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Introduction

Let (£, p, B, F) denote a Hurewicz fibration with projection p\ E-+B and

fibre F. Then the set of all free fibre homotopy classes of free fibre homotopy

equivalences of E to itself forms a group under the multiplication defined by the

composition of maps. This group is called the group of fibre homotopy equiva-

lences of a Hurewicz fibration (£, p, B, F)9 and we denote it by &(E).

The group <?(E) has been studied by several authors, e.g., [5], [6], [15],

[16], [19], [21], [24] and [33]. We notice that for any covering space, this is the

group of all covering transformations.

The purpose of this paper is to study the group JS? (£) of a Hurewicz fibration

(£, p, S", F) over the n-sphere S " ( n ^ l ) , where the fibre F is assumed to be a

locally compact C W-complex. Let aut F denote the /f-space of all free homotopy

equivalences of F to itself with the identity map 1: F-+F as the base point. Then

we may consider a Hurewicz fibration

(1) (Ek, p, Sn, F) with characteristic map keπn-^aut F),

because any fibration (E, p, S", F) is freely fibre homotopy equivalent to such a

fibration by a classification theorem due to Stasheff [25, Th. 1.5-1.6] (for details,

see §§ 1-2).

Now let ̂ (F) = πo(aut F) be the group of all free homotopy classes of free

homotopy equivalences of F to itself, and consider the action of ^(F) on the

homotopy group π^autF) by the conjugation denoted by (see §1). Then, by

using Gottlieb's theorem ([5, Th. 1]), we can prove the following basic theorem

of this paper in Theorem 2.2 and Corollary 2.5:

THEOREM I. For the group &(Ek) of fibre homotopy equivalences of a

fibration (1), there holds the exact sequence

π i (aut F) Ju π,,(aut F) - ^ > <?(Ek) Ju &k{F) > 1,

where dk is given by the Samelson product: dk(x) = (k, χ ) 5 ^ ( F ) = {α6 &{F)\

α fc = /c}, and Jo is the homomorphism obtained by the restriction to the fibre F.

Especially, for the trivial fibration (FxSn, p, Sn, F) which is the one of

(1) with /c = 0, this sequence is the split exact sequence
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0 > ππ(aut F) - ^ &{F x S") - ^

where G becomes the homorphism defined naturally and the action ^(F) on

πΠ(autF) is given by the conjugation.

Now we study the group &(Ek) in the case F = Sq

9 i.e., for a spherical fibration

(2) (£fc, p, Sn, Sq) with characteristic map k e πn_ j(aut Sq)(n, q ^ 1),

by investigating in details the exact sequence

(3) πx(aut Sq) - ^ πΠ(aut S«) - £ A

in Theorem I for F = Sq. To study the group π^autS9) in (3) and (2), consider

the evaluation map ω: autS«->S«, ω(/)=/(*) (* is the base point), and set

aut0 5« = ω"1(*). Then, by G. W. Whitehead's theorem ([35, Th. 3.2]), we have

the isomorphism

and the exact sequence (see (3.6))

(4) ... _ * πι+1(S*)^* πί+q(Sq) J*L> π;(aut S") Jϊ*

for ί^l, where cq is the homotopy class of 1: Sq-+Sq, [ , ] is the Whitehead
product, and i: aut0 S

qc= aut Sq is the inclusion. In the case g = l, 3 or 7, the
canonical multiplication on Sq gives us a cross-section t: S*-»aut Sq, t(x)(y)
= xy (x, y e S«), and (4) is the split exact sequence

(5) 0 — > πi+q(Sq) -i*I> π<(aut S«) ^ = i nt(Sq) > 0 (q = 1, 3, 7)
/*

for i ^ l (see (3.10)).
By using these results, we study in §4 the homorphism 3fc = </c, > in (3).

When q^29 πί(eiUtSq) = Z2=;{i*τ(ηq)}(πq+ί(Sq) = {ηq}) by (4) and we have to
investigate the Samelson product

<k, i*<ηq)> for keπΛ_t(aut Sq)(q ^ 2).

We can determine it in the case

(A) when n^.2, q^.2 and /c = ίJ|cτ(fc;) for some I c ' e π ^ ^ ^ ) , for instance,
when 2^n^q and k is any element (by (4)),

by Steer's formula ([27, Th. 5.76]) on Samelson products in π^autoS*) and by
using several formulae in the homotopy groups of spheres; and in the case

(B) when n^.2 and q = 3 or 7, then any k can be represented as k =

ί,τ(/c')+ **(£") for some fc'eπll+€-1(S«) and k" €πn_x(Sq) by (5),
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by the computations of certain Samelson products in π*(SO(q -f 1)) based on the

results of R. Bott (cf. [13], [14]) and I. M. James [14].1) In the case

(C) when n = l, then /ceπo(autS«) = .^"(S«) = Z 2 = { ± l } , or when q = l,

we can determine dk by studying the action of ^(Sq) on π^autS*) by con-

jugation in §5 and by noticing </c, x> = /c x — x when n — \. Thus we have the

following theorem in Theorems 4.3, 4.6, 4.8 and 4.11:

THEOREM II. The homomorphism dk = (k, > (the Samelson product) in

(3) satisfies the following (A)-(C) in the above cases (A)-(C) respectively.

(A) <fc, i«,τfof)> = i+τ{k'ηn + <- x + ( - \YηqΣk' + lηq9 tq~\Σh2{k')} ,

where Σ is the suspension and h2 is the generalization of the Hopf invariant due

to Hilton.

x ί i*<k'ηn+2-η3Σk') + t*(η3Σk") if q = 3,
(B) <k, i*(ηq)>

I U { k ' Σ k ' ( )Γ8/"} ^ Γ r ) / = 7,

/. [31, p. 61]).

(C) (i) Ifn = q = \
(ii) Cokerdfe = Z2 //n = l and q^2, =0 ι/n^2 and q = \.

Furthermore, we can prove the following in Theorems 5.5, 5.4 and (5.3):

THEOREM III. The group ^k(S«) = {αe^"(5«)|α /c = /c}c= &(S«) = Z2 in (3)

is given by the following (A)-(C) in the above cases (A)-(C) respectively.

ί Zi iflcq, «f]H(fc') = 0, especially if 2 ^ n^ q9
(A) ^i(S«) =

[ 1 otherwise,

where H is the generalized Hopf invariant.

Z2 if(cq,cq>Σ*k" = 0 = 2/c",
(B) i ( ) ,

1 otherwise.

ί Z 2 // n = 1, or z/ n ^ 2, q = 1 αnrf fe = 0,
(C) ^(S«)

These two theorems together with (4) and (5) give some informations on

the short exact sequence

0 > A > ^(£ f c ) -A* jFfc(s«) > 1 (A s Coker 3Λ)

1) The author is indebted to Professor S. Oka for the improvement of the original manuscript
in these computations; especially Theorem 4.8 for q=Ί is due to him.
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induced from (3). We consider in § 6 some conditions which imply that Jo is

a split epimorphism, and state in §7 some results on the group J?(Ek) for (Ek9

p, Sn, Sq) of (2) with n^q or g = l, 3, 7 by giving the groups A and ^k(Sq)

explicitly.

The author wishes to thank Professors M. Sugawara, S. Oka and T.

Matumoto for their careful reading of the manuscript and many helpful comments

and suggestions, and also Professors S. Sasao and H. Matsunaga for their kind

comments.

§ 1. Preliminaries

For any Cίf-complex B and a space Y, let L(β, Y) be the space of all (con-

tinuous) maps of B to Ywith compact-open topology, and L0(B, Y) be its subspace

consisting of all based maps.

We consider the evaluation map

(1.1) ω: L(S>\ Y) > Y, ω(/) = / ( * ) (* denotes the base point).

As is well-known, this is a Hurewicz ίibration with fibre L0(S", Y) = ω~ι(*), and

for any based map k e L0(S", Y), we have the homotopy exact sequence

(1.2) ... > π < + λ(Y) - ^ πt.(L0(S«, Y), k) - ^ πt.(L(S«, Y), k) -2*> πf(Y)

Here we quote the following theorems:

THFOREM 1.3 (G. W. Whitehead [35, Th. 3.2], [37, (3.1)]). In (1.2), there

exist isomorphisms

= [S* Λ S", Y ] O S ^ ( L O ( 5 « , Y), •) s πt.(L0(S«, Y), fc)(ΐ ^ 1),

the composition τ~ιdk: πi+ί(Y)-+πn+i(Y) is given by

τ~ιdk(x) = -Ik, x](the Whitehead proudct of keπn(Y) and xeπi+ί(Y)).

THEOREM 1.4 (S. T. Hu [10, Th. 2.2]). //1 = 1 in (1.2), then

lm{ω*:πtmS", Y), k) > π,(Y)} = { α e π ^ l α k = k),

where denotes the usual action of nt(Y) on πM(Y).

By Theorem 1.3, (1.2) for i ^ 1 turns out to the exact sequence

(1.2)' - . > πi+ί(Y)&X πn + i(Y) J*+ π^Uβ\ Y), k) -^* πf(Y) > ....

Now, we can classify Hurewicz fibrations by a theorem of J. Stasheff [25,
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Th. 1.5, 1.6] as follows: Given any locally compact CW-complex F, there

exists a universal Hurewicz fibration

(1.5) Poo*. £00 > #oo with fibre F,

and any Hurewicz fibration (£, /?, B, F) over a CW-complex B is freely fibre

homotopy equivalent to the induced Hurewicz fibration

(1.5)*

that is,

(Ek,

we have the

pk, B, F) with classifying

commutative diagram

E-

I-
B-

— > tk >

1"
B k

map k: B

•£αo

K
Ban »

where the right square is a pull-back and the left upper map is a free fibre homo-

topy equivalence.

In this paper, we use the following theorem on the group &(Ek) of fibre homo-

topy equivalences of the Hurewicz fibration (1.5)fc:

THEOREM 1.6 (D. H. Gottlieb [5, Th. 1]). ^(E^n^L^B, £«,), /c).

The proof of this theorem is given by the following process: Let L(B, B^, k)

denote the path component of L(B, B^) containing k, and L*(£fc, E^ k) the

subspace of L(£k, £«,) consisting of all fibre preserving maps /: Ek-^E^ with the

properties that / covers a map fiB-^B^ with / e L(B, B^, k) and that the

restriction Jlpΰ1^): pk

1(b)-+pZ1(f(b))(beB) to each fibre is a free homotopy

equivalence. Then we have a map

(1.7) Φ:L* = L*(£Λ, £«,, k) > L = L(B, B^ k\ Φ(/) = /;

and Φ~x(k) is naturally homeomorphic to the space L** = L**(Ek9 Ek) of all free

fibre homotopy equivalences of Ek to itself with compact-open topology.

Gottlieb proved that Φ satisfies the quasi-covering homotopy property, and

obtained the exact sequence

... _ > ρ/L ) —> QiiL*)—* Qt(L) JU a-iίL *) —> -•

of the quasi-homotopy groups. Here Qf(L) = ̂ (L) since B is a CW-complex.

Furthermore he proved that 2t(L*) = 0 for any j^O and hence

(•) d: πf(L(B, Bn, k)) s Qt- x{L**{Ek, Ek\ 1) (i ^ 1).

When / = !, Q0(L**(Ek, Ek)) = &(Ek) by definition, and we have the isomorphism
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d: πx{L{B, B^ fc)) s &(Ek) in Theorem 1.6.

The fact that this is a homomorphism is shown by the following

(1.8) For αeπf(L(£, B^\ k), take a representative α /xS ' - 1

k) with (x(IxSi~1Ulx*) = k and a lifting α: /x S'"1-*!,*(£;*, £«, k) with Φα

= α and α(l x 51'"1 U Ix*) = ίc. Then the image d(μ) by d in (*) is represented

by αlOxS''" 1: Sί-1->φ-1(fc) = L**(EJt, Ek).

In the above proof, we consider the special case that B = * and /c = *. Then

L(B, Boo, fc) = #oo, £* = F and L**(£k, £fc) = autF, where a u t F is the //-space of

all free homotopy equivalences of F to itself with the identity map 1 as base

point, and (1.7) is the associated principal fibration

(1.9) Φ: L*(F, £oo, *) > B^ with fibre aut F

of (1.5), and (*) is the isomorphism

(1.10) d: π^oo) s ^ _ x ( a u t F ) for i ^ 1 (cf. [5, p. 49]).

Furthermore, by applying the same proof as that of [3, pp. 813-814] to the as-

sociated principal fibration (1.9), we can prove the following

LEMMA 1.11. By the isomorphism d of (1.10), the Whitehead product

[ , ] in π^Boo) corresponds to the Samelson product < ,> in π ^ - ^ a u t i 7 ) , i.e.,

for x e ^ B J and

Let α e aut f b e a representative of an element α of the group

of all free homotopy classes of free homotopy equivalences of F to itself. Let

cα: aut F > aut F, ca(f) = α/α"1 for / e aut F,

be the conjugation by α. Then the induced homomorphism cαίN: πw(aut F, 1)

-+πΠ(autF, α o Γ ^ ^ π ^ a u t F , 1) depends only on the homotopy class α. Hence

we have an action

(1.12) &(F) x πn(aut F) — πΠ(aut F)9a>β = ca*(β) (α e &(F), β e πn(aut F)).

We call this ^"(F)-action on πΠ(autF) the action by conjugation.

Regarding α as an element of πo(aut F), we see immediately from the definition

of the Samelson product that

(1.13) <α, β} = oc β - β for (xe πo(aut F) = jF(F), β e πn(aut F ) .
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§ 2. Fibrations over the spheres

Now we consider Hurewicz fibrations over the n-sphere Sn ( n ^ l ) . Here-

after, by identifying d~1(k) with k by the isomorphism d: πXB 0 0 )^π w _ 1 (autF) in

(1.10), we shall consider the Hurewicz fibration

(2.1) (Ek9 p, S", F) with characteristic map ke π Λ _^aut F),

which is the fibration ( £ r , pw, Sn, F) with classifying map k' = d~ί(k)eπn(Bo0)

of (1.5)k.

The following theorem is basic in our study.

THEOREM 2.2. For the group S£(Ek) of fibre homotopy equivalences of the

fibration (2.1), the sequence

π i ( a u t F) J i + πΠ(aut F)

is exact, where

dk(x) = </c, xy(the Sameison product) for xeπ 1 (aut F) ,

^ ( F ) = {αe^(F)( = πo(autF))|α.fc-fc( = <α, fc» = 0 in π ^

and Jo is the homomorphism obtained by the restriction to the fibre F.

PROOF. Consider the diagram (d(kf) = k)

π 2 ( i U - ^ ^ Kn+ΛBn) -ί*I> πx(L{S\ I!,,), k') -^ πjίΛoo)

(2.3) -ijs j

π i ( a u t F) - ^ π ; ί (autF) ^ ( 5 4 ) - ^ ^ ( / r ) = π o ( a u t F),

where the upper sequence is the exact sequence (1.2)' for the evaluation map

ω: L(Sn, Ba^-^Bac, and rf's are the isomorphisms in Theorem 1.6 and (1.10).

Then the left square is commutative up to sign (— \)n by Lemma 1.11, and

so is the right one by [5, p. 52] (cf. [32]). Thus we have the desired exact

sequence by taking

G = di+τdr1

and by proving Im J0=#r

k(F). The last equality is proved as follows.

By the well-known formula [α;, k'~] = at'-k'-k' {OL'eπ^B^)) and by the

commutativity of (2.3), Theorem 1.4 and Lemma 1.11, we have

Im Jo = d(lm ω*) = {αeπo(autF)\ <α, k} = 0}.

Therefore Im Jo =&k(F) by (1.13). q. e. d.
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In the case fc = 0, we have d~ί(k) = * by (1.8), and (2.1) is the trivial fϊbration

(F x Sn, p, SΛ, F) (p is the projection onto the second factor).

For this trivial fibration, we can define naturally the homomorphism

(2.4) /: ππ(aut F) > &{F x Sn)

as follows: For any α e πΠ(aut F), take a representative α: Sw->>autF and its

adjoint map ά : F x Sn-+F such that ά(x, y) = <x(y)(x). Then

>FxSn, (α, p)(x, y) = (α(x, y), y) (xeF,yeSn),

is a fibre homotopy equivalence, and its free fibre homotopy class ί(α) = (S, p) is

determined by the homotopy class α.

COROLLARY 2.5. For the trivial fibration (FxSn, /?, Sw, F), ίΛe homomor-

phism G in Theorem 2.2 is equal to i in (2.4) and the exact sequence turns out

to the split exact sequence

0 > πΠ(aut F) - U ^ x Sn) ^ Z
J

where j is a right inverse of Jo defined by j(f)=fx 1 for fe^iF) and the action

on πΠ(autF) is given by the conjugation o/(1.12).

PROOF. Consider the homomorphism i*τ in (2.3) where fc = 0 and /c' = *.

Then /*τ maps a: (I xSn

9 1 xSn [) I x *)-+(BaD9 *) to fc: (/, /)->(L(Sn, £«>), *) such

that α is the adjoint map of b by Theorem 1.3. Consider the projection Φ of (1.9)

and a lifting α: / x Sn-+L*(F, £ x , *) with Φα = α and a(\ x Sn U / x *) = *. Then

α is the adjoint map of some B: I-*L*(Fx Sn

9 E^, *) which satisfies Φh = b

(Φ: L*(FxS Π , Foe, *)-^L(β, B^ *) is the projection in (1.7) for £ = *) and δ(l)

= *. Thus by (1.8) and the definition of / in (2.4), we see that id(a) = d(b) = di*τ(a).

Therefore G = i by the equality G = di*τd~ι in the proof of Theorem 2.2, and we

have the desired exact sequence by Theorem 2.2.

Clearly j is a right inverse of Jo. Thus the sequence is split, and we see

immediately by definition that the action of ^"(F) on πn(aut F) is given by the

conjugation. q.e.d.

In the following sections, we. study the case that the fibre F is a sphere.

Here we give a few examples where F is not a sphere.

EXAMPLE 2.6. Let F be an aspherical complex, and consider a fibration

(F, p, S", F) over Sn (n^2) with fibre F. Then &(E) is a subgroup of ^(F)

= Aut π^FVInn π^F) . For the trivial fibration F x Sn-+Sn, we have <e(F x Sn)
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PROOF. Since π f(autF) = 0 for *^2 by [4, Th. III.2], we have the desired

result by Theorem 2.2 and Corollary 2.5. q. e. d.

EXAMPLE 2.7. Consider a fibration (E, p, S2, CPn) over S2 with fibre

CPn {the complex projective space) for even n. Then we have the exact sequence

o —> z 2 —> se(E) —> z2.
For the trivial fibration CPn x S2-^S2, we have &(CPn x S2) = Z2 + Z2 (n: even).

PROOF. Since π t(aut CPn) = Zn+1 and π2(aut CPn) = Z2 by [23, Prop. 1.2]

and ^(CPn) = Z2, we see the desired result by Theorem 2.2 and Corollary 2.5.

q.e.d.

REMARK 2.8. (i) Theorem 2.2 remains true if F is a kspace (see [34]).

(ii) // we use the Whitehead and Samelson products in a general form

(cf [1])) then Theorem 2.2 still holds for fibrations over cogroup-like complexes

(e.g. suspended complexes).

§ 3. The group π, (aut Sq)

For a spherical Hurewicz fibration

(3.1) (Ek, p9 Sn

9 5«) with characteristic map k e πw_ ̂ aut S«)

of (2.1) for F = Sq (gί§; 1), we have the following exact sequence by Theorem 2.2:

(3.2) πj(aut S«) -?*-> πrt(aut S«) -^U J

In the following sections, we shall investigate this sequence in details.

In this section, we study the group π{(aut Sq) for ί ̂  1. Note that

(3.3) πo(aut S«) = ^(S«) = Z 2 = { ± 1} .

Consider the evaluation fibration

(3.4) ω: L(Sq, Sq) > S* with fibre L0(S*9 S*).

Then the path component of L(S«, Sq) (resρ.L0(5«, Sq)) of the identity map 1

is contained in autS« (resp. aut 0 S« = (aut Sq) Π L0(Sq, Sq)). Therefore the iso-

morphism τ in Theorem 1.3 is the isomorphism

(3.5) τ: πi+q(Sq) s ^.(L0(S«, Sq), 1) = π f(aut0 S«, 1),

and the exact sequence (1.2)' is the exact sequence

(3.6) — > π, + ,(Sq) i ί f i i , π ί + β (St) J ί l , π.(aut S«) -=*+ πj(S«)
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(cq is the homotopy class of 1: Sq^>Sq and /: a u t 0 S « c a u t Sq).

By the exact sequence (3.6), we see immediately that

(3.7) π 1 ( a u t S ^ ) = Z 2 = {/ί!tτ(f7g)} for q^2 (cf. [17]),

i*τ(πi+q(Sq)) for i ^ q - 2,
(3.8) f ( )

' < ( S ) j { l - \ } ) for i = q - 1,

where ηq is the generator of πq+ι(Sq) (q^.2); in particular, we have used the

relation [>2, c2~\=±2η2.

Furthermore,

(3.9) vv/ien # = 1, 3 or 7, thefibering (3.4) /ιαs α cross-section

t: Sq • autS* c L(5«, 5«), ί(x)(^) = x j /or x, yeSq,

given by the canonical multiplication xy on Sq. Thus (3.6) is split and

(3.10) πi(autSq) = Uτ(πi+q(Sq)) + Uπi(Sq))(i^l) for q = 1, 3, 7.

, ηq]}) + Z for odd q,( * ( 2 < z (
LEMMA 3.11. πq(autSq) = ]

( i*τ(π2q(Sq)l{[cq, η^}) for even q,

where the second summand Z for odd q is generated by t if q = l, 3, 7 and by

the element α with ω*(ot) = 2cq otherwise.

PROOF. By the exact sequence (3.6) for i = q, we have only to show that the

kernel of \_tq, ] : πq(Sq)-+π2q- ι(Sq) is 0 for even q, Z generated by cq for q = l, 3,

7, and Z generated by 2cq for odd qφ\, 3, 7. This fact is well-known by the

EPH-sequence (cf. [31]). q. e. d.

§4. δ f c in(3.2)

In this section, we shall study the homomorphism

(4.1) dk: π^autSΌ > πM(autS<0 (/ceπ^^aut Sq))

in (3.2), which is given by the Samelson product as follows:

(4.1)' dk(x) = </c, x} for x e π^aut Sq) (see Theorem 2.2).

We first consider the case n ^ 2 and q^2. B. Steer [27] represented the

Samelson product on aut 0 Sq in terms of the Whitehead products on Sq and the

Hilton-Hopf invariants by the following

THEOREM 4.2 (B. Steer [27, Th. 5.76]). Under the isomorphism
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τ π^S^SπXautoSOOH) of (3.5),

the Samelson product <τ(α), τ(0)> for αeπ i + ,(S«) and βeπJ+q(S") (i, j ^ l ) is

where h2 and hai are generalizations of the Hopf-invariant due to Hilton.

Consider the inclusion map i: aut 0 S
q c aut S« and the homomorphism

ί*τ: π i+4(S«)' £ π f(aut0 S«) -^U πf(aut S«) (i ^ 1)

in (3.6). Then we have the following

THEOREM 4.3. Assume that gΞ>2, n ^ 2 and fcεlm ΐ*, i.e., k = i*τ(k') for

some /c 'eπ Π + ί _ 1 (5 β ) . (T/ZΪS assumption is valid for any k if l^n^q by (3.6).)

T/ien ίfte homomorphism dk: π1(aut5«)( = i s | cτ(πg+1(S«)))^πΠ(autS«) in (4.1)

(see (3.7)) is gfit en fcj

^( i*(^)) = <fe, i*τ(ι/€)> = i*τ{fc'»/»+ €-i+(-l)β^fc' + [ ^ ^Σh2{k')}.

PROOF. We first note that the Samelson product is natural under the ϋ-map

i: aut0S*<= aut Sq. Thus by the assumption k= i*τ(/c'),

^(i*τ(^)) = <fc, i*τ(^)> = iφ<τ(fc'), τ(ιyβ)>.

Consider the equality in Theorem 4.2 for cc = kr (i = n — 1) and β = ηq(j = ϊ):

The element hσi lies in π, + 1 ( 5 3 ^ 2 ) = 0. 3[[ιyβ, ί β ], ί J = 0 by [7, Th. 6.10].

Thus [[ι/β, ^ ] , ί J = 0, because 2ιyq = 0 for ^f^3 and [ιy2, ί 2 ] = 0 ([8, Cor. 2]).

For q^^η^Ση^, and ft2(ιyβ) = 0 (cf. [31, p. 22]). For q = 2, [fc\ ί 2 ] = 0 ,

since all the Whitehead products vanish except [ ί 2 , ί 2 ] in π^(S2) by [8, Cor. 2].

These show that the last three terms in (*) vanish. Since 2ηn+q_ί=0 and 2[f/g,

cq~] =0, we can drop the signs of the coefficiens of the second and the third terms

in (*). Thus we have the desired equality. q. e. d.

COROLLARY 4.4. In addition to the assumption k = i*τ(k') in Theorem 4.3,
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assume that q = 3 mod4 or q = 2, 6, or k' = Σkt for some kieπn+q_:

Then

Furthermore, when q = 3 or 7, dk(i+τ(ηq)) = O if and only if k'ηn+q-ί=ηqΣk'.

PROOF. By [9, Lemma 5.1] and [8, Cor. 2], [ηq9 <:J = 0 (<?^2) if and only

if q==3 mod4 or q = 2, 6. On the other hand, if k' = Σku then h2(k') = h2(Σk1)

= 0 (cf. [31, p. 22]). When q = 3 or 7, /*τ in (3.10) is monic. Thus the above

theorem implies the corollary. q. e. d.

Now we consider the case q = 3 or 7. Then by (3.10),

πΛ_ ^aut Sf) = / * T ( ^ + , - ^ S )) + t*(πn_ {(S^) (direct sum),

where t: Sq-+&utSq is the cross-section given in (3.9). Thus any element ke

πn« t(aut Sq) can be represented as

(4.5) k = i*τ{k') + ^(fe") (fc' e π Π + 9 . . (S") , fc" e π w _^S )).

Therefore by the well-known formula </c, 7/> = <ϊ*τ(/c'), ^> + <ί*(^) ? /̂> and by

Theorem 4.3, we can compute dk(η) for any k if we know

We can compute it by the following two theorems.

THEOREM 4.6. Assume that q = 3 and n^.2. For any fceπ^.jίautS^), let

k! e πn+2(S3) and k" e π Π _^S 3 ) be elements in (4.5). Then

i*τ(k'ηn + 2-η3Σk') + t*(η3Σk").

PROOF. By Corollary 4.4, it is sufficient to prove

dk(i*«η3)) = </c, ^ τ f e ) ) = tm(η3Σk") if fc = ^ (

By the definition of the Samelson product,

<'*(fc"), η> = <t, η>Σk" (η = ύ τ

Consider the natural inclusion j : S0(4)->aut S3. Then t=js by the definition of

t in (3.9) where s: S3-+SO(4) is a cross-section. Consider the commutative

diagram

(4.7) J J
^ -JίL-> π f(aut 5«)
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for /=1 and q = 3 (cf. [36,(9.1)]), where J is the J-homomorphism and the

upper / is the inclusion 5O(/)c5O(/ + 1). Then η2 = J(Ji) for a generator^ of

πj(SO(2)) = Z, and η = i^(η3)=jiiί(j4)(j4=il(J2)). Hence by the naturality of

the Samelson product, we have

iu ny = <js, j*(u)> = J*<s> Λ>

Now consider the natural inclusion / : 5(7(2) c 50(4). Then s=fs: S3-*SU(2)

c=5O(4) and j^j+i'+Ui) w h e r e Γ: SO(2)= 1/(1)c5(7(2), and therefore <s,j4>

=/*<s, /'*0'2)>. On the other hand, by using a theorem of R. Bott, we can show

that

<s, /;0'2)> = ^ 3 in π4(Sl/(2)) (cf. [13, p. 167], [14, (19.1)]).

Thus <ί, ^>=Λ/*(5f73) = ί%(^3) and <ί*(/c"), η} = t*(η3Σk") as desired. r̂. e. c/.

For the elements of the homotopy groups of spheres, we use the notations

given in [31]. We note that π 1 5 (S 7 ) = Z 2 + Z 2 + Z 2 = {σ'f/14} +{v7} + {ε7}.

THEOREM 4.8 (S. Oka). Assume that q = Ί and n^.2. For any fce

π^.^autS 7 ) , let k'eπn+6(Sη) and /c r/eπM_i(57) be elements in (4.5). Then

W+Ίni)) = /*τ{fc^ + 6 - ^ 7 I / c ' + (v7 + ε7)I8/c"} + h(ηΊΣk").

To prove this theorem, we need some lemmas. We have to compute the

Samelson product of a generator of π1(SO(8)) = Z 2 and the element seπ7(SO(8))

represented by the cross-section

s : s 7 > 50(8), s(x) (y) = xy (x, y e 5 7 ) ,

as in the proof of Theorem 4.6 for q = 3.

Let γ: 58-^5O(6) be a map such that p*(y)(/κ 50(6)-•S5 is the projection)

is a generator of π 8(5 5) = Z 2 4 = {v5} (see [28], [29]). We note that

2 π 1 4 (5 6 ) = Z2 + Z8 = {ε6} + {v6}, 2 π 1 4 ( S " ) = Z 8 = {v1

2 π 1 4 (5 7 ) = Z 8 = {σ'}5 πUS5) = Z 2 = {ε5},

where 2π, (5") denotes the 2-primary component of π f(5n).

LEMMA 4.9. Let J: ^(50(rt))-*^ + n (5 n ) be the J-homomorphism. Then

J(s) = σ8 ( e π 1 5 ( 5 8 ) , the Hopfmap), J(γ) = v6 + ε6 mod {2v6},

where the second equality is the one in the 2-primary component.

PROOF. The first equality is shown by definition. Consider the commuta-

tive diagram
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πβ(S0(6)) -^ π8(S5)

where the lower sequence is exact (cf. [30, Cor. 3.6]). Then HJ(γ) = Σ6p*(y) =

Σ6v5 = H(v6) mod {2vn} in the 2-primary component ([31, p. 53]). Therefore

(*) J(y)=V6 + εb o r 6̂ mod{2v6} in the 2-primary component.

On the other hand, consider the commutative diagram

πΊ(SO(S)) -ϊ*+ πΊ(SO(l0)) ^L π8(SO(i0)) = Z 2 = {i%y} ([28])

1'

where /: SO(/)czSO(/ + l). Then 2'2J(s) = 2'2σ8 = σ 1 0 and

([31, p. 54]). Thus

(**) v 1 0 + e 1 0 6 l m J (J:π 8(5O(10)) >π 1 8 (S 1 0 )) .

If J(y)=v 6 in (*), then J(i%y) = Σ4J(y) = Σ4v6 = v1 0, because 2v l o = 0 and π 1 8 (S 1 0 )

has no odd torsion. This equlity and (**) imply that the right J in the above

diagram is surjective, which is a contradiction. Thus we see the second equality

in the lemma by (*). q. e. d.

Let 72 be the generator of π1{S0{2))^=Z. Then

π1(SO(r)) = Z 2 = {jr} for r ^ 3 , where jr=i%'2(j2) (ί' SO(/)c=SO(/+l)).

LEMMA 4.10. <s, 78> = i%y + s>/7 0' 8 = i%(h)).

PROOF. Let F 8 s 2 = 5O(8)/5O(6) be the real Stiefel manifold, and consider

the commutative diagram

SO{1) - ^ SO(S)

I

where p, pj and p' are the projections, s is a cross-section of p and t; is a cross-

section of p' induced by the natural inclusion SU(4)aSO(S). Then by the split
P*

exact sequence π7(S6) —-^ π7(K8 2) > π 7(S 7), we have

p xs = t; -h εΓ^6 for some ε e Z 2 .
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Therefore by using the relative Samelson product, we see that

Pi*<Λ js> = Pι*<s> iiO'β)) = <Pi5> Λ>> (by [14, p. 98])

= <v, Jβ> + εθ'η6, Jβ> = <v, Λ> + β</\ Je>1i (by [14, (15.11)])

= vηΊ + ε/'ι/6ι/7 (by [14, (16.11)]) = p^(sηΊ).

Thus by the exact sequence π8(SO(6)) —£> π8(S0)) -^% π 8 (F 8 2) and by noticing

π8(SO(6) = Z 2 4 = {y} and Im /J = Z 2 = {ίJy}, we have

(*) <s, /8> = sf/7 4- x/*(y) for some x e Z 2 .

Now the image ii<s,; 8> = ίi<s, ίSO"2)> in π8(SO(10)) is 0 by [14, p. 123], that is,

ii(^7) + ̂ i*(y) = 0 Hence, by Lemma 4.9, we have O = J(il(sηΊ) + xi%(y)) =

Σ2J(s)ηίΊ + xΣ*J(γ) = σί0ηίΊ + x(vί0 + 810). But σ l o >/ 1 7 = v l o + ε l o ^ 0 by [31,

p. 54]. Thus x = 1, and we have the desired result by (*). q. e. d.

Now we are ready to prove Theorem 4.8.

PROOF OF THEOREM 4.8. By Corollary 4.4, it is sufficient to prove

<KUτ(ηΊ)> = Uτ{(vΊ + 8Ί)Σ*k"} + t*(ηΊΣk") if fc = ί»(fc").

In the same way as the proof of Theorem 4.6, we have

<ί (fcΊ,i*τ(ih)> = <t, Uτ(ηΊ)>Σk\ i,τfa7) = j*(jB) and t = js9

where j : SO(8) c aut S 7 and hence by Lemma 4.10,

By the commutative diagram (4.7) for i = 8 and q = 7 and by Lemma 4.8, j*(/£y) =

-i+τΣJ(γ) = i+τ(vΊ + ε7), since 2π 1 5(S 7) = 0. Thus </c, i*τ(ηΊ)} = {i*τ(ηΊ + εΊ) +

t+(η7)}Σk" = /*τ{(v7 + ε7)Σ8/c"} + U(η7Σk") as desired. g. e. d.

The following theorem is the results in the case n = 1 or q = 1.

THEOREM 4.11. (i) If n = q = i, then /ceπo(autS 1) = Z 2 = { ± l } ,

- 2 x // /c = - 1 ,
Bk(x) = /or Λ: e π x (aut S 1) = Z.

[ 0 if fe= + 1 ,

fc = Z2 ifk=-l, =Zifk=+l.

(ii) //n = l and q^2, then δk = 0 and Coker δk = π 1

(iii) Ifn^l and q = l, then πn(aut S1) = 0 and dk = 0.

PROOF, (iii) is seen by (3.10). Consider the case n = 1. Then /c e πo(aut
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= Z 2 = { ± 1 } . By (1.13), dk(x) = k-x-x, where x e π ^ a u t S«) = Z or Z 2

according to q=\ or q^.2 by (3.10) or (3.7) respectively. Since the action k

is an isomorphism, /c x = .x and dk = 0 for q^2. We shall prove in Theorem 5.4(i)

that ( — l) x = —x for g = 4-1. This shows the result for n = q = l. q.e.d.

In conclusion of this section, we notice the following theorem on sphere

bundles over spheres. It is well-known that

(4.12) a fibration (Ek, p, S", Sq) with characteristic map Jceπw_1(aut Sq)

o/(3.1) is fibre homotopy equivalent to an SO(q + \)-bundle if and only if

kelmj* (j: SO(q + l) c autS*).

THEOREM 4.13. For any sphere bundle (£fc, p, S", Sq) with kelmj* and

, we have

where ω: &utSq-+Sq is the restriction of the evaluation map ω in (3.4) and H

is the generalized Hopf invariant.

PROOF. We have the equality by taking γ = ω*(k) in [14, (16.8)]. q.e.d.

§5. ^ ( S ) in (3.2)

In this section, se shall study the group

( = Im Jo) = {αe &(Sq) \ α k = fe} (k e πn_ λ(aut Sq))

in (3.2), where is the action by conjugation of (1.12) (see Theorem 2.2).

By noticing «^"(S9) = Z 2 = {± 1}, we have immediately

Z 2 if ( - l ) . / c = /c,
(5.1) ά?k(Sq) =

[ 1 otherwise.

We note that — 1 e ^(Sq) is represented by a map of degree — 1. Then by the

definition of the action given in (1.12), we see the following

(5.2) For the adjoint map k: Sq x Sn~ί-^Sq of a representative of ke

π n _j(aut S«), / £ ( / - * x 1): Sq x S"'1 / " ϊ χ l > Sq x S"" 1 - J U Sq -J-> Sq (f is a map

of degree —1) is the adjoint map of a representative of { — l) /c = /ceπrt_1(aut Sq).

For k E πo(aut Sq) = ̂ {Sq\ this shows that ( - l) /c = k. Therefore

(5.3) if n = 1, ί/zέ?n J^(5«) = Z 2 for any keπo(aut S«).

Now, we assume n ^ 2 and consider the case that Sq is an i/-space.
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THEOREM 5.4. Assume that n^.2 and q=\, 3 or 7, and take any element

k = i*τ(k') + *„(*") e π ^ ί a u t S ) (W eπn+q_λ(S«\ k" eπn.x{Sq))

(see the direct sum decomposition of (3.10)). Then we have the following (i)

and (ii).

(i) (-l).fe = ι,τ(fc' + ( - l ) <ef, cq}Σ"k") - ί,(fc"),

where <£,, ί t > = 0 , and <ί3, £3> = ω and <ί7, £ 7>=2 7 are the generators of

π6(S3) = Z l 2 and π I 4(S7) = Z 1 2 0 , respectively ([12, p. 175]).

( Z 2 (/ <«,, ί€>Γ Jfe" = 0 = 2k",
(ii) W ) = ,

[ 1 otherwise.

PROOF, (ii) is an immediate consequence of (i) and (5.1). We shall prove

(i). Since the action is linear, it is sufficient to prove (i) for the case fc' = 0 or

fc" = 0.

(a) The case fc' = 0: Consider /JEί/"1 x 1) in (5.2). Then the equality k =

t*(k") and (3.9) imply that k is given by Jc(x, y) = (k"(y))-x (the canonical multi-

plication on Sq) for xeSq and y e S""1. We can take / to be an inversion map

with respect to the multiplication on Sq. Thus

/£(/-> x l)(x, y) = x(k"(y))-i = ( f c ^ r ^ C x " 1 , fcw(y)](xeS , j e S " - ' ) ,

where [ , ] denotes the commutator in Sq.

If q = ί9 then the commutator vanishes, and fJc(f~ix\) maps (x, y) to

(^"(.v))"1*- Thus fk(f~ι x 1) is the adjoint map of a representative of ί*( — /c")

= —ί#(fc")> because the group structures of π^S*) coincides with the one given

by the multiplication on Sq. Therefore ( - 1 )./*(&")= -ί«(fc") by (5.2).

If g = 3, then we have to add one more term represented by the map

g: S - ' ^ a u t S 3 , g(y)(x) = [x"1, k"(^)] = ω(/Λ 1)(1 Λfc>(x j)(xeS 3 , j e S - 1 ) ,

where π: S3 x S""1-^^3 Λ S"'1 is the projection and ω = <£3, r3>, by the definition

of the Samelson product. Since ω ( / Λ l ) = - ω and 1 Λ k" = (~-l)"-ιΣ3k'\ g

represents ί # τ((- \)nωΣ3k") and hence ( - l ) ί1|l(Jk") = (-l)ll/»τ(ω2:3fc")-ί*(kl')

When q = Ί, we need the associator as well as the commutator. But any

subalgebra of the Cayley algebra generated by two elements is associative (cf.

[26, p. 108]). Therefore we may consider in the same way as in the case g = 3,

and we obtain the desired equality.

(b) The case fc" = 0: Then ( - l) /*τ(/c') is i*τ(fk'(f-χ A 1)) by (5.2). Since

the degree of/"1 Λ 1 is - 1 and/*(*)= -x for xeπ^S^fkXf"1 Λ 1) is homotopic

to fc\ Therefore (-l)./*τ(k') = '*<k'). q.e.d.
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The following theorem holds under the assumption of Theorem 4.3:

THEOREM 5.5. Assume that n^l and k = i*τ(k') for some k\ where /*τ:

πw+β_1(5«)->ππ_1(autSq) is the homomorphism in (3.6); for instance, assume

. Then

(i) (-\)'k = k-i^T([cq, cq~iH(kf))(H is the generalized Hopf invariant).

Especially, if 2^n^q, then (—\)-k = k.

ί ^ 2 if [<„, cq-]H(k') = 0, especially if l^n^q,
(ii) JFk(S«) =

[ 1 otherwise.

PROOF. It is sufficient to prove (i) by (5.1). Since k = i*τ(kf), (5.2) shows

that

(-l). fc = /*τ{(-*f)fc'((-*«)Λl)} = -i*τ({-tq)k').

Now (-cq)k'= -fc' + [*€, tq~\H(kf) by [7, Th. 6.7 and Th. 6.9]. Thus we have
the desired equality. If n <q, then H(k') = 0 by definition. If n = q, then H(W) e
π2q.1(S2q-1)^nάiitιτ(lcq, ί J ) = 0 by (3.6). Thus ( - l) k = k if n^q. q.e.d.

§6. The case that Jo in (3.2) is split

In this section, we shall study some cases that the epimorphism

(6.1) J0:J?(Ek)—>&k(S«) in ( 3 . 2 ) ,

obtained by the restriction to the fibre Sq (see Theorem 2.2), is split. But in

these cases, we can not determine the group extension in the short exact sequence

0 - > C o k e r ^ - ^ ^ ( £ f c ) - ^ J ^ ( S « ) ^ l induced from (3.2) except for the trivial

fibration (see Corollary 2.5), because the homomorphism G can not be given

explicitly for us.

Let (Ek9 p, S", Sq)(k eπ^^aut Sq)) be a Hurewicz fibration of (3.1). Then

J. Stasheff [25, Prop. 1] (cf. [20]) proved that Ek has the homotopy type of

Sq[j1i(DnxSq)(lc: Sn~1xS • Sq is the adjoint map of k).

More precisely, consider the map

(6.2) p': Sq U ι(Dn x Sq) > Sq with p'\Sq = * and p'\Dn x Sq = χpu

where px: Dn x Sq-+Dn is the projection and χ: Dn-+Sn is the map collapsing the

boundary S""1 of Dn to *. Then

(6.3) there are suitable maps α and β in the diagram
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a
Ek ϊ n l Ek = Sq U κ(Dn x Sq)

sn==sn

with p'(χ = p, pβ = p' and a\Sq = \=β\Sq on Sq = p~1(*) = pf~i(*), and there are

homotopies Kt: Ek-+Ek and Ht: Ek-+E'k with K0 = β<x, Kι = \, pKt = p and Ho

LEMMA 6.4. Consider the diagram ( n ^ 2 , q^\)

(6.5) \k

where f is a map of degree — 1 and R is the adjoint map of k. Then

in (6.1) is Z2 if and only if (6.5) is homotopy commutative. Moreover, if we

can take k and f so that (6.5) is strictly commutative, then Jo: &(Ek)-*&r

k{Sq)

o/(6.1) is a split epimorphism.

PROOF. The first half is proved by (5.1) and (5.2). We prove the second

half. Assume that (6.5) is strictly commutative. Then we can define a map

T: E'k( = Sq U ι(Dn x Sq)) > E'k by T\ Dn x Sq = 1 xf, T\ Sq = /,

which satisfies p'T=p' for p' in (6.2). Thus we have a fibre map

y = βT<x: Ek-^E'k-l^E>k-l-. Ek

by using the maps α and β in (6.3). Then α|S«=/ and y2: Ek->Ek is fibre homo-

topic to the identity map. Thus we obtain a homomorphism.

s: &k(Sq) > &(Ek\ defined by s( -1) = y,

which is a right inverse of J o . ^. e.

By the above lemma, we have the following

THEOREM 6.6. J^(S«) = Z 2 and Jo: ^f{Ek)-^^r

k{Sq) of(6Λ) is a split epimor-

phism, if one of the following conditions (l)-(3) holds:

(1) kelmΣ*, where I * : ^_ a (autS^'^-^π^.^autS q ) is the induced

homomorphism of the suspension map Σ: aut S9~1->aut Sq.

(2) (Ek, p, Sn, Sq) is fibre homotopy equivalent to an SO(q + l)-bundle,

i.e., kelmjx, where j : SO(q + l)cza.\χtSq (cf. (4.12)), and in addition q is even

or
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(3) (Ek, p, S", Sq) is fibre homotopy equivalent to an SO(q)-bundle, i.e.,

fcεIm(./V*)> where i: SO(q)czSO(q + ί), which is equivalent to kelm(i*τJ),

where πw_,(SO(^)) -L+ πn+q-x{Sq) -^-> πB_t(aut Sq) are the J-homomorphism

and the homomorphism in (3.6).

PROOF. When /celmΓ*, (6.5) is strictly commutative by taking / : Sq-+Sq

with f(x0,..., xq _,, xq) = (x0,..., xq _ j , -xq). When k e Im j+ and <? is even, (6.5)

is so by taking /ceπw_ 1(SO(^rH-1)) and the antipodal map / with / ( x ) = — x .

Thus we have the theorem for these cases by Lemma 6.4. If n^q, then πn_ί(Sq)

= 0 and /*: πn-ί(SO(q))-+πn-ί(SO(q + ])) is epic. Thus, if kelmj* and n^q,

then h l m O V , ) and (3) holds. Since Im(j^i^czlmΣ*. (3) implies (1). The

equality j+i+ = i*τJ is seen by the right commutative square in (4.7). q.e.d.

For the J-homomorphism in (3) of the above theorem, we notice the following

lemma which are used in Examples 7.12-17:

LEMMA 6.7. The J-homomorphism J: πn-ί(SO(q))-+πn+q-.ί(Sq) is epic,

if n—A, 5 or 1 when q = 3, and //n = 8 when q = l.

PROOF. The result for the case n = q+\ is shown in [12, p. 176] and it

implies the results for the other cases. q.e.d.

§7. The group ^(Ek) for spherical fibrations over spheres

In this section, we shall study the group &(Ek) of fibre homotopy equivalences

of a Hurewicz fibration

(7.1) (Ek, p, S", Sq) with characteristic map ^ e π ^ ^ a u t Sq)(n, gΞ>

of (3.1), by using the results obtained in the previous sections.

Consider the short exact sequence

(7.2) 0 > A

induced from the exact sequence (3.2), where

A s Cokerδ* = πΛ(autS«)/δΛ(π,(autS«)).

Then the results in this section are stated by giving the groups A and

and by indicating the case that (7.2) is split.

In the first place, we consider the special case that n = l or q — \.

EXAMPLE 7.3. πo(aut Sq) = Z2, and there are two types of Sq-fibrations

over Sι: the trivial one (Sq x S1, p, S1, Sq) and the non-trivial one (Uq, p, Sι

9

Sq), where the generalized Klein bottle Uq is the quotient space of Sq x I obatined
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by identifying ((x0, x^..., x,), 1) with ( ( - x 0 , x^...., x,), 0).

EXAMPLE 7.4. πw_ 1(autS 1) = ί*(ππ_1(S1)) is Z if n = 2 and 0 if n>2 (see

(3.10)), and there are countable types of Sι-fibrations over S2 besides the trivial

one SιxS2-+S2, e.g., the Hopf bundle S3-+S2 or SO(3)->S2, and any S1-

fibration over Sn(n>2) is fibre homotopy equivalent to the trivial one Sι x Sn

->S".

THEOREM 7.5. (i) Ifn = iandq^l,then

D(Z) if q = \ ([15]),

if q*2,

where D(Z) is the split extension Z->D(Z)-+Z2 with Z2 acting on Z as inversion.

(ii) Ifn = 2andq = \, then &(Ek) = 0for kφO and &(SlxS2) = Z2.

(iii) Ifn^3andq = \, then i f ( S 1 x 5 Λ ) = Z 2 .

PROOF, (i) For the trivial fibration SqxS1 over S1, (7.1) is a split exact

sequence

Z if g = l,
0 -> A -» ^(S« x S 1 ) ^ Z 2 - > l , where A = π^aut Sq) =

1 Z 2 if

by Theorem 4.11, (5.3) and Corollary 2.5, and Z 2 acts on A = t+(πί(Sί)) = Z if

q=\ as (— l) n = — n by Theorem 5.4 (i), and on 4̂ = Z 2 if q^2 trivially by

Theorem 5.5 (i). Thus we see the results for ^?(SqxS1). For the non-trivial

fibration Uq-+Sι

9 (7.2) is 0-»Z2->JίP(l/β)-->Z2->l by Theorem 4.11 and (5.3).

The map f:S«xI->SqxI9f((xθ9xί9...9xq)9t) = ((-xθ9xί9...9xq)9t)9 induces a

fibre map g: Uq-+Uq such that g2=\ and J0(g)=-l. Thus &(Uq) = Z2 + Z2.

The other results are shown by Theorems 4.11 (iii) and 5.4 (ii). q. e. d.

THEOREM 7.6. Assume that 2^n^q.

(i) Then (7.2) is the exact sequence

where

n^q-2,

n = q — 1,
A =<

n = q is odd,

, ηq~]} if n — q is even φ 4, 8.

(i i ) If Ek is a Sq-bundle over Sn, then the above sequencers split.
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(iii) In particular, for the trivial fibration E0 = Sqx Sn over S",

££{βq x Sn) = A + Z 2 (direct sum) if n < q or n = q is even φ 4, 8.

PROOF, (i) Since n^q, the second equality in (3.6) implies

k = i*τ(fc') for some V e π n + r ^S*).

Thus &k(Sq) in (7.2) is Z 2 by Theorem 5.5 (ϋ). If we show that δfc = 0, then

A = πΠ(aut Sq) is given by (3.8) and Lemma 3.11 as desired.

We prove that dk = 0 for n^q — 1 or n = q separately.

(a) The case n^q — 1: By the Freudenthal suspension theorem, k'—ΣkΛ

for some kx e ^ + ^ . ^ S 4 " 1 ) . Then by Corollary 4.4 and [2, Prop.],

If n^q —2, then fcj is also a suspension and H(/cx) = 0. If n = q — 1, then Σ2H(k1)

eπ2q-1(S2q~ί) and hence dk(i*τ(ηq)) is a multiple of i*τ[^, r j , which is 0 by

(3.6). Thusd, = 0by(3.7).

(b) The case n = q^.2 and qΦ4,S: Assume qφl in addition. Then,

in the exact sequence π2q_2(S*-1)-^π2q_ί(Sq)JUπ2q_1(S2q-1), H = 0 if q is odd

and Im H = {2c2q-i} = {[cq, cq~\} if q is even (cf. [31]). Therefore by this exact

sequence and (3.6), we may replace k' e(i^τ)~1(k) so that k' = ΣkΛ for some kx e

π2q-2(Sq~λ). Thus, in the same way as above, we have (*), where H(kx)e

π2q-2(S2q~3) and [*β, cq]η2q.ί = [^, ι/J. Thus, dk(i*τ(ηq)) is a multiple of ϊ*τ[^,

f/J, which is 0 by (3.6).

On the other hand, if n = # = 2, then /ceπ^aut S2) = Z 2 = {/J|cτ(fy2)} by (3.7),

and we may take k' = Q or η2. Thus the equality dk(i*τ(η2)) = i*τ(k'η3 + η2Σk')

of Corollary 4.4 implies dk = 0 as desired.

(ii) is shown in Theorem 6.6. (iii) follows from Corollary 2.5 and Theorem

5.5 (i), since πΠ(aut Sq) = Im i#τ if n < q or n = q is even # 4 , 8. g. e. d.

EXAMPLE 7.7. // n = 2 αnd <?^2, ί/ien π t(aut Sq) = Z2, and there are two

types of Sq-fibrations over S 2 ; and

= Z2 + Z2 for any k.

PROOF. By Theorem 7.6 (i), the following sequence is exact:

0 — > πq+2(Sq) > <e{Ek) —, Z 2 — > 1.

Now πq+2(Sq) = Z29 and this is split for any k by Theorem 7.6 (ii), since j * :

π ^ S O ^ + l))-»π1(autS«) is an isomorphism by [35,(5.2)] and (4.7). Hence

we have the desired result. q. e. d.
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THEOREM 7.8. Let (Ek, p, Sn, Sq)(q^2) be an SO(q + i)-bundle such that

the structure group is reduced to SO(q — 2), i.e., k e πn_ t(aut Sq) belongs to the

image of ^.^(SOO? —2)) under the homomorphism induced by the inclusion

SO(q — 2) c SO(q +1) c aut Sq. Then we have the split exact sequence

0 > πn(aut Sq) -!U Jδf(£k) -A> Z 2 • 1.

PROOF. Consider the commutative diagram (cf. [36, (9.1)])

πn_x(SO(q-2)) JL> πn__x(SO(q)) J±+ πn.x(SO(q+\))

Then k e Im (/*τΣ2) by the assumption. Therefore, we see that δk = 0 in the same

way as (a) for n ̂  g — 2 in the proof of Theorem 7.6 (i). Thus we have the desired

split exact sequence by (7.2) and Theorem 6.6. q.e.d.

REMARK 7.9. Let (£, /?, B, F) be any Hurewicz fibration. Then

(*) PE: L(£, £) — > L(£, B), p £ (/) = pf9

is a Hurewicz fibration with fibre (pE)~1(p) = L'(E9 E), which is the space of all

fibre preserving maps of E to itself. Therefore we have the homotopy exact

sequence

... ->.π ί + 1(L(£, B), p) - π,<L'(E, £), 1) -, π f(L(£, JB), 1) ̂  πf(L(£, B), />) - •••.

is α fc-space, ί/î n &(E)(resp. ^(E)) is the group of consisting of invertible

elements of πo(L'(E, E), 1) (resp. πo(L(E, E), 1), and the above sequence is trans-

formed into the exact sequence

(7.10) πx(L(E, £), 1) -> W l (L(£, B), p) -!-> J?(E) ^ U ̂ ( £ ) -> πo(L(£, B), p),

where d is shown to be a homomorphism (cf. [5, p. 49]) and v is the homomor-

phism defined naturally by sending fibre homotopy classes to their homotopy

classes. S. Sasao [24] has studied (7.10) for sphere bundles over spheres with

some conditions, and obtained a generalization of Theorem 7.6 for n^q — 2.

Now, we consider the case that g = 3 or 7.

THEOREM 7.11. Assume q = 3 or 1 and n^2, and by (3.10), set

k = ί*τ(/e') + ί ^ n e π ^ i ί a u t S Xfc 'eπ^^^S ), k"enM-x(S*)).

(i) Then the short exact sequence
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0 .—> A — * &(Ek) > ̂ k(Sq) > 1 (A s Coker <9fe)

of (1.2) is given as follows:

Λ =(πn+q(Sq) + nn(Sq))IAf,

{(kfηn+2-η.3Σk', η3Σk")} = Z 2 or 0 if q = 3,

ηn+6-η1Σk' + (vΊ + εΊ)Σ8k",ηΊΣk")} = Z2 or 0 if q = Ί;

Z2 if <cq, cq}Σqk" = 0 and 2k" = 0,

1 otherwise.

(ii) //is* /s Λ Sq-bundle over Sn with structure group SO(q), then the above

sequence is split.

(in) For the trivial fibration Sq x Sn over S", we have the split exact

sequence

0 > πn+q(S«) + πn(S«) , <£(S* x S") — Z 2 > 1 (q = 3 or 7),

where Z2 acts on πn+q{Sq) + πn(Sq) as

PROOF. The results follow immediately from (3.10), Theorems 4.6, 4.8,

(5.4), (6.6) and Corollary 2.5. q. e. d.

In the rest of this section, we give some examples of this theorem, which are

seen by the routine calculations by using the results on the homotopy groups of

spheres given in Toda's book [31].

EXAMPLE 7.12 (the case <? = 3 and n = 4). In this case,

k = ί^jfc') + t*(k")(k'eπ6(S3) = Z 1 2 = {ω}, k"eπ3(S3) = Z = {c3})

and the Hopf bundle 5 7 -S 4 (/c ; = 0, k" = c3) (cf. [26]) and 5O(5)/SO(3)-^S4(/cr =

0, k" = 2c3) (cf [11]) are typical examples. Then

Z2 if k" # 0 and k' is odd, or k" is odd,

if k" Φ 0 and k' are even, or k" — 0 and k''is odd,

if h» _ \ri _ o t p u __o
IJ IV — TV —— \J, l . C , t\ r— \J,

(Z)4 is the dihedral group of order 8), and we have a split exact sequence

0—> Z2+Z2.—+ &(Ek)—+Z2 — * 1 otherwise.

PROOF. Consider Theorem 7.11 for q = 3 and n = 4. Then πΊ(S3) + π 4(5 3) =
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η3}> and ηzΣk' = Σ{η2k') = 0 and ηf: π6(S3)->π7(S3) is epic

([31, p. 43]). Thus

A = Z2-\-Z2 if k! and k" are even, = Z 2 otherwise.

Furthermore ^ k ( S « ) = l i f k" ̂ 0 , = Z 2 otherwise. If /c" = 0 then k = i*τ{k') and

J : π3(SO(3))-»π6(Sr3)(9 fc') is epic by Lemma 6.7; hence the sequence 0->ΛL->

i?(£ k)->Z 2-*l is split by (4.7) and Theorem 7.11 (ii). If /c = 0, then the splitting

action of 0 - > Z 2 + Z 2 - + J £ ? ( £ 0 ) - » Z 2 - > > 1 in Theorem 7.11 (iii) is given by (—1)

{a, b) = (a + b, -ί?) = (α + b, b% since <£3, <:3>Γ3773 = ω>76 = v'ί76([31, p. 42]); thus

q.e.d.

EXAMPLE 7.13 {the case q = 3 and n = 5). In this case,

k = Uτ{k') + α/cΊ(/c'6π7(S3) = Z2 = {v'i,6}, Γ e ^ S 3 ) = Z2 = {f/3});

Sl/(3)->S5(/c' = 0, / c ^ ^ ) (c/. [11]) is a typical example. Then

Z2 if k" #0,

J2f(£fc) = if k" = 0 and W φ 0,

if k" = fc/ = 0, i.e., fc =

PROOF. By using the results in [31, pp. 43-45], we have the desired result

in the same way as the above proof. q. e. d.

EXAMPLE 7.14 {the case q = 3 and n==7). In this case,

k = W) + ίφ(k )(k'eπ9(S3) = Z, k"eπ6(S3) = Z 1 2 = {ω})

αnc/ H-spaces of type (3, 7) are obtained in the case /c'=0, k" = nω (n = 0, 1, 3,

4, 5) (c/. [18]), in particular, Sp(2)-»S7(fc' = 0, fc" = ω) is a ίypica/ example.

Then

<?{Ek) = Z 1 5 + Z 2 i/ /c" ̂  0, 6ω, = Zί5 + Z2 + Z2 if k = 0,

and we /ϊat e ί/ie exacί sequence

0 > Z15+Z2 > &{Ek) —^ Z2 —-> 1 // "fc" = 0 or 6ω,

which is split if /c' = 0 or /c" = 0.

PROOF. For /cr = 0 and k" = 6ω, the sequence is split by the same consider-

ation of [22, Lemma 3.4]. Take T(x, t, y) = {x, t, -y), T(z)=-z(y9zeSz) in

§6. q.e.d.

EXAMPLE 7.15 {the case q = Ί and n = 8). In this case,
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k = i*τ(k') + U(k")(k'eπUSΊ) = Z 1 2 0 = {λ7}, /c"eπ7(S7) = Z = {cΊ})

and the Hopf bundle S1 5-S8(/c' = 0, k" = cΊ)(cf [26]) αnJ SO(9)/SO(7)-S8(/c' =

0, k" = 2tη) (cf. [11]) αr^ typical examples. Then

+ Z2+Z2 if k" φ 0 and k' are even,

if k" Φ 0 /s even and k' is odd, or k" is odd,

if fc = 0,

and we Λαt e the split exact sequences

0 -» Z2 + Z2 + Z2 + Z2 -• J^(£fc) -• Z 2 -> 1 if k" = 0 and k! is even,

0 -> Z2 + Z2 + Z2 -»Jδf(£ f e) -> Z 2 -> 1 if k" = 0 and kr is odd.

PROOF. If /c = 0, then the splitting action of 0->

Z2->1 in Theorem 7.11 (iii) is given by ( — l) (a, b, c, d) = (a, b, c, α-hrf), since
ΊηΊ = σ'ηί4; thus Jδ?(£0) = Z 2 + Z 24-D 4 . ^f.β.ί/.

EXAMPLE 7.16 (ί/ie case ^ = 7 and n = 9). /n ίΛis case

} + {β7},

l/(5)/l/(3)->S9 (k' = 0, k" = ηΊ) (cf [11]) is a typical example. Then

ί Z2 + Z2 + Z2 + Z2 if k"Φθ,

and we have the exact sequences

0 - * Z 2 + Z 2 + Z 2 + Z 2 + Z 2 -» &(Ek)^Z2 -+ 1 // k" = 0 and k! = v7 or ε7,

0 -+ Z 2 + Z 2 + Z 2 -hZ 2 -• ^f(£fc) -> Z 2 -> 1 // /c" = 0 and k! = <τ'w14,

lich is split if k" = 0 and k' = σ'ηί4..

PROOF. The result for the trivial case is seen similarly to the proof of

Example 7.15. q.e.d.

EXAMPLE 7.17 (the case q — 1 and n = l l ) . In this case,

k = i*τ(/O + α n ( f c ' e π 1 7 ( S 7 ) = Z2^Z2, k"eπlo(S7) = Z2 4)

and Sp(3)/5p(l)->5u is a typical example (fc' = 0, fc" = v7) (cf. [11]). Tnen
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Z 5 0 4 if k" φ 0 mod 8,

if k" = 0 mod 8 and k" Φ 0,

i if k = 0,

and we have the exact sequence

0 > Z 5 0 4 + Z 2 > &(Ek) > Z2 • 1 otherwise,

which is split if k" = 0 and k'=0 mod 3.

PROOF. The sequence is split by Theorem 7.11 (ii) if k" = 0 and k' = 0 mod 3.

For the trivial case, the action is trivial by Theorem 7.11 (iii), since π 1 1 (S 7 ) = 0.

q.e.d.
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