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§ 1. Introduction

This paper is dedicated to Professor Tatsuji Kudo on the occasion of his

sixtieth birthday.

The first part of this paper is concerned with a detailed account of Hopf

algebra structure of class functions on the symmetric groups and shows how the

study incorporates many results in the classical theory of symmetric groups.

The second part deals with the operation called inner plethysm. Few calculations

have been made for the operation. An attempt is made in this paper to illustrate

all necessary procedures for evaluating any inner plethysm, although they may

be extremely involved in practice.

In §2 it is shown that the ring Cz of integer-valued class functions on the

symmetric groups is a divided polynomial Hopf ring in infinite generators, while

the algebra CF over the complex field forms a Hopf polynomial algebra. In

§3 the self-duality of CF is established and Newton's formula is obtained in C F .

A short proof of Frobenius' fundamental theorem is given in §4, by taking

advantage of Newton's polynomial established in §3. In §5 a CF-version of

Liulevicius' self-duality is studied. The structure of the representation ring Rz

of symmetric groups is studied in §6. In §7 Atiyah's Ank is discussed to recover

Doubilet's forgotten symmetric functions. The general theory of inner plethysms

is given in the final section §8.

§ 2. Hopf algebra of class functions

Let R be a commutative ring with unity and let G be a finite group. By a

^-valued class function on G we mean ζ : G-*R satisfying ζ(y~1xy) = ζ(x) for any

x9 yeG. CR(G) denotes the ^-module of .R-valued class functions on G. In

the sequel R will be the complex field F or the ring of integers Z. For a subgroup

H in G, the inclusion map i : H^G induces the restriction map ί ! =Resg :

CR(G)-+CR(H) and the induction map ϊ, = Indg : CR(H)^CR(G). For fe

CR(H) and for any seG,
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(Indg/)(s) = (1/IHI) Σrβc.ί-i.rβfl/ίr^ί).

Consider a graded connected ^-module CR = {CR(Sn)\ n = 0, 1, 2,...} for the
symmetric group Sn of degree n. We are going to define a multiplication m:

>CR S O t n a t Cj| forms a graded algebra. Let

be an embedding defined by

if

/-p) if

for (σ, τ)eSpxSq. If fteC(Sp)V and gseC(Sq) are characterstic functions of
the conjugacy class ? in Sp and the class 5 in Sq respectively, then the characteristic
function h of the conjugacy class (ί, s) in Sp x Ŝ  is obtained by

Thus there exists the isomorphism

ΨPΛ: C(SP) ® C(Sq) —> C(Sp x Sq).

Define mp>q : C(Sp)®C(Sq)^C(Sp+q) by the composite map ip,q p q

ΨP,r
Given a partition π of n. (In notation, πhn.) An element σ in Sn is said

to have the shape π if the disjoint cycle decomposition of σ produces the partition
π. A conjugacy class in Sn is said to have the shape π if its representative has
the shape π. Let Kπ be the characteristic function of a conjugacy class of the
shape π. Then {Kπ\π\-n} forms a base for CR(Sn).

For any partition π of n, let πf be the number of Γs in π(ΐ = l,..., n), i.e.,
π = {lπi, 2*2,..., nπ"}, and set π! = Π?=iπ/! and |π| = π! Π?=i *πi Then the
number of the elements in a conjugacy class of the shape π is n!/|π|.

For any partitions π of p and σ of #, let π v σ denote the partition of p + q
given by the union of π and σ, i.e., (π vσ)/ = πt + σί(/ = l, 2,...).

PROPOSITION 2.1. For any π\-p and σVq, we obtain

Xπ Xβ(= mpΛ(Kτ®Ka)) = ((π v

PROOF. For each seSp+q, consider

(Kπ • Kσ) (s) = (Indf*χq ψPtq(Kπ®Kσ)) (s)

1) If no confusion arises, C(SP) stands for CR(SP).
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It is obvious that if the shape of s is not π vσ, then (Kπ-Kσ)(s) = 0. When s is

of the shape π v σ , the number of t with the property \l/pq(Kn®Ka)(t~ist)=l

is (p!/|π|)(g!/|σϊ)|π v σ\=plq\(n vσ)!/π!σ!. This completes the proof.

By virtue of Proposition 2.1, it is immediate to see that K<r Xπ = K7t Xff and

(Kκ'Kσ) Kv = Kπ (Kσ'Kv) for any partitions σ, π and v. It follows that CR

forms a graded commutative algebra with unit.

PROPOSITION 2.2. Let Cf denote K{i)eCR{S^ where {i} is the shape of the

i-cycle, and let Cn denote C\ιCl^"ClnsCR{S^ for πhw. Then we obtain

Cπ = π

PROOF. It is evident from Proposition 2.1.

PROPOSITION 2.3. CF is a polynomial algebra over the complex field F

in an infinite number of variables Cl9 C 2,.. ., CΛ,..., where the degree of Cn is

2n. In notation,

PROOF. It is immediate from Proposition 2.2.

We are going to see that unlike CF, the algebra Cz is a divided polynomial

ring with generators Cί9 C2,..., Cn,.... By a divided polynomial ring D[x] with

one generator x of an even degree, we mean a graded abelian group {ZxJn = 0,

1, 2,...} with a base xo = l, x ^ x , x2> > *„,.. ., such that the multiplication is

given by xp'Xq — {%q)xp^q^ Then xn = n\xn. By abuse of language x is called a

generator of the ring Z>[x].

PROPOSITION 2.4. The ring Cz is a divided polynomial ring D[CXr, C2,*..,

PROOF. It is evident from Propositions 2.1. and 2.2.

Let us consider the elements

«„ = Σ*H,,(Sgnπ)Kπ, βn = Σ ^ - ^ and γn = nCn

of CR(Sn), where Sgn π denotes ± 1 according as the shape of π is even or odd.

Then it is obvious that C F = P F [y l 5 y2,..., ?„,...]• In a later section we shall

show that C F = P F [α l 5 . . . , αrt,...] = PF[j8i,..., jSn, ..] is also true.

Defining ΔVΛ\ CR(Sn)-+CR(Sp)®CR(Sq) for each p, q with p+q = n9 by the

composition i /^VRes ! "^ and setting

Δn: CR(Sn) , ΣP+q=nCR(Sp)®CR(Sq)

by
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for any fe CR(Sn), we obtain a map A: CR^CR®CR. Define a map ε: CR-*R

by the projection.

PROPOSITION 2.5. An(Kn) = Σ σ v v =πK σ ®K v for each πVn.

PROOF. Res |* x S Kπ takes value 1 on conjugacy classes with the shape π

in the canonically embedded subgroup Sp x Sq of Sn and 0 elsewhere. A pair

(5, t) in SpxSq with the property that shapes of s, t are σ, v is embedded by ipq

to an element with shape σvv, and conversely. Hence the proof is complete.

The coassociativity and the counit conditions for a coalgebra are immediate

from Proposition 2.5, because

(\®Δ)Δ{Kπ) = Σ P v P > v P » = n p p β

= X π ® l , and {ε®\)Δ(Kn) = l®Kπ.

It follows that CR forms a coalgebra with respect to the comultiplication A and

the counit ε. Then it is straightforward to see that A(KπKσ) = A(Kπ)A(Kσ) holds

true. Thus we have proved

PROPOSITION 2.6. CR is a Hopf algebra.

This fact is known. For example, see Geissinger [3].

THEOREM 2.7. CF is a polynomial Hopf algebra in variables Cί9 C2,.. ,

CΠ,..., or in variables γu y2» » 7«ί Cz Z5 a divided polynomial Hopf ring

D\CU C2,..., C.,...].

As a matter of fact, CF is a polynomial Hopf algebra if F is a field of charac-

teristic 0.

LEMMA 2.8. Λ(αn)= Σ , +y=n α,®α, , ^(J8-) = Σ , + J =« A

PROOF. 4(α«) = Σ.H, (Sgn π)A(Kπ) = Σ^n (Sgn π) (Σ P v p ,= π

= Σ , +J=Λ.p^i,p.HJ (Sgn (p v p')) Xp®Xp.

= Σ i + J =B (ΣPHi (Sgn p)K,)<g>(ΣP,H, (Sgn p ' ) ^ p .

= Σ ί + J = n α i ®α J

Similarly, we obtain the last two equalities.
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§3. Self-duality

By the usual inner product

</, 0> = (lln\)ΣtesJ(t)g(t) for f,ge CF(Sn),

the vector space CF(Sn) becomes an inner product space over F . Then the

Frobenius reciprocity theorem states that for any subgroup H in Sn and f o r / e

CF(Sn) and geCF{H),

holds true. If a bilinear form β is defined on CF by the orthogonal sum such

that for/e CF(Sp) and g e CF(Sq)

0 if pφq,

then the graded vector space of finite type CF becomes an inner product space.

It is obvious that β induces a vector space isomorphism λ: CF-*C% by the

map Λ,(/) = /?(/, ) for feCF. Since CF is a Hopf algebra, its dual C% is also a

Hopf algebra with multiplication Δ* and comultiplication m* if C$®C$ is

identified with (C F ® CF)*. It is easy to see that λ is a Hopf algebra isomorphism.

By definition,

ί 0 if π Φ π',
<Kπ, iίπ,> = (1/n!) Σres Kπ(t)Kπ,(t) =

[ l/|π| ifπ = π'.

For a base {yπ( = Π?=i y*')lπl"n} f°Γ CF(SΠ)> w e obtain

0 if π # π',

|π| if π = π'.

It follows that {γπ} is an orthogonal base. Since

° * " " W ' (3.1)
1 if π = {n} ,

A(yΠ) = ι̂ M, denoted by Atiyah, maps K{n} of the n-cycle into 1 and the other charac-

teristic functions into 0. Thus, we have

PROPOSITION 3.2. The isomorphism λ: CF-+C% maps yn into ψn. Hence
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THEOREM 3.3. Let αM=Σπ l_M(Sgnπ)ICπ and let γH = nK{n). Then we

obtain Newton's formula,

rn-ai7 M -i+a27n-2~-+(-i) w - 1 a n -iyi+(-l) n na r t = 0. (3.4)

PROOF. Denote by N(y, α) the left-hand side of the equation (3.4). If
λ(N(y, α))(Kπ) = <iV(y, α), Kπ} = 0 for any πhπ, then we get N(γ, α) = 0. For
ί = l,..., n, consider

(-l)- ίαn_ ίy i, Kπ} = ( - l ) " - ^ - , ® ^

= ( - I)""1 Σ,vp,=7t <

If π does not contain i as a member, i.e., πf = 0, then the last summation is 0
because (γh Kp,} = 0 for any p' with pvρ' = π by (3.1). Assume π t ^0. Then
by removing i from π, we obtain a partition π Λ {/} of n — i with (π Λ {/}) v {/} = π,
and we get

^ - l ) " - ' ^ . ^ , Xπ> = (-!)»-'<«,-„ KnA{i]> (by (3.1))

= (-l) w - / <Σ π ^- ί (Sgnπ0X π ,, KπA{i}) = (^l)--'(Sgn (πΛ {i}))/|πΛ {ί}|.

Since Sgn(πΛ {/}) = (Sgnπ)(-l) ί + 1 and |πΛ{i}| = |π|/π£/, we obtain

α - l ) - ^ . ^ , Kπ> = (-l)«+KSgnπKί/|π|.

Hence for any πhn,

<N(α, y), Xπ> =Σ?=i (-l)"+1(Sgnπ)π li7|π| + (-l)«n<αΛ, Kπ>

= (-l)M+1(Sgnπ)n/|π| + (-l)"n(Sgnπ)/|π| = 0.

This completes the proof.

Solving the system of linear equations in Theorem 3.3 with respect to
7i,..., yΛ, we obtain yn = Qn(<x1, α2,...,αΠ), which is the well-known n-th Newton
polynomial with coefficients in Z. Solving the system with respect to α,,..., αrt,
we also have otn = Q(yl9 y2,..., 7n) w i t r l coefficients in the rationals.

COROLLARY 3.5 (Girard's formula). Set απ = αϊ1 α;»/or πhn. Then

yrt = ( - i ) w " Z n H M ( - i ) * 1 + - " + ^ ^

PROOF. It is an immediate consequence of the fact that yn = Qn(oίu..., <xn).
(See, for example, p. 195 in [9].)

Similarly we can prove
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PROPOSITION 3.6. y^/?^,,-i + -hj8n_i7i~njβn=O holds true. Hence

, and

§ 4. Frobenius' fundamental theorem

Let Hnk = Symklxί, x2> >xn] ^ e *h e H-module of symmetric functions of

degree k in n variables xu x2> * > xn a n d let π£: Hnk-^Hmk for non-negative

integers n, m with n > m be defined by

πj(/(xi,.. , *„)) =/(x i , . . , xm, 0,..., 0).

Then {Hnk; πj,} forms an inverse system of jR-modules. Consider H k = \imHnk.
n

Then then-thprojection π M : H k->Hnk is an isomorphism if n>k. Let aΛfki hn>fc,

and 5 n k be the fc-th elementary, homogeneous, and power symmetric functions

in n variables, whose inverse images under πrtjfe are denoted by ak9 hk9 and sk9

respectively. They are called the /c-th elementary, homogeneous, and power

symmetric functions in infinite variables xu x2,...,xn9. . . It is obvious that

αfc = (0,..., 0, aktk9 0 fc+1)fc,...), hk = (hltk,..., hKk, hk+l)k9...,), and sfc = O l j f c,..., 5 M ,

sk + 1 ) f c,...). The graded ^-module HR = {Hjfc|fc = 0, 1, 2,...} forms an β-algebra

by defining

for feHp and geH r It is well known ([3], [4]) that HR is a polynomial

Hopf algebra PΛ[fli,..., αM,...] = PΛ[ft1,..., /?„,...] if we define a comultiplication

^ W = Σ i + j = » « i ® ^ ^ ( ^ τ i ) = Σ t + i = « ^ ® ^ , and the obvious counit. When

R — F9 then H F is known to form P F [s l 5 . . . , 5n,...] with J ( s n ) = l ® s w + sΠ®l.

In this section we shall study the fundamental theorem due to Frobenius by

bridging between C F and HF rather than between the representation algebras

RF and HF. By this way our approach will hardly employ representation theoretic

arguments.

THEOREM 4.1. A map T: CF-^HF defined by Γ(ym) = sm is a Hopf algebra

isomorphism such that Γ(αJC) = αJC( = αϊ1 α;») and Γ(j8π) = /iπ( = /if1 /i;") for

nVn.

PROOF. From Theorem 2.7, C F = PF[y1,..., yn,...] with J(yΛ) = l®yn-fyΠ®l.

Hence Γ is a Hopf algebra isomorphism. Thus T(αn)=Γ(Q(y1,..., yΠ)) =

Q(T(yί)9..., T(yM)) = g(51,..., sn) = an and T(απ) = απ, by Corollary 3.5. Similarly,

T(βn) = hn and T(βn) = hπ by Proposition 3.6. This completes the proof.

COROLLARY 4.2. C F = P F [ α l 5 α2,..., «„,...] = P F [ 0 t , jS2,..., ^ n , . . . ] .
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PROOF. It is evident from Theorem 4.1.

Let RF(Sn) be the Grothendieck F-vector space of isomorphism classes of

complex representations of Sn. Then it is well known (for example, see [10])

that the character map χn: RF(Sn)^CF(Sn) is an isomorphism.

As in the case of CF, we define mpq\ RF(Sp)®RF(Sq)-*RF(Sp+q) and Δn:

RF(Sn)^ΣP+q=nRF(Sp)®RF(Sq) by I n d | ; ; | f o ^ i € and ΣP+q=nΦp!q^^s

s

n

P^

respectively. Since χ commutes with φPfψ Indf/;xS<i and Res£« x ^, χ defines

a Hopf algebra isomorphism from RF = {RF(Sn)} to C F .

For each πhn, let Sπ stand for St x ••• x Sι x ••• x Snx ••• x 5/J = 5f1 x ••• x S j " .

Then a trivial representation and a sign representation of Sπ are denoted by lSn

and A l t S π respectively. Let l S n and A l t S π represent elements ρn and ηπ in RF

respectively. If pn and ηn denote ρ[n) and η{n)9 then by definition χ{p^ = βn and

PROPOSITION 4.3. χ: RF^>CF is a Hopf algebra isomorphism such that

χ(pπ) = βπandχ(ηπ) = <xπ.

PROOF. It is easy to check that pn — ρ\x"-pn

n

n and ηπ = ηV'"r1nn f° r a n v P a r "
tition πhn. This completes the proof.

Defining F: RF^HF by the composite Toχ9 we obtain the fundamental

theorem:

PROPOSITION 4.4. The Frobenius isomorphism F:RF-+HF maps F-basis

elements p π = [Ind|^ 1 S J into hπ and ηπ = [Indf^ Alt Sπ] into an.

§5. Liulevicius' self-duality and Atiyah's Δ'

Let {Vπ} be the base consisting of irreducible representations of Sn and let

<Kπ, Vπ,y = δππ>. It is well known that the character isomorphism χ: RF^CF

preserves inner products. Then an isomorphism μ: RF-^R^ with a commutative

diagram

RF -*-> CF

I" t
is evidently obtained by μ([M])([ΛΓ]) = <M, N> for any representations M and N

of symmetric groups. This comes from the verification that (χ*λχ([M]))([iV]) =

WXM))(XN) = <XM> /iv> = <M, N>. Atiyah [I ] denotes by σn and λn elements in

jRJ satisfying
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1 if V,= \Sn, ί 1 i f F π = AltS π ,
and An([(/J) =

0 otherwise, [ 0 otherwise.

PROPOSITION 5.1. μ: RF-*RF is a Hopf algebra isomorphism such that

η,^ = λn. Hence Rf = PF[σu..., σn,...] = P F [;. 1 , . . . ( A,,...].

PROOF.

Thus μ(pn) = σn.

Consider a

Similarly,

diagram

= Osn*

μ(nn)=ϊ

R

!ι

R

1 i f K = l s '
[ 0 otherwise.

„. This completes the

F * CF

X lr

, * ά' TT
LJΓ • i i P

proof.

where A' is Atiyah's isomorphism (Proposition 1.2 and Corollary 1.3 in [1]).

Then the diagram commutes, because A'μ(ηn) = Δ'{λ^ = an from Proposition 5.1,

(see §7).

COROLLARY 5.2. The Frobenius map F is equal to Tχ = A'μ.

Consider an element (α?)* in C$ which maps α? into I and απ into 0 if

π Φ {1"}. Then we obtain

PROPOSITION 5.3. λ: CF-*C% maps βn into (αj)*.

PROOF. Observe that n!</?„, αΛ> = Σ^H»Λ!(Sgn π'KKκ9 XJC,> = Σ

(Sgn π)/|π| = Σfesw Sgn ^ Then we obtain

</?„, αΠ> = 0 i f n > 2 , </? 1 > α 1 >= 1.

For πhrt, let / be a member of π. Then π = (πΛ {/}) v {/} and

(βn, απ> = <)?„, α^M,}^) = <Δ(βH)9 Λ^^®^}

βn.h απ A { i )> if i = 1,

by Lemma 2.8 and the above equalities. Therefore we see that

1 if π = {lw},

0 otherwise,

by induction on n. This proves the proposition.
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PROPOSITION 5.4. The map £:CF-+CF defined by ^(αrt) = (αϊ)* is a Ch-

version of the Liulevicius Hopf algebra isomorphism ([7]).

PROOF. By Corollary 4.2, φ: CF-+CF defined by ψ(oιn) = βn is an isomor-

phism. Then £ = λoψ is an isomorphism. If £ is translated via T: CF->//F,

the Liulevicius isomorphism maps an into (α?)*. This completes the proof.

§ 6. Comment on Rz

In accordance with Professor Sugawara's suggestion, this section is added

to the original draft of the present paper.

By a lattice L in a k dimensional complex vector space Kwe mean an additive

group in V which is generated over Z by a base {bί9 b 2,..., bk} f ° r ^ Since

{pn\π\-n} and {^π|πhn} are bases for RF(Sn) and since hπ = T(pπ) is an integral

linear combination of the basis elements aπ = T(ηπ) and vice versa, they generate

a lattice Ln in RF(Sn). Then the graded lattice L = {Ln} forms a polynomial

Hopf ring Pz[ρu ρ2> > Pir ϋ ^ z D / i . Άi>~•>*/»>•••] under operations in i?F.

It is also evident that L is a Hopf subring in Rz

 = {Rz(Sn)}> where Rz(Sn) is a

free abelian group generated by the isomorphism classes of irreducible complex

representations of Sn. We are going to show that the inclusion map

i:L >RZ

is, in fact, an isomorphism. A bilinear form on Rz defined by <Kπ, Kπ,> = (5π>π,

for a base {FJπhn} consisting of the irreducible representations of Sn is an inner

product on Rz. Since the group isomorphism μz: RZ-*RZ defined by μz{[MΊ)

= <M, ) for any representation M, preserves multiplication and comultiplication

by virtue of the Frobenius reciprocity theorem, μz is a Hopf ring isomorphism.

Consider a commutative diagram

0 >L-URZ

ψ'z ψz

where μz = μz\L. Since the ranks of free groups Rz(Sn) and Ln are both the number

of the partitions of n for each n, Coker / is a torsion group and hence i* is a

monomorphism. Note that μz(P«) = θ7ϊ)* maps η" into 1 and ηπ into 0 if πΦ

{ln}. To see it, we observe that

0 otherwise.
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If μz is proved to be epic, i as well as μz are isomorphisms because of the com-

mutativity of the diagram shown above.

Let £(L) be the cokernel of /(m): /(L)®/(L)-^/(L), where I(m) is the restric-

tion of the multiplication m in L to the augmentation ideal I{L) — {Ln\n> 1}.

It is well known ([8]) that μ'z is epic iff £(μz): J2(L)-> J(L*) is epic. It is evident

that £(Ln) is a free group whose generator is represented by an indecomposable

element ρn for each n. lfvn = Q(ηί9 η2,..., ηn) which is the n-th Newton polynomial

in ηu >/2,..., ηH, then vn is primitive in Ln because χ(vn) = γn and Δ(yn)=l®γH + yH®\.

Since any primitive element in CF(Sn) is a scalar multiple of K{n) and since nK{n) =

yrt = ( — l)wα? H— by Girard's formula, the subgroup «^(Lrt), consisting of primitive

elements in Ln, is a free group generated by vn and is a direct summand of Ln.

Consider an exact sequence

where /(x) = J(x)—l®x —x®l for any xeLn. Since j = {jn} is split, we obtain

an exact sequence

/(L )®/(L*) -UU> /(L ) -^U ^(L)* > 0.

It follows that J2(L*) = < ^ ( L ) * where

Consider a commutative diagram

where pn(ρn) is the generator of £(Ln) and μz,n(ρn) = (>/ϊ)* However, ;ί(0/ϊ)*XO

= (-1)". Hence £(μz): J2(L)->J2(L*) is epic.

This proves the following

THEOREM 6.1. Rz = P z [ p i , p2> > Pw> ] = ^zC^/n ^ 2 ' J ̂ /̂ •• ]

It should be mentioned that the proof employed for Theorem 6.1 is a re-

presentation theoretic version of Liulevicius' argument in [7], although the entire

content in the preceding five sections does not depend upon his paper.

§ 7. Atiyah's A' and Doubilet's forgotten symmetric functions

Let E be an n dimensional complex vector space with a base {eί9~ 9 en) and

let E®k be the fe-th tensor product of E. By letting Sk act on £®k in an obvious

way, E®k becomes an Sk-module. Then there exists the well known decomposi-

tion isomorphism
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ζ: Σπ^omSk(Vπ, E®k)®Vπ > E®k

defined by C(/® * ) = / ( * ) f o r / e h o m S k ( F π , E®k) and xeVn9 where {Vκ\π\-k} is

the complete set of irreducible Sfc-modules. Let T: E-*E be a linear map defined

by Tie^Xiβi for each i. Then T®k: E®k^>E®k is an 5k-map and hence induces

a linear map π(T): hom S k (F π , £&*)-» hom S k (F π , £®k). It is easy to see that

Trace (π(Γ)) is symmetric inxl9...9 xn with integer coefficients. Define

and define a homomorphism

< * : *z(S*) = h o m z ( * z ( S k ) , Z) — > //„,,

by 4 ; i k ( £ ) = Σ , H k ί ( n ) Trace(π(Γ))e//n, f c for ξe,R*(Sfc). Then we have

^ ( ^ ) ^ l hence Atiyah's homomorphism

is defined. By the definition of Δ'n>k it is immediate to see that A'(σk) = hk and

A'(λk) = ak, because hom 5 k ( l S k , E®k) is the /c-th symmetric power σk(E) and

homS k(Alt5 f c, E®k) is the A -th exterior power λk(E). Atiyah (Proposition 1.2

in [1]) shows that A' is a ring isomorphism.

Atiyah (Corollary 1.4 in [1]) shows that when Ank=^iai®bi for n>k, then

{αj and {£?J are "dual bases" to each other. The following proposition states

how the a{ determines the bt and vice-versa.

PROPOSITION 7.1. Given bases {αj for Rz(Sk) and {ί?J for H §k. 77κ?n

,̂fc = Σ/αi®fri */ flfld only if <αt , F~1(bj)y = δij9 where F is the Frobenius map

and δu denotes the Kronecker delta.

PROOF. Let F{cj) — bj and A k = Σΐ α i ® ^ί Then we obtain

F(cj) = A'μ(cj) from Corollary 5.2

= Σ i μ(cj) (aw by definition of A'

= Σ ι < ^ , aί>b\ = Σt<ai9 F-\bj)Wi.

Thus, b'ι = bi if and only if <αt , F~i(bj)} = δij. This completes the proof.

Corresponding to a base {αjπhfc} for H k there exists a base {dπ|πh/c} for

^z(Sjt) s u c n that A ik = Σ dπ®aπ. Then, by proposition 7.1

Since {^Λ|πh/c} is a base for Rz(Sk), we obtain

A ,k = Σ
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by repeated use of the proposition.

DEFINITION 7.2. A base {F(dn)\π\-k} for H k is called the Doubilet forgotten

symmetric functions ([2]).

In the rest of the section we shall determine the dπ so that the Doubilet

functions will be recovered. Note that d{k} is determined by Atiyah (Proposition

1.9 in [1]).

THEOREM 7.3. Let A k— Σπrfπ®flπ=Σπ>/π®^Tdπ), where a% is a monomial

of elementary symmetric functions. Then for πhk, we have

dπ = (1/π!) Σ^^σ/kDei^i)* 1 -^!— ikY",

where Qi(aί9..., at) is the i-th Newton polynomial for sL and

qσ = (d/da^.-id/da^Ks, (sσ = sV'~sσ

k* = QM^-Q^a^..., α k)'*).

PROOF. γσ = \σ\Kσ by Proposition 2.1, and we get

(χ-\Kσ\ F~\T{yσ))y = (Kσ, yσ,> = δσσ, (by Corollary 5.2 and (3.1)).

Therefore by Proposition 7.1 and Theorem 4.1,

Since sσ is a polynomial of degree k in variables al9...,ak, the coefficient of the

monomial an = a\i"-ak

lk in sσ is equal to qjπl, where qσ is the one given in the

theorem. Therefore, by rewriting Δ k in terms of aπ, we obtain

where r 1 ( ^ ) = (Vkl)β 1 (^ 1 ) σ ' Q ^ 1 , . . . , ηk)
σk by Proposition 4.3. This proves

the theorem.

For example, in the case when /c = 3 ^ t us calculate the Doubilet functions

3, and ωr 2) = 5aίa2~2a] — 3a3.

Hence the projection of ω{ί 2]EH 3 into if3>3 is the symmetric function

If we denote by M ( 2 f l ) the Specht irreducible representation of S3 (for definition,

see §8), then d { l 3 } = η3

1-2η1η2 + η3 = [ l s 3 ] , d{3} = f/?-
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], and d{U2) = 5ηλη2-2η\-^η^\_M~\-2i\si\. It follows that

<</π, ηn,} = δπjΐ, as we should have.

§ 8. Inner plethysms

In this section, R denotes Rz. Let M be a representation of Sn and let

{ex, e2,..., eω} be a base for M. The /c-th tensor product M®* is considered as

a representation of Sn x Sk when a linear operation is defined by

(σ, t)(eh®ei2®~-®eit) = σeit

for any (σ, t)eSnxSk and for any basis element e^®--*®^ with \<iι9 /2,.. ,

. Since R(SnxSk) is isomorphic to R(Sn)®R(Sk\ the map

is defined by

= [Λf®*].

It is shown by Atiyah (Proposition 2.2 in [1]) that ® k is well defined.

We notice that ® k ( [ M ] - [ N ] ) for a general element [M]-[iV]eΛ(S Λ ) is

given by the following

PROPOSITION 8.1. ®/c([M] - [ΛΓ]) = Σy=o ( -

PROOF. It is sufficient to show that

(M, N)k = (Σ)=oj^nlnd^k_jX

This can be proved by the induction on k.

DEFINITION 8.2. By an inner plethysm T(λ) associated with an element

λ e Rz(Sk) w e mean an operation

T(λ): R(Sn) — R(Sn)®Z = R(Sn)

defined by (1

In the sequel, we denote Γ(X)([M]) simply by λ([M]) for any 5M-representation

M, if no confusion arises.

PROPOSITION 8.3. For any λτsR*(Sk) with τ\-k and for any Sn-represent-

ation M, we have

^τ([M]) = [homS k(Indf? Alt Sτ, M®Λ)] .

PROOF. It is well known that if {FJσh/c} is a complete set of irreducible

Sfc-representations, then there exists a (Sn x ^-representation decomposition



Hopf algebra of class functions and inner plethysms 239

where we consider homS k (Vσ, M®k) as an Sw-module with Sπ-operations defined

by σf = σ®
kof for fehomSk(Vσ, M®k) and σeSn. Then by definition

T(λτ)([M]) = Σ.H, Aτ([KJ) [homS

However,

f ; Aits τ , κσ>v;

= Indf* Alt S t.

Hence we obtain the proposition.

PROPOSITION 8.4. For any partition τh/c and for any Sn-representation

M we have

PROOF. By the Frobenius reciprocity law we have

homS k (Indf Alt Sτ, M®k) - homS r (Alt 5T, Resfj M®k).

Since Alt S t^(Alt S O ^ 1 ® •• ®(Alt Sk)®τ* and Resfτ* M®k~M®τ>® -<g)(M®k)®τκ,

we obtain

homSτ (Alt Sτ, Resfί M®k) - ®f=1 (homSi (Alt S,,

Therefore we have the proposition by using Proposition 8.3.

Note that this proposition is stated by Atiyah as R* is a subring of Op(R).

(See the first line on p. 178 in [1].)

Using the same methods as in the proofs of Propositions 8.3 and 8.4 we may

prove the following

PROPOSITION 8.5. For any στeR*(Sk) with τ\-k and for any S^representa-

tion M, we have

= [homS k(Indf; lS τ,

PROPOSITION 8.6. For any Sn-representations M and N, we have

σ,([M] + [Λ/]) =
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PROOF. These formulae can be proved by using Propositions 8.3-8.5 and

8.1, (cf. p. 178 in [1]).

Let H be a subgroup of a finite group G and let G/H be a C-set with the usual

G action on the set of left cosets. Then it is easy to see that the permutation

representation associated with the G-set GjH is isomorphic to a G-representation

Indg 17/ of the trivial //-representation iH. Suppose that H contains no normal

subgroup of G except {e}. Then the action of G on G/H is effective in the sense

that if gx = x for any xeG/H, then g — e. In this case G can be embedded in

the permutation group Aut(G///). Hence the G-set GjH is the G-restriction of

the Aut(G///)-set G/H. It follows that the G-representation Indg \H is isomorphic

to the G-restriction of an 5N-representation FN with the natural Sjv-action, where

N is the index of H in G and FN denotes the N dimensional complex vector

space. Summarizing what we stated above, we obtain

PROPOSITION 8.7. Let H be a subgroup of a finite group G with the property

that H does not contain any normal subgroup of G except {e}. Then G can be

embedded in the permutation group Aut G/H = SN, where N is the index of H

in G. Considering G as a subgroup of SN, the induced representation Ind# 1H

of the trivial H-representation 1H is isomorphic to the G-restriction of the SN-

permutation representation FN.

LEMMA 8.8. Let πYn and let Sf1 x ••• x Sj» be a subgroup of Sn. If πΦ{n},

then Sπ has no normal subgroup of Sn except the trivial group consisting of the

identity.

PROOF. Since πΦ{n), there exists fc(l<;fc<n) such that SπczSn^kxSk. If

ttg:5, the only non-trivial normal subgroup of Sn is the alternating group Λn.

Suppose that Sπ^An. Then (n — k)\kl>n\/2, which is a contradiction. When

n = 1, 2, 3 and 4, it is easy to check the validity of the lemma. This completes

the proof.

Combining Proposition 8.7 and Lemma 8.8, we obtain

PROPOSITION 8.9. Any basis element p π = [Indf^ l S π ] in R(Sn) is [Resf^ F i V ] ,

where N is the index of Sπ in Sn.

By the Specht irreducible representation M{N~1Λ) we mean the subrepresenta-

tion of FN consisting of (z l 5 . . ., zN) with zxΛ f-zN = O in FN. Since we have

the decomposition FN = M{N~1'ί)®\SN9 we have Indf^ l S π ca Resf^ FN =

THEOREM 8.10. For any basis element ρπeR(Sn) (πhn) and for any basis

λτeR*(Sk) (τh/c), λτ(pπ) can be computed effectively provided the character of
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i-th exterior powers of Specht irreducible representations MiN~ίΛ) for any i

and N9 can be computed.

PROOF. From Propositions 8.6 and 8.9 we obtain

Proposition 8.4 allows us to proceed At(pπ) = A1(pπ)τi AΛ(pπ)
τ'c. Hence

the proof is complete.

Now we calculate the character of >lί([M(iV-1'1>]) = [homS i(Alt Sh

for all N and i.

PROPOSITION 8.11. Suppose that σeSN has the shape τh N with τ i = 0(/</c)

andτk>0. Then

PROOF. M(N~UI) is the SN submodule of the permutation representation

F" spanned by e 1 = ( l , 0, 0,..., 0, - 1 ) , e2 = (0, 1, 0,..., 0, -1),. . . , and eN.^

(0, 0,..., 0, 1, - 1 ) . The action of SN on M ^ " 1 ' 1 ) is given by

for any σeSN, where eN is considered as 0 whenever eN occurs in the formula.

Since two elements in SN are conjugate if and only if they have the same shape

and since characters are constant on conjugacy classes, we may assume without

loss of generality that the disjoint cycle decomposition of σ is arranged such that

the cycles appear in descending order with respect to cycle lengths and the

integers occur in ascending order. For example, if the shape of σ is {22, 3, 4},

then σ is assumed to be

(1,2, 3, 4)(5, 6,7)(8,9)(10, 11).

Since ^ ( [ M ^ " 1 ' 1 ) ] ) is represented by the i-th exterior power A^iM^'1'1^)

of M*"-1 '1* with a base B = {eaι Λ ••• Λ e α J l < α 1 < < α i < i V - l } , the action of

SN is given by

σ(eΛί Λ Λ eat) = σeΛχ A . . . Λ σeΛi = (έ? σ ( β l ) - eσ(N)) Λ . . . Λ (eσ((Xi) -eσ{N))

= «σ(«i) Λ ••* Λ eσ(at) " Σ J = l ^ ( « i ) Λ - ' Λ ^(ccj-O Λ ^σ(N) Λ ^σ(« i + 1)
 Λ — Λ «σ(α,)
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By our hypothesis on σ whose shape is τVN with τ/ = 0(/</c) and τ J t>0, we have

If {α l v.., αl} = {σ(α1),..., σ(α,)}, then {α1?..., α,}c{l, 2,..., N-k] and σ

restricted to {α^..., α j gives rise to a "subpermutation" of σ. If the shape of

the subpermutation is denoted by π, then πVi and σ(eaι Λ ••• Λ eα.) = (Sgn π )eΛι A •••

Λgβ. . If πhf, then the total number of subpermutations of the shape π is

If {aί9...9 α j = {cr(α1),..., ^ α j - i ) , N - f e + 1 , σ(αJ + 1 ) , . . . , σία,)}, then there

exists an integer ω with /c>ω>0 such that {a l v.., a j = {a1,..., a f_ω, JV — k + 1 ,

. . . ,N-fc + ω} and {αl5..., α i_ω} = {σ(α1),.. , σ(αf_ω)}c:{l, 2,..., iV-/c}. Denot-

ing by πVi — ω the shape of the subpermutation of σ restricted to {α1?..., αι _ω},

we obtain φaιΛ ' Λeat) = σ(eaίΛ...ΛeΛi_mΛeN-k+ίΛ.

ΛeN_k+1 A •••ΛeN_fc+ω = + (- l ) ω (Sgnπ) (eai A >~ Aea). Again the total num-

ber of subpermutations of σ with the shape π\-i — ω is n(π).

By the above arguments, the diagonal entries of the matrix representation

of σ with respect to B = {eaiA •- Aea.} contain n(π) numbers of ( —l)ωSgnπ for

each πVi — ω with 0 < ω < k. This completes the proof.

For any integer N and any sequence μ = {μί9...9 μj} of positive integers with

N>μί>'">μj9

1WQ define a partition μ(N) as

μ(N) = {N-μl9 μί-μ2,...9μJ-ί-μj, μj}\-N.

We now evaluate

PROPOSITION 8.12. σ ί([F i V]) = Σ μ [IndSf£ ( N ) l S μ ( N ) ] , where the summation

is taken over all sequences μ = {μl5..., μ7} of positive integers with N>μί>-"

PROOF. Let {eί9...9eN} be a base for F N . It is known that h o m s . ( l S l ,

is isomorphic to the i-th symmetric product of FN. A base for the i-th

symmetric product of FN consists of canonical elements ^ / ® ® e ^ with

{α1?..., αN} = {!,..., iV} and O ^ m ^ ^mjv such that mjH \-mN = i and if

ma = mh and α<ί?, then oca<ocb. The action of 5 N is given by σ(eJ1

ι® ®βJ;j
Γ) =

^ i ® ® e ^ w ) which is considered as a canonical element by exchanging

factors if necessary. Then two basis elements e j / ® - - - ® ^ and ej5;® ®ejjjj

are in the same orbit under the action of SN if and only if mk = nk for all k.

Now, for a basis element v = e%i<g)'-®e12g, let μz be the number of k's with
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mk>l (/ = 0, 1, 2,...) Then μo = N and we obtain a sequence μ( =

μj} with N>μλ>' '>μj>\ and μ{-\ \-μj = mι-{ hmN = /. For σeSN,

σ(v) = v if and only if mσ(k) = mk for all k. Thus we see that the stabilizer of v

is SμiN). It follows that the orbit of v under SN is Indf£(JV) lsμ ( W ) and that two

basis elements v and 1/ are in the same orbit if and only if μ(v) = μ(v'). This

completes the proof.

Littlewood has done these calculations in Propositions 8.11 and 8.12. (See

Theorems I and II in [6] and p. 139 in [5].)

PROPOSITION 8.13. For any basis element ρn e R(Sn) with πhn,

σfoπ) = Σ μ Resf£ pμ(N) (N is the index of Sπ in Sn)

where the summation is taken over all sequences μ = {μl9..., μy} with N>μί>

>μj>0 and /i, + — + μ y = ί , and μ{N) = {N-μl9 μ1-μ29...9 μJ.ι-μj9 μj}\-N.

PROOF. It is immediate from Propositions 8.9 and 8.12.

TEHOREM 8.14. Any inner plethysm T(λ): Rz-+Rz can be evaluated by the

procedures established in this section.

PROOF. For any element ξeR(SN) and for any λeR*(Sk) with λ =

ΣrHk aτλx (aλ e Z), we have

by Proposition 8.4. If ξ = [M] — [N], then Proposition 8.6 shows that

λi(ξ) = ΣJ-o ( " 1 VA,_/[Af])σ/[N])

Since the SΠ-representations M and N are direct sums of basis elements of pπ 's,

λi-j{[MJ) and σ/[Λ^]) are calculated by Propositions 8.6, 8.11, 8.13, and Theorem

8.10. This completes the proof.

Finally, we would like to comment about the character of σ / p j . Since

Pμ(N) = PN-μίPμί -μ2" 'Pμj- , -μjPμj*

X(Pμ(N)) = χ(pN-μMPμi-μ2>~X(Pμj)

can be effectively calculated by the facts that χ(p, ) = Σπi-ί Kπ

 a n ( ^

KnKσ = ((π v σ)!/π!σ!)XπVσ (Proposition 2.1).

This, in turn, enables us to evaluate the character of σf(pπ) by Proposition 8.13.
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