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1. Introduction

This paper is concerned with a system of elliptic variational inequalities
each of which is subject to constraints from upper and lower sides.

Let Q< R" be a bounded domain with smooth boundary I', and let f?, p=
1,..., m, be given functions of xe Q. Consider m second order elliptic differential
operators

Ao = — 3N g () 00+ SN br(x) U 4 er(x)o
Lj=17 0x,0x; =17 0x;

in Q. The purpose of this paper is to investigate the existence and uniqueness
of solutions to the Dirichlet problem for a system of variational inequalities of
the form

uPt(x) — k £ uP(x) S urtl(x) + K, xeQ,

APuP = fr if wuPtl(x) — k < uP(x) < uP*(x) +K, xeQ,
(1.1 Arur < fr if uP(x) = uPti(x) + K, xeQ,

Apup > fr if uPti(x) — k = uP(x), xe€Q,

uP(x)=0 on I, p=1,...,m,
where we have put u™*! =u!, and k, K are two given positive constants.

The problem (1.1) has been motivated by a recent paper of L. C. Evans and
A. Friedman [3] in which the Dirichlet problem for the Bellman equation

SUpPps 1 (APu(x)—fP(x)) =0 a.e. in Q,
(1.2)
u=0 on T,

was studied by an analytic method. In [3] they introduced the approximate
system

APu? + B(up—up*) = f7 in @
(1.3)

uP=0 on I',p=1,.,m,
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where um*! =ul, and f, represents the penalty function: §,(¢)=0 if <0, B, (1)—> 0
if >0, e-0, and obtained the solution of (1.2) as a limit of solutions of these
systems. Furthermore, as a system which is the limit case, as e—0, of the system
derived from (1.3) with B,(u? —uf*!) replaced by B,(u?—k?—uP*!), they studied
[3, Sec. 7] the system of variational inequalities with unilateral constraints

ApyP < fp, uP < kP + uPt! in  Q,
(1.4) (APup —fPy(uP —k? —ur*) =0 in Q,

up=0 on I,p=1,.,m,

where umt1=u'! and the k? are positive constants. It was probabilistically inter-
preted that the solution component uP(x) of this system (1.4) represents the optimal
cost starting at x € Q in state p of some cost functional.

Our system (1.1) is a natural extension of (1.4) to the case of bilateral con-
straints.

The outline of this paper is as follows:

In Section 2, after stating our notations and assumptions, we formulate the
problem (1.1) in a weak form by using the corresponding bilinear forms on
H{(Q) x H{(Q).

We shall solve the system (1.1) by the penalty method. For that purpose,
in Section 3, we construct an approximate system by using a suitable penalty
function and prove the solvability of this system.

Section 4 is devoted to deriving a priori estimates in W1-*(Q) for approximate
solutions given in Section 3. The main idea is quite similar to that of L. C. Evans
and A. Friedman [3], or P. L. Lions [4]. However, since the convexity of
penalty functions cannot be expected in our case, their use needs some careful
consideration.

Since these a priori estimates show the convergence of approximate solutions,
we shall see in Section 5 that the limit functions satisfy the weak problem for-
mulated in Section 2. Unfortunately, however, we know nothing yet about the
uniqueness of solutions of this weakly formulated problem.

In Section 6 we shall prove that these limit functions have indeed W2:7(Q)-
regularity for any r, r<oo. To do this, we derive a priori estimates in W2:"(Q)
for approximate solutions, using the fact that the limit function is a solution of the
weakly formulated problem. In this section, because of bilateral constraints, we
impose a condition on the ratio k/K which did not appear in [3].

In Section 7 we study the uniqueness of our solution of the problem (1.1).
We shall introduce a stochastic switching game and represent the solution com-
ponent uP? as a value of this game.

In the case of unilateral constraints, the solution component admits a
representation as the optimal cost of some cost functional ([3]). In our case,
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however, we shall associate with it a stochastic switching game in which two
players compete for the value of some cost functional.

As a result of this representation, we obtain the uniqueness of solutions of
(1.1) in the-class W2r(Q) n C(Q).

The author would like to express his hearty gratitude to Professor S. Aizawa
for his constant encouragement and kind advice.

2. Formulation of the weak problem and assumptions

Let Q be a bounded domain in RV with smooth boundary I We denote by
Wir(Q), 1=r= oo, the usual Sobolev space of real functions with norm ||-|;,.
The space W{:"(Q) denotes the closure in W4:1(Q) of the set of all C*-functions
with compact support in Q. As usual, we write Wo-"(Q)=L"(Q), W/2(Q)=HJ(Q)
and W{-2(Q)=H{(Q).

Let m>1 be a fixed integer. For p=1,..., m, we consider the second order
elliptic differential operator

(21) APy = — 21 Jj= lau(x) a 6 Z lbp(x) — + cl’(x)v
and the corresponding bilinear form on H}(Q) x H{(Q):

p _ ou 0 » 0
) ar(u, ) = § (ZHjrat () 2 2+ T G g

+ c”(x)uv) dx,

where l;p(x) bp(x)+ Z} 1 a l](x)

We make the following assumptions:
(A.1) There exists a positive number o such that
2N =1 0t (x)EE; = wlE)?

forall p=1,...,m, xeQ and £€ RN.
(A2) a?fj, b%, cPeCY (@) foralli,j=1,...,N and p=1,...,m
There exist positive constants M, and M, satisfying

jaf, (), l%as’j(xw < M,

2 b1 | = 9,
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and

0
0x,

(O, | 52— *()| < M,

foralli,j,r=1,...,N, p=1,...,m and x € Q.
(A.3) There exists a positive constant ¢, such that
cP(x) 2 ¢o

for all p=1,...,mand xe Q. Moreover, we assume that c, is a sufficiently large
constant depending only on M, and « so that the inequality c,>4M appearing
in the proof of Lemma 4.3 is valid.

By (A.2), we can find a positive constant M; such that
162(x)| < M

foralli=1,..., Nand p=1,..., m. On the other hand, by (A.3), the bilinear forms
ar(-, -) are coercive i.e., there exists a positive constant a’ such that

(2.3) ar(u, u) = o'l|ull},,

for all p=1,..., m and u e H(Q).
In the following these constants M7, a’ will be denoted by the same letters
M, a, respectively.

Let f?, p=1,..., m, be given functions of xe @ and satisfy the following
assumptions:

(A.4) freCV Q) for p=1,..., m, and there exists a positive constant M5 such
that
0

6)6, fp(x) é M3

LfPCols

forall r=1,....,N, p=1,..., mand xe Q.

Let k and K be two given positive constants. For these k, K, we impose the
following condition:

k m—gq _ _
(A.S5) T#—q——~ forall g=1,...,m— 1.

For ¢ € H{(L2), we define a set () in H}(2) by
2.4) X W) ={ve HYQ); y(x) — k < v(x) £ Y(x) + K, a.e. in Q}.

Using these notations, we may state our problem in a weak form as follows:
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Weak problem: (1) Find u? € o (u?*'), p=1,..., m, satisfying
(2'5) ap(up’ v_uP) ; (fp, U_up)

for all ve A (up*!). Here we have set u™'=u'! and (-,-) on the right hand
side denotes the inner product in L%(Q).
(2) Investigate the regularity and uniqueness of solutions of (2.5).

For y € H(RQ), we use the notations

Y*(x) = max {Y(x), 0}, ¥~ (x) = max {—y(x), 0}.

In the following of this paper we denote various constants depending only on
M, M,, M3, a, 2, m and N by the same letter M.

3. Approximate system

To solve our problem (2.5), we use the penalty method. In this section we
construct penalty equations which approximate (2.5) and prove the solvability
of these equations. Throughout this section we always assume (A.1)~(A.4).

We choose the so-called penalty function f: R— R satisfying the following
conditions:

BeC*(R),
0, if t£0,
(3.1 B(1) = { )
t—1, if t=2,

0<B(®<1, f'(H)>0and B"(1)>0if 0<t<2.
For each ¢>0, we put

(3.2) g0 = B(L).
We note that it holds

(3.3) - 1=BBH-1B1=0

for all e>0 and t€ R.
For each ¢>0, we consider the following approximate system:

ufewzr( Q) n Wi"(Q),1 <r < oo,
(3.4) APu? + B(uP—uPt'—K) — B(uP*1—k—uP) =f? ae. inQ,
p=1,...,m, where urtl =yl

To prove the existence of solutions of (3.4), we apply a successive approxi-
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mation method. In the following of this section we omit the subscript ¢ for sim-
plicity.

First, we define u§=0forall p=1,..., m. Forn=1and p=1,..., m, we define
u® inductively by the solution of
3.5 APul + B(ul—ult} — K) — B(ubtl—k—ul)=f7 a.e.in Q,

' u? =0 a.e.on I, where umt! =ul_,.

It is well known that there exists a solution u2e W2:7(Q)n Wi-"(Q), 1=Sr< o

(for example, we refer to A. Bensoussan [2], Theorem IV. 2. 1, p. 143).

LemMA 3.1. Let u2, p=1,..., m, be a solution of (3.5). We have

[unllo,0 = SUP1<p<mll fPll0,w/Co-

ProOF. Let y=sup;<,<mllfPllo,/co- First we show that uf(x)<y by
induction on n. Clearly, the case n=0 is valid. We assume uf_; <y for
p=1,..., m. Multiply the both sides of (3.5) by (uZ —y)* and integrate over Q.

Noting that (uZ—y)*e W§n(Q) in view of (uf—y)|,=—7<0, we have, by
integration by parts,

aP(uy—v, (up—yp)*) + (Blup —uiii—K), (up—7)*)
— (Bupti—k—up), (ug—y)*) = (f—cPy, (uy—7)").

For each term, we get

(1) ar(up—y, (up—y)*) 2 allf-n*l}. by (2.3);

(ii) By —upti—K), (up—7)*) 2 0;

since u2+1 — k—uf >0 implies (u5 —y)* =0 by the assumption of induction, we get
(iif) (Bunti—k—ub), (uf—y)*) = 0;

finally, by the definition of y, f?—cPy<0.
Combining these estimates, we obtain
af(up =932 S0,

so that uf <+y.

It is quite similar to prove the part —y<u?. Multiply the both sides of
(3.5) by (u2+7y)~ and integrate over 2. In this case, we have by the assumption
of induction

(Bup —upti—K), (uy+7)7) = 0.

Using this and arguing as in the preceding case, we get —y=<uZ. This
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completes the proof.

LEmMMA 3.2. For each ¢>0, there exists a solution u® of (3.4) which belongs
to C2*9(Q), 6< 1.

PROOF. Write (3.5) as
(3.6) APup = P — Blup—upli—K) + Buzti—k—up).

By Lemma 3.1, the right hand side of this equation belongs to L*(£2). Hence,

by applying the linear elliptic theory, there exists a constant M, for each ¢, such
that

luzllz, = M,.

Consequently, there exists a solution u?e W2r(Q)n Wi-n(Q) of (3.4) which
is the limit of a suitable subsequence of {u?2}. Again,in (3.6), since the right hand
side now belongs to C!(Q), we conclude uf € C2*%(Q). This completes the proof.

4. A priori estimates

In this section we shall derive some a priori estimates which are independent
of ¢, on the solution u?, p=1,..., m, of (3.4). Let the assumptions (A.1)~(A.4)
be always satisfied.

We write 0/0x;=0; and use the summation convention for simplicity.
LeMMA 4.1. We have
luZllo,0 = sSUP1<p<m I.fPll0,c0/Co-
Proor. This is nothing but Lemma 3.1.
LEMMA 4.2. We have
||uf||1,oo,r =M,
where || - ||y, ,r is the norm in the space W*-=(I').

Proor. Since I' is assumed to be smooth, the exterior sphere property holds,
i.e., there exists a positive number p such that for each y e I we can find § € RN\Q
satisfying

{zeRY; |z — 9| < p} n Q= {y}.
Let 4>0 be a number to be determined later and consider

w(x) - e"ﬂﬂz - e"’l‘lx'ﬂz_
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Since a simple calculation yields
APw(x) 2 {— 2pal;0;; + 4pPap® + 2ubi(x;— 9)}e >IN,
where J;; is Kronecker’s delta, we can take p>0 so large that the inequality
APw(x) = A

holds for some A>0 and for all p=1,..., m, xe Q.
Hence we have

A(—Mw)<fPon @, p=1,.,m,

4.1)
—Mw=0on T and — Mw(y) =0
and
AP(Mw) > f? on @, p=1,...,m,
4.1y P

Mw =0 on I' and Mw(y) =0

for some constant M > 0.
Next, we show

4.2 [u2(x)| £ Mw(x) for xeQ, p=1,...,m.
In fact, to prove the part u?(x)= —Mw(x), let py, 1< po<m, x,€ 2 be such
that
min,, . (u5(x)+Mw(x)) = uf(xe) + Mw(x,).
If xoel', then we immediately have u?(x)= —Mw(x) by (4.1)’ and ufe|.=0.
Consider the case x, € 2 and suppose, on the contrary, that ufe(x,)+ Mw(x,)<O0.
Applying the maximum principle, we get
“3 0 = AP(ug°+Mw)(xo)
' 2 f7o(xo) — AP(—Mw) (xo) — By(ufe—ule+! - K).

Since ufo(xy) Sufetl(x,) from the definition of p, and x,, it follows f,(ufo—
uPot1 — K)=0. Using this and (4.1), we see that the right hand side of (4.3) is
strictly positive. This is a contradiction, and so we have uf(x)=—Mw(x) for
p=1,...,m, xeQ.

By a similar argument, we can show that u2(x)<Mw(x) for p=1,..., m,
x € Q. In this case, we may choose p, and x, in such a way that

max,, . (u5(x) — Mw(x)) = ug*(xo) — Mw(xo),

whence we have (4.2).
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Moreover, we note that |grad uf(y)|=|(0/0n)ul(y)| at y eI', where n is the
outer normal vector at yeI'.  Using (4.2) and that w(y)=0, we get

9_urp| s M|-Zwiy)| = M,
on on

which concludes the proof.
LeEmMMA 4.3.  We have
uglly, =M.
Proor. It is sufficient to show the boundedness of the function
4.4 zP(x) = |grad uf|?.
Choose pg, 1 <po<m, x, € Q such that
z7°(Xo) = max,, ; z(X).
If xoeT', then the assertion is clear by Lemma 4.2. Consider the case x, € Q.
In the following of the proof, we omit the subscripts py, ¢ and write v=ufo*!
for simplicity.
We have
Az = — 2a,(0,0,u) (0,0u) — 2a.(0,0,0,u)(du)
4.5) + 2b(0.0u) (0;u) + c(0;u)(O:u)
< — 2a(0;0u)(0;0u) + 2(A(0;u)) (Ou) — co(Ou) (Ou) .
Differentiating the both sides of (3.4) with respect to x;, we get
(4.6)  A(Gu) + B'(u—v—K)(Ou—0p) — B'(v—k—u)(dp—0u) = 0,f + Au,
where
4.7) Au = (8,a,) (0:0,u) — (0:by) (0u) — (9;c)u.
Substituting (4.6) and (4.7) into (4.5), we have
Az £ — 20(0,;0u) (0;0u) + 2(0:f) (Ou)
+ 2(0;a4) (0:0,u) (Ou) — 2(0;b,) (0:u) (Ou)
— 2(0,¢) (Ou)u — 2B'(u—v—K)(0;u — 9;0) (O;u)
+ 2B (v—k—u) (0;v— 0;u) (O;u) — co(0;u) (O;u) .

Let the right hand side be equal to (1) +(2)+--- +(8).
Concerning the assumption (A.3), we denote by M various constants which
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depends only on M, and a.
We may estimate each term as follows:

(@) 20,1) () < 52 (Bu) (B) + M,

3 2(0sa5) (0:0pu) (O;u) < o(0;0,u)(0;0u) + M(0u) (0u),
@ — 2(0:by) (0gu) (0u) < M(0u) (Om),

©) — 2(0,0) (Ou)u < £49 (0u) Q) + Mlul?

= %)_(aiu) (Ou) + M,

() — 2B'(u —v—K) (0u —0iv) (Ou)
< Bu—v—K)(0)(90) — (0u) (O,4))
= fu—v-K)(zZ* —2) £ 0,

(7) similarly as in (6),
2B'(v—k—u) (0;v— 0u) (Ou)

< Bo—k—u)(o+! —209) < 0.
Combining these estimates, we have
Az £ — o(0;0u)(0;0u) — %"(aiu)(a,-u) + M(0u)(0u) + M.
Hence if c, is large enough, say c,>4M, we get
Az £ — %O(a,.u) (Ou) + M.

On the other hand, since zZo attains its maximum at x,, we have by the
maximum principle

0 < APozlo(xe) < — 2 28(x0) + M.

Consequently, we get zZ(x) <M and the proof is complete.

REMARK 4.4. In our proof of Lemma 4.3, we had to choose c, large enough
in accordance with the boundedness of derivatives of af; and b}, and «. We
need not such requirement if af; and b? are constants.

In the paper of P. L. Lions [4] in which the Bellman equation was considered,
he assumed that c, was sufficiently large when he extended the result of L. C.
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Evans and A. Friedman [3] to variable coefficient case. However, in that paper,
the assumption was needed to derive W2:°(Q)-estimate for approximate solutions.

5. Passage to the limit

In this section we shall prove the existence of solutions of (2.5) which belong
to W*(Q). For that purpose, we need the stability of convex sets J# (uf)
defined by approximate solutions u?.

LemMA 5.1. Let y,, £€>0, and  be functions in H}Q) and let d(e)=
We—Vllo,e If lim,,0(e)=0, then foranyve A (), we can findv,e A (Y,) for
sufficiently small ¢ such that v, converges to v in the strong topology of HY(Q)
as e—0.

Proor. By the assumption, it is sufficient to consider ,(x) only for & such
that

V() —kSUE SY@ + K in 0.
For ve (), we define
K06 -y + ¥ i o) 2 Y,

v(x) =

E220 ) —po) + 9 i o(x) < ).

It is obvious that v, e o#°(y,) for all small e. Moreover, we have by a simple
calculation

Sglv(x) — v,(x)|2dx < max {g%g_z 5(]:2)2 }

x 1o =y,

and

a a 2 5 2 2
SQ (%) — @) | dxgmax{ }3 , 5(/:2) }

v _ oy 2
X Sn B, (x) o, (x)' dx
for all i=1,..., N. These relations show us the strong convergence of v, to v in
H(Q), so that the proof is complete.

THEOREM 5.2. Suppose (A.1)«(A.4). - There exists a solution u?, p=1,..., m,
of (2.5) belonging to W1-*(Q) n C(Q).
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ProOOF. By a priori estimates obtained in the preceding section, we can find
subsequences (denoted again by ¢) of u? and u? e Wi:*(Q), p=1,..., m, such that
for every p=1,..., m, u? converges to u” in the weak* topology of W1 *(Q).

By virtue of Sobolev’s imbedding theorem, we see that u? e C(2) and u?
converges to u? in the strong topology of L*().

We shall show that these u?, p=1,..., m, satisfy the inequalities (2.5).

Let ve o (uP*1) and fix it. By Lemma 5.1 there exists v, € 2" (u?*!) such that
v, converges to v in the strong topology of H!(Q) as ¢—0.

Multiplying the both sides of (3.4) by u? —v, which belongs to H{(2), inte-
grating over Q and using integration by parts, we have

af(ug, uf —v,) + (B(uf —ul*' — K), u —v,)
- (ﬁe(ug+1_k_u£)’ ug—vs) = (fp’ ug—vz)'

Since v,, u? are bounded in H}(Q2), there exists a constant M such that

(5.1

(Ba(ug—utl:”-l _K), ug—ve)

- (ﬁe(ug+1_k_u£)s ug—ve) é M.

Since
(Buf —u*! = K), uf —uf*' — K)
+ (Buf* ' —k—up), ul*' —k—uf)
= (Bu? —u*' — K), ul —v,)
+ (Buf —uf*' — K), v,—ui*' — K)
= (Bug*' —k—up), uf —v,)
+ (Bug* —k—up), uf*' —k—v,)
= (Buf —uf™' — K), u —v,)
— (Buf* —k—up), uf —v,)
=M,
we have
(BuZ —uf* = K), uf—uf*1 —K) < M
and

(B(ug™! —k—u?), uf*' —k—ug) = M.

Noting that u? and uf*! converge uniformly to u? and uP*!, respectively,
we obtain
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uP —uPt' — K<0 and w'—k—uP <0 in Q

and so u? € " (ur*?) for every p=1,..., m.
Next, consider the form

X? = a’(u? —v,, uf—v,)
+ (Beu —uf™' = K) — B(v,—ul™" — K), u; —v,)
— (B(u™ —k—ug) — B(ui*' —k—v,), uf—v,).
Clearly we have X?=0. On the other hand, substituting (5.1) we get
X? = (f?, uf—v,) — a®(v,, u? —v,),
so that
a?(v,, v,—uf) Z (f?, v,—up).
Passing to the limit as ¢—-0, we obtain
(5.2) aP(v, v—u®) = (fP, v—uP) for all vex (urtt).

To derive the inequality (2.5) from (5.2), we can use a standard argument in -
the theory of variational inequalities. Namely, for ve o (u?*') and 0€]0, 1[,
we substitute Ov+ (1 —0)u? € " (uP*!) into v in (5.2). Dividing the both sides of
this inequality by 6 and taking the limit as 60, we obtain

ar(uP, v—uP) 2 (f?, v—uP)
for all ve " (ur*!). This completes the proof.

ReMARK 5.1. We know nothing yet about uniqueness of these solutions of
(2.5) belonging to the space W' *(Q).

6. The W2r(Q)-regularity

In this section we shall prove W2:7(Q)-regularity of the solution which we
have constructed in the preceding section. For that purpose, we use the as-
sumption (A.5).

THEOREM 6.1. Assume (A.1)-(A.5). The solution u?, p=1,..., m, of (2.5)
whose existence was proved in Theorem 5.2 belongs to W2"(Q) for any r, 1<
F< 0.

ProOF. Let 1<r<oo. First we note that for any x,eQ there exists p,
L £ p=<m, such that

6.1) uPt(xq) — k < uP(xqy) < uP*l(xq) + K.
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Indeed, it not so, we have for all p=1,..., m
uP(xo) = uP*1(x,) + ¥,

where k? =K or —k. Summing up these equations from 1 to m with respect to
p, we get ™, k?=0. But this contradicts the assumption (A.5), and so we
have (6.1) for some p.

Changing the number p if necessary, we may assume

(6.2) u?(xo) — k < ul(x,) < u?(xo) + K.

Since u! and u? are continuous, we may suppose that (6.2) is valid in G;=
{x€Q; |x—xo| <8} for some §>0.

If weC®(Q) satisfies suppwcG,, ul +Awe # (u?) for sufficiently small
A>0. Substituting this into (2.5), we have

(6.3) al(ut, w) = (f1, w).

Since the totality of such w forms a dense subset in H§(G,), (6.3) is valid for
all we H}(G;). Applying the regularity theorem for linear elliptic equations, we
obtain u! e W2:7(Gy).

Next, we shall prove the regularity of u™ which is a solution of a variational
inequality whose obstacles are determined by u'.

Since the sequence of approximate solutions u? converges uniformly to u?,
respectively, we may assume

u2(x) — k < ul(x) < u2(x) + K in Gj
for sufficiently small &. For such u? we have
B(uZ—k—u}) = B(u} —u}—K) =0,
so that the approximate equation (3.4) becomes
Alyl = f1 in Gs.

Hence, A'u! and u} are bounded in L"(G;) and W2:"(G,), respectively.
Put ¢,=ul—k, &,=ul+ K, and note that A"¢p,, A™P, are also bounded in

L'(G,).

We shall show that u" are bounded in W;%(G;).

Let £ e C*(R) be such that supp { =G, { =0, and fix it.

Multiplying the both sides of (3.4) for p=m by {"f;~1(ur — ®,) and integrating
over Q, we have
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[ camimprur—ogdx + | vpiur—@)ax
o)
64 = |, B ur = 2)B(9 —ur)dx

~{, vpwr—o)frdx.
(]

The third term on the left hand side is equal to zero.
To estimate the first term on the left hand side, we write

[, amum g ur - @)ax

(65) = a"'("ﬁ" - ¢e’ Crﬂ;_l(u:‘ - ¢z))

+{_(mo)epriwr—@)dx.
(2]

The first term of (6.5) can be estimated as follows:
We put u"— @, =y and use abbreviated notations as in Section 4.

al, B
= (@@ @rp-1u) + B@prs-1w)

+ YUp ()
= r{_ayp1 100 @0
Q2

123

It follows that

+ Sn ((r—"D)a;{rpr=2p'(03) (0,;¥) + brpr-1(04)

+ YL
=r|_prva @ @ 0dx
+ [ @280 = a0 @) + B
+ cy?)dx
— [ B2e@u-p e + cpx
=1+ 1II+ 111

Easily we get
12— M{ ¢iigradgp-tax,
Q
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and II =0 from coercivity.
Applying (3.3) we have

iz -M Sn Br-2(y)rdx

v

—n{_pwrax-m
for any >0, where M may depend on 7.

Applying Hélder’s inequality to the second term on the right hand side of
(6.5), we conclude

[, camumyepiur — @)ax
>_M Sn {r=1igrad {|B;(urr — &,)dx
1| cBur—eydx — M —n{ vpur-o)ix
(7] 0

- MS [ A, dx
(7]

1\

=M = 3n{_piur—o)dx

for any n>0.
Hence we have by (6.4)

=M+ (-3 |_epur—a)dx
< MS [ (ur — ®,)dx,
o
which shows

(6.6) SQ {rBr(um—d,)dx < M.

Next, multiply the both sides of (3.4) for p=m by ("f:~(¢,—u™) and inte-
grate over 2. Then we have

[ camuyepii9.—upax
+{_opr-e)p @ —upix— | rpid-upix

= {, Bt @e—up)fra.

In this case, the estimation of the first term of the left hand side becomes
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f amumyr g, —uryax
= — @Gyt DB (G up) + | (A"B)UB (9~ u)dx

<M+3 SQ [ Br(b,— um)dx.

Arguing similarly for other terms as in the preceding case, we have
67 [, B —upydx < M.
Q2

It follows from (6.6), (6.7) and (3.4) that A™u™ are bounded in L},.(G,;) with
respect to ¢&. Hence, we have the boundedness of u™ in W#77(G,) by using the
standard elliptic theory.

Taking the limit as ¢—0, we obtain

ume W&r(G,) for r,1<r<oo.

Repeating this argument inductively with respect to the parameter p, we can
show that for any x, € Q, there exists 6 >0 such that

(6.8)  weWiGy)

for all p=1,...,mand r, I<r<oo.

Since, for any precompact subset Q' in Q, the totality of such G;, x,€ Q’,
forms an open covering of ', we may select a finite open subcovering of Q' from
G;’s. Hence we obtain

(6.9) ure Wn(Q) for p=1,...,mandr,1 <r < oo.

On the other hand, since u?|=0, (6.1) is satisfied in some neighborhood of
I for all p=1,..., m. Hence, each u? satisfies the second order linear elliptic
equation APu?=fP there, so that u? belongs to W2:r in this neighborhood.

From this and (6.9), we obtain u? € W2-7(Q).

The proof is complete.

REMARK 6.1. Since u? belongs to W2r(Q)n C(Q), the uP satisfy the in-
equalities (1.1) for almost all x € Q.

7. Stochastic representation and uniqueness of the solution

In this section we shall introduce a stochastic switching game and represent
the solution component u? of our problem as the value of this game. As a result
of such representation, we shall obtain the uniqueness of regular solutions.
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Let (2, #, P) be a probability space and let w(f) be an N-dimensional
Brownian motion on it. We denote by &, the o-field a(w(s), 0<s<t) in & which
is generated by {w(s); 0<s=t}.

Let o?=[0};] be a non-negative matrix satisfying a? =(1/2)c?(c?)* for each
p=1,..., m, where (6?)* is the transposed matrix of o? and a?=[a?;] is the coeffi-
cient matrix of the principal part of Ap. Let b?=(b2,..., bf) be a N-vector of
coefficients of the first order terms of AP.

We may assume that ¢? and b? are extended to the whole of RV preserving
Lipschitz continuity.

Consider a system of stochastic differential equations

(7.1) dér(t) = — br(Er(t))dt + oP(EP(1))dw(t), p = 1L,..., m.

Let n=("1, M35+, NIns--.) bE @ sequence of &,- stopping times such that
O<n <, <<y, <--.

For x e RY and for this increasing sequence of stopping times #, by making
use of solutions of (7.1), we define a continuous process &(t)=¢, (f) starting at
x as follows:

Sa® =¢8I with S'0)=x if 0=st=n,
&) = E%(1) with  &(ny) = E(ny) if my St S M,

in general, for any integer /=0 and 1<p<m,

(7.2) é,,.x(t) = {P(t) with ép(”lm+p—l) = ép_l(nlm+p—l)

lf rllm-”z—l é t é ’11m+p,

where we put £0=¢&m, no=0.

The process &, . is a continuous process starting at xe€ RN with path ¢!,
and whenever it hits the next stopping time 7, ,— 1, the path of £, . switches from
the path of £P~! to the path of &».

We define

F(Enx(D) = f2(EP())

(7.3)
&y, (1) = c?(E7(1))
when &, (6)=¢EP(2).
Let T be the exit time of the process ¢, , from the domain Q.
For two increasing sequences 8=(6,), t=(t,) of stopping times, we consider
the following cost functional:



Variational inequalities associated with a stochastic game 127

736, 9 = B[ | exp (= (| oeods) rzonr
+ KEgep( = 1 oe(o)ds) 1 T = 5,

—kZiexp( = {1 o&o)ds) 2 T = 6],
where n=(n,) is an increasing sequence of stopping times defined by #,=0,-1,=
min {6,, t,}, and y{n=1}=1if n=1, x{n=1}=0if n#£r.

The cost functional J1(0, ) may be interpreted as follows: The first term of
the cost functional shows that the running cost per unit time of £(f) is given by
f(&(t)) with discounting term c(&(¢)). When &(¢) switches from &P to £P*! at n,=
Nim+p» POSItive switching cost K or negative switching cost —k or both of them
with discounting term are imposed according as #,=1,<8, or 1,=6,<7, or n,=
0,=1,, respectively.

Let us consider a stochastic switching game such that two players compete
for the value of the cost functional J1(6, 7). Player 1 wants to maximize the value
of J1(0, 1) by operating the stopping times 0 =(6,), while player 2 tries to minimize
the value of J1(0, t) by operating the stopping times 7=(t,).

We are interested in the value of this stochastic switching game:

sup, inf, J1(0, 1) or inf, sup, J1(6, 1)

where 0, T range over the set of all increasing sequences of stopping times.
Let upe W21 (Q)n C(Q), p=1,..., m, be any solution of

ubt! —k <ur S uPt' + K in Q,
APuP = fr if uPt! — k <uP < uPtl + K,
(7.5) APyP < fP if uP = uPt! + K,
Apu? 2 frif uPtl — k = ur,
u?|p =0, umt!t =y,
Let, for each p=1,..., m,
(7.6) Sr = {xe Q; urP(x) = ur*'(x) — k}

and define an increasing sequence §=(8,) of stopping times associated with these
Sp, p=1,..., m, as follows:

0, =inf{t = 0; &' (1) e 8, £1(0) = x},
0, =inf {t = 0,; &2(t) e 82, &2(0,) = £'(,)},

in general,
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(77) 9!m+p = inf{t g 9lm+p—l; Cp(t)egp’ Ep(glm+p—1) = £p~l(9lm+p—l)}

for any nonnegative integer / and p=1,..., m.
Similarly, let

TP = {xe Q; up(x) = ur*'(x) + K}

and define an increasing sequence £=(%,) of stopping times associated with
T?, p=1,..., m, as follows:

t, =inf {t 2 0; &) e T, £(0) = x},
in general,
(7‘8) flm+p = lﬂf{t g %lm+p—l; Srp(t)e T‘p, ép(flm+p—1) = ‘:p_l(flm-i'p— 1)}
for any nonnegative integer / and p=1,..., m.

The next theorem asserts that any regular solution component u! of (7.5)
can be represented as the value of our stochastic switching game and that the
increasing sequences 8, © of stopping times constructed above are the saddle points
of this game.

THEOREM 7.1. Assume (A.1)«(A.5). For any solution component uPe
wzr(Q)n C(2), p=1,..., m, of (1.5), we have

(7.9) ul(x)=Ji0, 1),
(7.10) JUO, %) < ul(x) £ JLO, 7)
for all increasing sequences 0, T of stopping times.

Proor. In the following we assume c?(x)=c (a constant) for simplicity of

notations.
First of all, we note that the cost functional is rewritten as

Nim+ p~T

JU6, 7) = o Tp-1 B |
(711) + Ke‘”"""""x{'lszrp*T = Tlm+p}
- ke*c"'"ﬁpx{rllmﬂ)‘T = Blm+p}] .

Let #=0.%. We shall show (7.9).
When A4 p— 1 <t<fym+p We have

(7.12) Arup(Er(1)) = fP(EP(1))

since £7(f)¢ 8P U T? in this time interval.
Because u? € W27(Q) n C(Q), we may apply Ito’s formula to have

e dr

Nim+p-1~
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B[ emerprierya ]

ﬁ1m+p—k

(7.13) =517 @ @)l
= E.[— u?(EP(Aipsp-T)) e~ Aim+p-T)
+ uP(EP (i p-1~-T)) e~ imep=1-T1]
Substituting this into (7.11), we obtain
X0, 2) = E[u'('(ho-T))]
(7.14) + T2 Xy ELL{—uP(EP(fim p-T)) + 2 1(EP* Ry o T))
+ Kt {Aimip T = timip} = kX {Aimep-T = Oy p} e cimep-D],

where fj,=0.
Each term

(7.15) U(l, p; 0, 2) = — uP(EP(Am+ o T)) + u"“(ﬁ"*j(ﬁme))
+ 8X M imepr T = imipt — KX imip~T = Oimsp},
appearing in (7.14) may be estimated as follows according to the case of #,:
(i) In the case of sy T=2%1m+p<Opm+, We have
U(, p;6,%) =0.
Indeed, since EP(£1, 4 ,) = EP+ (214 ,) € T, it follows

= UP(EP(Aim+ - T)) + P (P (At p-T)) + K =0

and X{ﬁlm+p‘T= alm+p} =0.
(i) 1In the case of fls - T=0,p4, <%+, We have also

U, p;0,%) =0

since ﬁp(ézmﬂ;) = §P+1(91m+p) eSr.

(iii) In the case of Ay pT=T<Ops p T+ p» We get
Ul,p;8,2)=0

because 1 {fim+ - T=01m+ p} = X{flim+ p~T="2im+p} =0 and u? | =0.

(iv) Since 8P n TP=8»nI'=T?nTI=¢, there occur no other cases.
Accordingly, U(l, p; 8, )=0 in all cases, and so we obtain (7.9) from (7.14).
Next, we show
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(7.16) JXO, 7) < u'(x)

for any increasing sequence 8 of stopping times.
Let n=0-2. In the interval #y,,,.; <t<#,+, we have &P(1)¢ T» since
t<%,,+p Hence it follows from (7.5) that

(7.12y APur(EP(1)) = fP(EP(1)).
Therefore, a calculation similar to (7.13) yields
(7.14) JY(O, ) < E.[u'(¢'(no))] + ZiZo Zj=1 ELLU( p; 0, t)e=clmm+r-DT,

where 1,=0 and U(l, p; 6, ©) was defined by (7.15).
We may estimate each of U(l, p; 0, %) as follows:
(i)' In the case of 4 p-T=1}p4 , <Opn4p, We have

Uld,p;6,t)=0
by the same reason as in the case (i).
(i)’ In the case of 9,4 " T=0;p 4 p <Zym+p We have
U, p; 0, 1) = — uP(EP(Mim+p)) + P 1 (EP  (Mim+p) — kK £ 0,

since EP(Nym 1 p) = EP* (M4 ) € T.
(iii)’ In the case of #yy 4 p-T=T<0, 4 pT1m+p, We have

Ul,p;0,8)=0
similarly as in (iii).
(iv)" Inthe case of 4 p-T=01ms p="Tim+ p OF My po T=0p 1. , = T, We get
UL p; 0, 1) = — uP(EP(Mm+p)) + uP*H(EP  (Mim+p)) + K — k= — k <O0.

Finally, there does not occur the case £,=T.

Therefore, since we have U(l, p; 6, £)<0 in each case, we conclude (7.16)
from (7.14)".

We proceed quite similarly to get

(7.17) ul(x) £ Ji0, 1)

for any increasing sequence 7 of stopping times.
In this case we have

(7.14)" JX0, 1) 2 ELu' (' (o)] + Tizo Tiey ELU(, p; 9, 1)ecltims»1)]

and
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U(l,p;0,7) 20

in each case of 7,,.
Combining (7.16) and (7.17) we obtain (7.10) and the proof is complete.

For general p=1,..., m, we can represent the solution component u? as a
value of a stochastic switching game.

Define a continuous process £()(f) starting at x as in (7.2); the path of
&(P) coincides with that of £7(7) with £2(0)=x in the first interval 0<t<n,, and it
switches at 5, cyclically.

The cost functional J2(6, 7) is defined as (7.4) by using £P)(f). Then, ob-
viously, we have the same conclusion about u? as Theorem 7.1. Saddle points
6», 2P are also defined analogously by (7.7) and (7.8) starting from p.

The uniqueness result of solutions to our problem in the class W2:7(Q) n C(Q)
is now an immediate consequence of this representation.

Our main theorem is the following:

THEOREM 7.2. Suppose (A.1)-(A.5). There exists one and only one set of
solutions u?, p=1,..., m, of the problem (2.5) or (1.1) which belong to W2:r(Q) n
C(Q) for any r, 1Sr<oco.

REMARK 7.1.  We can also treat the more general system
uPtl(x) — kP < uP(x) £ uPti(x) + K¢, xe Q,
Arup = frif u(xPtl) — kP < uP < uP*(x) + K?, x€ Q,
(7.18) Arur L frif  uP(x) = uP*i(x) + KP, xeQ,
APuP = frif uPti(x) — kP = uP(x), xe Q,
uw=0 on I'p=1,..,m, um! =y!

in which the given positive constants k? and K? may different for p=1,..., m.

It is clear that, under the same assumptions (A.1)-(A.4), our arguments in
Sections 3, 4 and 5 are still valid for this system. Hence we can find a solution
u?, p=1,..., m, such that

aP(u?, v—uP) = (f?, v—uP)
for all v e o' P(ur*1), where we put
A P(urtl) = {ve HY(Q); uP+i(x) — k? < v(x) £ uP*i(x) + K», a.e. in Q}.
Moreover, if we make the assumption

(A.5) >m kP #0 for every system kP, where k? = — kP or K?,
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instead of (A.5), then we can prove the W2:"(Q)-regularity of these solutions by a
similar method as in Section 6. The arguments in the proof of Theorem 7.1 are
also valid if we make suitable modifications.

Consequently, we can prove the same conclusion as in Theorem 7.2 for
the system (7.18) under the assumptions (A.1)-(A.4) and (A.5)".
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