM 4.11. (i) If n=q=1, then keny(aut SY)=2Z,={+1}, and
—2x if k= -1,
O(x) = 0 P for xemn,(autS') = Z.

Thus Coker0,=2, if k=—1, =Z if k=+1.
(ii) Ifn=1 and q=2, then 0, =0 and Coker d,=n,(aut S9)=2Z,.
(iii) Ifn=2 and q=1, then n,(aut S') = 0 and 0,=0.

PRrROOF. (iii) is seen by (3.10). Consider the case n=1. Then k € ny(aut S9)
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=F(SN=Z,={+1}. By (1.13), d(x)=k-x—x, where xen,(autS9)=Z or Z,
according to g=1 or ¢=2 by (3.10) or (3.7) respectively. Since the action k-
is an isomorphism, k-x=x and 0,=0 for g=2. We shall prove in Theorem 5.4(i)
that (—1)-x=—x for g=+1. This shows the result for n=¢g=1. g.e.d.

In conclusion of this section, we notice the following theorem on sphere
bundles over spheres. It is well-known that

4.12) a ﬁbratibn (Ey, p, S", S9) with characteristic map kemn,_ (aut S9)
of (3.1) is fibre homotopy equivalent to an SO(q+ 1)-bundle if and only if

kelmj, (j:SO(g+1) < aut S9).

THEOREM 4.13.  For any sphere bundle (E,, p, S", S9) with kelmj, and
q=2, we have

0y {0(ix7(ny))} = nZwy(k) + [n, ¢ JZH(w4(K)),

where w: aut S1—>S7 is the restriction of the evaluation map w in (3.4) and H
is the generalized Hopf invariant.

PrOOF. We have the equality by taking y=w,(k) in [14, (16.8)]. q.e.d.

§5. (59 in (3.2)
In this section, se shall study the group
F (8N (=ImJy) = {xe F(S)|a-k =k} (kemn,_ (autS9))

in (3.2), where - is the action by conjugation of (1.12) (see Theorem 2.2).
By noticing #(S7)=Z,={+ 1}, we have immediately
Z, if (=1)-k=k,

(5.1) FiS9) =
1 otherwise.

We note that — 1 € #(S9) is represented by a map of degree —1. Then by the
definition of the action - given in (1.12), we see the following

(5.2) For the adjoint map k: S1x S""'—>S9 of a representative of ke
7, (aut S9), fR(f~1x1): S1x S+t LIx1, Sax §n=1 _k, 81 L, Sa(f isa map
of degree —1) is the adjoint map of a representative of (—1)-k=kemn,_,(aut S7).

For k € ny(aut S7) = F#(S), this shows that (—1)-k=k. Therefore
(5.3) ifn=1, then #(S9) =2, for any k € ny(aut S9).

"~ Now, we assume n=2 and consider the case that S9 is an H-space.
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THEOREM 5.4. Assume that n=2 and q=1,3 or 7, and take any element
k = iyt(k’) + to(k") € m,_ (aut S9) (k' € 1,4 4 1(S9), k" € m,_1(S9)

(see the direct sum decomposition of (3.10)). Then we have the following (i)
and (ii).

(M) (=1 -k = ixt(k" + (=1)"Ceq, ¢DZK") — to(K"),

where {t,, ¢,>=0, and {¢3, ¢;)=w and (¢4, t;)=7), are the generators of
7n6(S3)=2Z,, and 7, 4(S7)=Z,,,, respectively ([12, p. 175]).

Z,  if (e eI =0 =2k,

1 otherwise.

(ii) FS9) =

PrROOF. (ii) is an immediate consequence of (i) and (5.1). We shall prove
(i). Since the action - is linear, it is sufficient to prove (i) for the case k'=0 or
k" =0.

(a) The case k’=0: Consider fk(f~*x 1) in (5.2). Then the equality k=
t.(k”) and (3.9) imply that k is given by k(x, y)=(k"(y))-x (the canonical multi-
plication on S9) for xe S? and ye S*~!. We can take f to be an inversion map
with respect to the multiplication on S9. Thus

SR x D(x, p) = x(K"(0)~" = (K"()~"'x[x7", K"()](x €S9, ye S*),

where [ , ] denotes the commutator in S9.

If g=1, then the commutator vanishes, and fk(f~!x1) maps (x, y) to
(k"(»))~'x. Thus fk(f~'x 1) is the adjoint map of a representative of t,(—k”)
= —t,(k"), because the group structures of m,(S?) coincides with the one given
by the multiplication on S9. Therefore (— 1)-1,(k")= —t,(k") by (5.2).

If g =3, then we have to add one more term represented by the map

g: S"1oaut 83, g(y)(x) =[x, k()] = o(f A D(1 AK")n(x, y) (x€S3, yeS1),

where ©: S3x S"~1—>S3 A S"! is the projection and w={¢3, ¢3), by the definition
of the Samelson product. Since w(fAl)=—w and 1AKk"=(—-1)""123k", g
represents i, t((—1)"®wZ3k”) and hence (—1)-1,(k")=(— )", t(wZ3k")— t(k").

When g=7, we need the associator as well as the commutator. But any
subalgebra of the Cayley algebra generated by two elements is associative (cf.
[26, p. 108]). Therefore we may consider in the same way as in the case ¢=3,
and we obtain the desired equality.

(b) The case k”"=0: Then (—1)-i,t(k’) is i t(fk'(f~' A 1)) by (5.2). . Since
the degree of f~1 A1 is —1 and f,(x)= —x for xen(S9), fk'(f~! A 1) is homotopic
to k’. Therefore (—1)-iyt(k")=i4t(k’). qg.e.d.
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The following theorem holds under the assumption of Theorem 4.3:

THEOREM 5.5. Assume that n=2 and k=i,t(k’) for some k', where i,t:
Mysq-1(8D >, (aut §9) is the homomorphism in (3.6); for instance, assume
2=n=q. Then

() (=Dk=k—iyt([e,, ¢, JH(K")) (H is the generalized Hopf invariant).
Especially, if 2<n<q, then (—1)-k=k.
Z, if [e, ¢ JH(K') =0, especiallyif 2=<n<gq,

(i) FSY =
1 otherwise.

PrOOF. It is sufficient to prove (i) by (5.1). Since k=i,t(k’), (5.2) shows
that
(=1 -k =i t{(— )k ((—e) A D} = —iyt((—¢k").
Now (—¢)k'=—k'+[¢,, ¢,JH(k") by [7, Th. 6.7 and Th. 6.9]. Thus we have

the desired equality. If n<g, then H(k')=0 by definition. If n=gq, then H(k') e
M3,-1(S2971) and iyt([¢,, ¢,])=0by (3.6). Thus (—1)-k=kifn<qg. gq.e.d.

§6. The case that J, in (3.2) is split
In this section, we shall study some cases that the epimorphism
(6.1) Jo: L(E) — F(S?) in (3.2),

obtained by the restriction to the fibre S? (see Theorem 2.2), is split. But in
these cases, we can not determine the group extension in the short exact sequence
0-Coker 0, -% Z(E,) L% #,(S7)—1 induced from (3.2) except for the trivial
fibration (see Corollary 2.5), because the homomorphism G can not be given

explicitly for us.
Let (E,, p, S", S9) (ke m,_,(aut S7)) be a Hurewicz fibration of (3.1). Then
J. Stasheff [25, Prop. 1] (cf. [20]) proved that E, has the homotopy type of

S1y g(D"x S9)(k: S"~1 x S — S is the adjoint map of k).
More precisely, consider the map
(6.2) p':S7UxD"xS9) —> S1 with p’|S? = x and p’|D"x S? = yp,,

where p,: D" x S4— D" is the projection and x: D"—S" is the map collapsing the
boundary S"~! of D" to *. Then

(6.3) there are suitable maps a and B in the diagram
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a

E, — E} = S9U (D" x S9)

b7l

Sn Sﬂ

with p'a=p, pf=p’ and a|S1=1=p|S1 on Si9=p~1(*)=p'~!(*), and there are
homotopies K,: E,—E, and H,: E,—E; with Ko=8«, K,=1, pK,=p and H,
=ap, H,=1, p'H,=p’.

LEMMA 6.4. Consider the diagram (n=2, q=1)

Sn1x §a1Xf, gn-15 ga
(6.5) l/z l/z
!

S1 L 8§19,

where f is a map of degree —1 and k is the adjoint map of k. Then F(S9)
in (6.1) is Z, if and only if (6.5) is homotopy commutative. Moreover, if we
can take k and f so that (6.5) is strictly commutative, then J,: L(E;)—>Z(S9)
of (6.1) is a split epimorphism.

Proor. The first half is proved by (5.1) and (5.2). We prove the second
half. Assume that (6.5) is strictly commutative. Then we can define a map

T: Ei(=S1U(D"xS%) — E;, by T|D"xS?1=1xf, T|S?1={,
which satisfies p'T=p’ for p’ in (6.2). Thus we have a fibre map
y=BTa: E, %> E; T, E, £, E,
by using the maps « and f in (6.3). Then «|S?=f and y2: E,—E, is fibre homo-
topic to the identity map. Thus we obtain a homomorphism.
s: F(89) —> Z(E,), defined by s(—1) =1,
which is a right inverse of J,. g.e.d.
By the above lemma, we have the following

THEOREM 6.6. F(SY)=Z, and Jy: ZL(E,)—>F(S?) of (6.1) is a split epimor-
phism, if one of the following conditions (1)—(3) holds:

(1) kelmZX,, where Z,:m,_,(autS9 )-mx,_,(autS?) is the induced
homomorphism of the suspension map X: aut S9-!—aut S4.

(2) (E, p, S", S9) is fibre homotopy equivalent to an SO(q+1)-bundle,
iie., kelm j,, where j: SO(q+1)caut S? (¢f. (4.12)), and in addition q is even
orn<q.
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(3) (E,, p, S", S9) is fibre homotopy equivalent to an SO(q)-bundle, i.e.,
kelm (jyiy), where i: SO(q)=SO(q+1), which is equivalent to ke lIm (i tJ),
where m,_,(SO(q)) > m,4,—,(S9) =% 7,_(aut S9) are the J-homomorphism
and the homomorphism in (3.6).

Proor. When kelm X, (6.5) is strictly commutative by taking f: S9-S5
with f(xo,..., Xg— 1, X)) =(Xq,..0, X4—y, —X,). When kelm j, and q is even, (6.5)
is so by taking kemn,_,(SO(q+1)) and the antipodal map f with f(x)= —x.
Thus we have the theorem for these cases by Lemma 6.4. If n<gq, then n,_,(5%
=0 and iy: 7, ,(SO(q))—m,_,(SO(q+1)) is epic. Thus, if keImj, and n=gq,
then k € Im (j,i,) and (3) holds. Since Im (j,i,)=ImZ,, (3) implies (1). The
equality j,i,=i,7J is seen by the right commutative square in (4.7). q.e.d.

For the J-homomorphism in (3) of the above theorem, we notice the following
lemma which are used in Examples 7.12-17:

LEMMA 6.7. The J-homomorphism J: m,_,(SO(q))-n,.,,(S?) is epic,
if n=4,5 or 7 when q=3, and if n=8 when q=1.

PrOOF. The result for the case n=q+1 is shown in [12, p. 176] and it
implies the results for the other cases. qg.e.d.

§7. The group #(E,) for spherical fibrations over spheres

In this section, we shall study the group Z(E,) of fibre homotopy equivalences
of a Hurewicz fibration

(7.1 (Ei, p, S, S9) with characteristic map kemn,_,(aut S?%)(n, g=1)

of (3.1), by using the results obtained in the previous sections.
Consider the short exact sequence

(7.2) 0—A—\ P(E) Lo F(S9) — |
induced from the exact sequence (3.2), where
A = Coker ¢, = =n,(aut S9)/0,(r,(aut $9)).

Then the results in this section are stated by giving the groups 4 and %,(S9)
and by indicating the case that (7.2) is split.
In the first place, we consider the special case that n=1 or g=1.

EXAMPLE 7.3. ng(aut S9)=Z,, and there are two types of S9-fibrations
over S': the trivial one (S1x S', p, S, S4) and the non-trivial one (U, p, S!,
S9), where the generalized Klein bottle U, is the quotient space of Sx I obatined
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by identifying ((xg, X1...» X), 1) with (=X, Xy,..., X,), 0).

EXAMPLE 7.4. m,_,(aut SY)=t,(n,_(SY) is Z if n=2 and 0 if n>2 (see
(3.10)), and there are countable types of S'-fibrations over S? besides the trivial
one S'x S?—82, e.g., the Hopf bundle S3—-S? or SO(3)-S2, and any S!'-
fibration over S"(n>?2) is fibre homotopy equivalent to the trivial one S'x S"

— S,
THEOREM 7.5. (i) Ifn=1and q=1, then

D(Z) if q=1(015D,

2WU) =2,+2,, L(§1x S =
’ T Z,+2Z, if 922,

where D(Z) is the split extension Z—D(Z)—Z, with Z, acting on Z as inversion.
(ii) Ifn=2and q=1, then #(E,)=0 for k#0 and £(S'x S?)=2Z,.
(iti) Ifn=3 and q=1, then L(S'xS")=Z,.

Proor. (i) For the trivial fibration S9x St over S!, (7.1) is a split exact
sequence

zZz if g=1,

0->A-> LS1%xS)—>Z,—> 1, where A= n(autS?) = _
Z, if g=2,

by Theorem 4.11, (5.3) and Corollary 2.5, and Z, acts on A=t,(n(S))=Z if
g=1 as (—1)-n=—n by Theorem 54 (i), and on A=2Z, if g=2 trivially by
Theorem 5.5 (i). Thus we see the results for #(S?x S!). For the non-trivial
fibration U,—S!', (7.2) is 0-Z,»2%(U,)—Z,—1 by Theorem 4.11 and (5.3).
The map f: SIxI-S1x1, f((xg, X15..., Xg), )=((—Xg, Xy,..., X,), ), induces a
fibre map g: U,—»U, such that g2=1 and Jo(g)=—1. Thus L(U)=Z,+2Z,.
The other results are shown by Theorems 4.11 (iii) and 5.4 (ii). q.e.d.

THEOREM 7.6. Assume that 2<n=<gq.
(1) Then (7.2) is the exact sequence

0_—')A—>$(Ek)_*22_-’],

where
T +4(59) if nq-2,
. T2q-1(SD/{[ey 01} if n=q-1,
(m2(SDRLep nd) +Z  if n=gq isodd,
T2(SD/{L¢g 1,1} if n=gq iseven#4,S8.

(ii) If E, is a S%-bundle over S", then the above sequence is split.
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(iii) In particular, for the trivial fibration E,=S4x S* over S",
L(S1xS") = A+ Z, (direct sum) if n<q or n=gq iseven # 4, 8.
Proor. (i) Since n<gq, the second equality in (3.6) implies
k = izt(k) for some k'em,,,_,(59).

Thus £(S9) in (7.2) is Z, by Theorem 5.5 (ii). If we show that d,=0, then
A=mr,(aut S9) is given by (3.8) and Lemma 3.11 as desired.

We prove that 0,=0 for n<q—1 or n=gq separately.

(@) The case n<q—1: By the Freudenthal suspension theorem, k’'=ZXk,
for some k, em,,,_,(S%"!). Then by Corollary 4.4 and [2, Prop.],

(* (= D90(ix1(n9)) = ixt(Zk, 29730, — 29720, 12k,)
= iyt{[¢, ¢ JZ*H(k)29*"3H(ny)} = ixt{[c,, ¢, J22H(k,)} .

If n<q—2, then k, is also a suspension and H(k,)=0. If n=q—1, then Z2H(k,)
€My, 1(5%971) and hence Oy(i,t(n,)) is a multiple of i,t[¢,, ¢,], which is 0 by
(3.6). Thus ¢,=0 by (3.7).

(b) The case n=qg=2 and gq#4, 8: Assume g#2 in addition. Then,
in the exact sequence m,,_,(S971)-Zom,,_ (S9)-Hsmy,—1(S297Y), H=0 if g is odd
and Im H={2¢,,_,}={[¢, ¢,1} if q is even (cf. [31]). Therefore by this exact
sequence and (3.6), we may replace k' € (i,7)"1(k) so that k'=2Xk, for some k, €
Tye-2(S97Y). Thus, in the same way as above, we have (x), where H(k,)e
T2q-2(S2973) and [¢,, ¢ IM24-1=[¢, n,]. Thus, 0, (ix(n,)) is a multiple of i,t[¢,,
n,], which is 0 by (3.6).

On the other hand, if n=g=2, then kern,(aut S?)=Z,={i,t(n,)} by (3.7),
and we may take k'=0 or 7n,. Thus the equality 0,(i,t(n,))=ist(k'n;+n,Zk")
of Corollary 4.4 implies d,=0 as desired.

(ii) is shown in Theorem 6.6. (iii) follows from Corollary 2.5 and Theorem
5.5 (i), since m,(aut S9)=Imi,t if n<q or n=gq is even #4, 8. g.e.d.

EXAMPLE 7.7. If n=2 and q=2, then n,(aut S9)=Z,, and there are two
types of S%-fibrations over S?; and

LE)=Z,+Z, for any k.
PrOOF. By Theorem 7.6 (i), the following sequence is exact:
00— 7, 2(8Y) — ZL(E) — Z, —> 1.

Now m,.,(S?9)=Z,, and this is split for any k by Theorem 7.6 (ii), since jy:
7,(SO(q+1))—-n,(aut S?) is an isomorphism by [35, (5.2)] and (4.7). Hence
we have the desired result. q.e.d.
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THEOREM 7.8. Let (E,, p, S", S1)(q=2) be an SO(q+1)-bundle such that
the structure group is reduced to SO(q—2), i.e., kemn,_,(aut S9) belongs to the
image of m,_,(SO(q—2)) under the homomorphism induced by the inclusion
S0(q—2)=S0(q+1)caut S%. Then we have the split exact sequence

0 — myautS9) G, 2(E) Lz, 1.
ProoOF. Consider the commutative diagram (cf. [36, (9.1)])

7,-1(SO(g—2)) %, 7,_,(S0(q)) % 7,_,(SO(g+1))

] ’ 2
Rnrg-a(S972) —2 s Mg (S9) —25 s 7, (aut §9).

Then k €Im (i,t22) by the assumption. Therefore, we see that d,=0 in the same
way as (a) for n<q—2 in the proof of Theorem 7.6 (i). Thus we have the desired
split exact sequence by (7.2) and Theorem 6.6. g.e.d.

REMARK 7.9. Let (E, p, B, F) be any Hurewicz fibration. Then
(*) pE: L(E, E) I L(E, B)s I’E(f) = pf’ :

is a Hurewicz fibration with fibre (pE)~'(p)=L'(E, E), which is the space of all
fibre preserving maps of E to itself. Therefore we have the homotopy exact
sequence

-+ = My (L(E, B), p) - n(L'(E, E), 1) > n(L(E, E), 1) > n(L(E, B), p) > --.

If E is a k-space, then L (E)(resp. #(E)) is the group of consisting of invertible
elements of no(L'(E, E), 1) (resp. no(L(E, E), 1), and the above sequence is trans-
formed into the exact sequence

(1.10) 7,(L(E, E), 1) - n,(L(E, B), p) - L(E) -, #(E) - no(L(E, B), p),

where O is shown to be a homomorphism (cf. [S, p. 49]) and v is the homomor-
phism defined naturally by sending fibre homotopy classes to their homotopy
classes. S. Sasao [24] has studied (7.10) for sphere bundles over spheres with
some conditions, and obtained a generalization of Theorem 7.6 for n<q—2.

Now, we consider the case that g=3 or 7.
THEOREM 7.11. Assume q=3 or 7 and n=2, and by (3.10), set
k = iyu(k’) + tu(k") em,_(aut SY (k' € m,,,- (S, k" €7, _4(59)).

(i) Then the short exact sequence
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0 A —> L(E) — F(S9) —> 1 (A = Coker 9,)
of (1.2) is givén as follows: ‘
A = (T4 (SN + 1 (SN)/A',
) {(K'ftps2 =032k, n3Zk")} = Z, or O if q9=3,
B [ {(K s 6= 172K +(V +£7)2°K", 0, Zk")} = Z, or O if q=T;

Z, if {tpepZ%k" =0 and 2k" =0,
grk(Sq)={ 2 o b

1 otherwise.

(ii) If Ey is a S9-bundle over S™ with structure group SO(q), then the above

sequence is split.
_(iii) . For the trivial fibration S?xS" over S", we have the split exact

sequence
0 — 7,4 (SN +7,(S) — L(SIxS") — Z, —> 1 (g =30r7),
where Z, acts on m,, (S +1,(S9) as
(=D-(a, b) = (a+(=1)"¢, ¢,>Z9b, —b) (a €7, (S9), bem,(S).

Proor. The results follow immediately from -(3.10), Theorems 4.6, 4.8,
(5.4), (6.6) and Corollary 2.5. qg.e.d.

In the rest of this section, we give some examples of this theorem, which are
seen by the routine calculations by using the results on the homotopy groups of
spheres given in Toda’s book [31].

EXAMPLE 7.12 (the case q=3 and n=4). In this case,
k = iyt(k') + tu(k") (k'€ ne(S?) = Z,, = {0}, k" en3(S?) = Z = {¢3});

and the Hopf bundle S7—S*(k'=0, k" =¢3) (¢f. [26]) and SO(5)/SO(3)—S* (k' =
0, k"=2¢5) (¢f. [11]) are typical examples. Then

Z,, if k" #0 and k' is odd, or k" is odd,
HL(E)=(Z,+Z, if k" #0 and k' are even, or k" =0 and k' is odd,
D, if k"=k' =0, ie, k=0,

(D, is the dihedral group of order 8), and we have a split exact sequence
0 Z,+Z, —> P(E) —>Z, —> | otherwise.

ProoF. Consider Theorem 7.11 for g=3.and n=4. Then 7,(5%)+m,(S3)=
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Zy+Z,={vne}+{ns}, and nyZk'=Z(n,k')=0 and n§: ne(S*)—n,(S%) is epic
([31, p. 43]). Thus

A=2,+Z, if k' and k" are even, = Z, otherwise.

Furthermore £, (S9)=1 if k"#0, =Z, otherwise. If k”"=0 then k=i,t(k") and
J: n3(SO(3))—me(S3)(2 k') is epic by Lemma 6.7; hence the sequence 0—»A—
PL(E)—Z,—1 is split by (4.7) and Theorem 7.11 (ii). If k=0, then the splitting
action of 0—»Z,+2Z,->%(Ey))—Z,—1 in Theorem 7.11 (iii) is given by (—1)-
(a, by=(a+b, —b)=(a+b, b), since {¢3, ¢3)23N;=wne=v'ns([31, p. 42]); thus
Y(Ey)=D,. qg.e.d.

EXAMPLE 7.13 (the case q=3 and n=5). In this case,
k = iyt(k’) + (k") (K" € 1o(S?) = Z, = {v'ne}, K" € mi(S?) = Z; = {n3});

and SU(3)- S5 (k' =0, k"=n3) (¢f. [11]) is a typical example. Then

Z, if k" +#0,
YL(E) =(Z,+Z, if k=0 and k' #0,
D, if k"=k=0, ie,k=0.

PrROOF. By using the results in [31, pp. 43-45], we have the desired result
in the same way as the above proof. ‘ q.e.d.

EXAMPLE 7.14 (the case q=3 and n=17). In this case,
k = i,t(k’) + t, (k") (k' €no(S3) = Z, k" eng(S3) = Z,, = {w});

and H-spaces of type (3, 7) are obtained in the case k'=0, k"=nw (n=0,1, 3,
4, 5) (cf. [18]), in particular, Sp(2)—S? (k'=0, k"=w) is a typical example.
Then

LE)=Zys+Zy if K #£0,60, =Zs+2Z,+Z, if k=0,
and we have the exact sequence

0— Zs+2,— L(E)—Z, — 1 if K'=0 or 6w,
which is split if k'=0 or k" =0.

PrROOF. For k'=0 and k" =6w, the sequence is split by the same consider-
ation of [22, Lemma 3.4]. Take T(x, t, y)=(x, t, — ), T(z)=—2(y, z€ S?) in
§6. q.e.d.

EXAMPLE 7.15 (the case q=T7 and n=8). In this case,
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k = iyt(k’) + tu(k") (k' €m14(S7) = Zy30 = {47}, k" €no(S7) = Z = {¢4}) ;

and the Hopf bundle S'5—S8 (k' =0, k" =¢4)(cf. [26]) and SO(9)/SO(7)— S8 (k' =
0, k" =2¢,) (¢f. [11]) are typical examples. Then :

Z,4+2,+2Z2,+2Z, if k" # 0 and k' are even,
L(E)=(Z,+Z,+2Z, if k" %0 iseven and k' is odd, or k" is odd,
Z,+Z,+D, if k=0,
and we have the split exact sequences
0-2,+2,+2,+2Z2, > L(E)—>Z, -1 if k" =0 and k' is even,
0->2Z,+Z,+2, > L(EY)—>2Z,- 1 if " =0 and k' is odd.

Proor. If k=0, then the splitting action of 0~Z,+Z,+Z,+Z,— L(Ey)—
Z,—1 in Theorem 7.11 (iii) is given by (—1)-(a, b, ¢, d)=(a, b, ¢, a+d), since
<£7, ‘7)27”7=OJ"14; thus g(E0)=Zz+Zz+D4. q. e. d.

EXAMPLE 7.16 (the case q=T7 and n=9). In this case
k = iyt(k)+ 1K) (K €1, 5(ST) = Zy+Z, 425 = {a'nya} + {74} + {e},
k" eng(S7) = Z, = {ns});
and U(5)/U(3)-S® (k'=0, k"=n,) (c¢f. [11]) is a typical example. Then
() = Z,+Z,+2,+2Z, lf k" # 0,
Zy+Z,+Z,+D, if k=0,
and we have the exact sequences
05 Z,+Z,+Z2,+Z,+2Z, > L(E) > Z,—» 1 if k" =0 and k' =V, or &,
05 Z,+Z,+2,+2Z, > L(E) > Z,— | if K" =0 and k' = o'ny4,
which is split if k"=0 and k'=0'n,.

Proor. The result for the trivial case is seen similarly to the proof of
Example 7.15. q.e.d.

EXAMPLE 7.17 (the case q=7 and n=11). In this case,
k = iyt(k') +to(k") (K" € m(7(S7) = Zya+Zy, k" €11o(S7) = Z34) 3

and Sp(3)/Sp(1)—S! is a typical example (k'=0, k" =v,) (cf. [11]). Then
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Zsoa if k"#0 mod8,

L(E) =( Zsos+Z, if =0 mod8 and k" #0,
ZsostZy+2, if k=0,

and we have the exact sequence

0— Zsou+Z, — Z(E,) —> Z, —> 1 otherwise,

which is split if k" =0 and k'=0 mod 3.

Proor. The sequence is split by Theorem 7.11 (ii) if k=0 and k’=0 mod 3.

For the trivial case, the action is trivial by Theorem 7.11 (iii), since n,,(S7)=0.
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