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1. Introduction

This paper is concerned with a system of elliptic variational inequalities

each of which is subject to constraints from upper and lower sides.

Let Ω c RN be a bounded domain with smooth boundary Γ, and let fp, p —

1,..., m, be given functions of x e Ω. Consider m second order elliptic differential

operators

g g k - + Σϋ, »?(*) L- + c'(«)π

in Ω. The purpose of this paper is to investigate the existence and uniqueness

of solutions to the Dirichlet problem for a system of variational inequalities of

the form

up+ί(x) - k S UP(X) S UP+1(X) + K, xeΩ,

Apup =fp if up+1(x) - k < up(x) < up+1(x) +K, xeΩ,

(1.1) Λpup^fp if up(x) = up+1(x) + K, xeΩ,

Λpup^fp if up+ί(x) - k = up(x\ xeΩ,

up(x) = 0 on Γ, p = l,...,m,

where we have put um+ι =w ι , and k, Kare two given positive constants.

The problem (1.1) has been motivated by a recent paper of L. C. Evans and

A. Friedman [3] in which the Dirichlet problem for the Bellman equation

supp> ί(Apu(x)-fP(x)) = 0 a.e. in Ω,
(1-2)

u = 0 on Γ,

was studied by an analytic method. In [3] they introduced the approximate

system

fiJiu'-u'*1)-/' in Ω,
(1.3)

u£ = 0 on Γ, p = 1,..., m,
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where u™+1 =u\, and βε represents the penalty function: βε(t) = O if ί^O, βε(t)-*oo

if f >0, ε->0, and obtained the solution of (1.2) as a limit of solutions of these

systems. Furthermore, as a system which is the limit case, as ε-»0, of the system

derived from (1.3) with β£uP-uP+ί) replaced by β£uP-kp-uP+ί), they studied

[3, Sec. 7] the system of variational inequalities with unilateral constraints

fp, UP S kp + UP+1 in Ω9

(1.4) (APuP-fP)(uP-kP-uP+1) = O in Ω,

up = 0 on Γ, p = 1,..., m,

where um+ί =uι and the kp are positive constants. It was probabilistically inter-

preted that the solution component up(x) of this system (1.4) represents the optimal

cost starting at x e Ω in state p of some cost functional.

Our system (1.1) is a natural extension of (1.4) to the case of bilateral con-

straints.

The outline of this paper is as follows:

In Section 2, after stating our notations and assumptions, we formulate the

problem (1.1) in a weak form by using the corresponding bilinear forms on

We shall solve the system (1.1) by the penalty method. For that purpose,

in Section 3, we construct an approximate system by using a suitable penalty

function and prove the solvability of this system.

Section 4 is devoted to deriving a priori estimates in W1'CO(Ω) for approximate

solutions given in Section 3. The main idea is quite similar to that of L. C. Evans

and A. Friedman [3], or P. L. Lions [4]. However, since the convexity of

penalty functions cannot be expected in our case, their use needs some careful

consideration.

Since these a priori estimates show the convergence of approximate solutions,

we shall see in Section 5 that the limit functions satisfy the weak problem for-

mulated in Section 2. Unfortunately, however, we know nothing yet about the

uniqueness of solutions of this weakly formulated problem.

In Section 6 we shall prove that these limit functions have indeed W2>r(Ω)-

regularity for any r, r<oo. To do this, we derive a priori estimates in W2'r(Ω)

for approximate solutions, using the fact that the limit function is a solution of the

weakly formulated problem. In this section, because of bilateral constraints, we

impose a condition on the ratio kjK which did not appear in [3].

In Section 7 we study the uniqueness of our solution of the problem (1.1).

We shall introduce a stochastic switching game and represent the solution com-

ponent up as a value of this game.

In the case of unilateral constraints, the solution component admits a

representation as the optimal cost of some cost functional ([3]). In our case,
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however, we shall associate with it a stochastic switching game in which two

players compete for the value of some cost functional.

As a result of this representation, we obtain the uniqueness of solutions of

(1.1) in the class W2>r(Ω) n C(β).

The author would like to express his hearty gratitude to Professor S. Aizawa

for his constant encouragement and kind advice.

2. Formulation of the weak problem and assumptions

Let Ω be a bounded domain in RN with smooth boundary Γ. We denote by

WJ>r(Ω), l^rrgoo, the usual Sobolev space of real functions with norm || | |7 >.

The space WJ

0>
r(Ω) denotes the closure in WJ>r(Ω) of the set of all C°°-functions

with compact support in Ω. As usual, we write W°>r(Ω) = Lr(Ω)9 WJ>2(Ω) = HJ(Ω)

and WJ

0>
2(Ω) = HJ

0(Ω).

Let m > l be a fixed integer. For jp=l,..., m, we consider the second order

elliptic differential operator

(2.1) Λ'υ = - ZZy=i afj(x) £* + Σf=i *F(*) -j£- + C(x)v

and the corresponding bilinear form on iίJ(Ω) x HJl

(2.2) a "'V ^ * J-ia"x dxt dx

+ c"(x)uv)dx,

where £f(x) = *ί(*)+Σ7-i δ~

We make the following assumptions:

(A.I) There exists a positive number α such that

for all p = l,..., m, xeΩ and ξeRN.

(A.2) ap

u, bp

i9 cpeC\Ω)for alii, j = l,...,N and p = l , . . . , m .

exisί positive constants Mγ and M2 satisfying
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and

for all i,j9 r = l,..., N9 p=l,..., m and xeΩ.

(A.3) There exists a positive constant c0 such that

CP(X) ^ c0

for all p=l,..., m and xeΩ. Moreover, we assume that c0 is a sufficiently large

constant depending only on Mt and α so that the inequality co>4M appearing

in the proof of Lemma 4.3 is valid.

By (A.2), we can find a positive constant M\ such that

for all i = l,..., J/Vandp = l,..., m. On the other hand, by (A.3), the bilinear forms

ap( , •) are coercive i.e., there exists a positive constant α' such that

(2.3) <i*(ιι, ii) ^ α ' N | ? t 2

for all p = l , . . . , m and ueHl(Ω).

In the following these constants M[, at! will be denoted by the same letters

M u α, respectively.

Let/^, p = l,..., m, be given functions of x e Ω and satisfy the following

assumptions:

(A.4) fpeCι(Ω) for p=l,...9 m, and fftere exists a positive constant M3 such

that

\fp(x)l

for all r = l,..., N, p = l,...9 m and xeΩ.

Let k and K be two given positive constants. For these /c, K, we impose the

following condition:

(A.5) kφ™Ξ^ fOr all q = 1,..., m - 1.
K q

For ι/f G Hl(Ω), we define a set JΓ(I^) in ̂ ( Ω ) by

(2.4) Jf 0/0 = { U G H J ( Ω ) ; ψ(x) - / e g v(x) g ιA(x) + A:, a.e. in Ω} .

Using these notations, we may state our problem in a weak form as follows:
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Weak problem: (1) Find upeJf(up+1)9 p = l,..., m, satisfying

(2.5) aP(uP, V-UP)^ (fp

9 v-up)

for all veX°(up+1). Here we have set um+ι—u1 and ( , •) on the right hand

side denotes the inner product in L2(Ω).

(2) Investigate the regularity and uniqueness of solutions of (2.5).

For φ G H^Ω), we use the notations

ψ+(x) = max {ψ(x% 0}, Ψ~(x) = max {-ψ(x\ 0}.

In the following of this paper we denote various constants depending only on

Mu M 2 , M 3 , α, Ω, m and JV by the same letter M.

3. Approximate system

To solve our problem (2.5), we use the penalty method. In this section we

construct penalty equations which approximate (2.5) and prove the solvability

of these equations. Throughout this section we always assume (A.1)-(A.4).

We choose the so-called penalty function β: R^R satisfying the following

conditions:

βεC™{R),

ί 0, if t g 0,
(3.1) . . .

[ t-ί, if t ^ 2,

0<jff(0<l, jS'(0>0and j3"(0>0if 0 < ί < 2 .
For each ε>0, we put

(3.2)

We note that it holds

(3.3) - 1 ^ β£i) - tβ'&{t) ^ 0

for all ε > 0 and te R.

For each ε>0, we consider the following approximate system:

uξ e W2>r(Ω) Π Wy(Ω), 1 < r < oo,

(3.4) A'uζ + βε(up

ε-uξ+i-K)-βε(uP+i-k-up

ε)=fP a.e. in Ω,

p = l , . . . , m , where wf+1 = u\.

To prove the existence of solutions of (3.4), we apply a successive approxi-
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mation method. In the following of this section we omit the subscript ε for sim-

plicity.

First, we define wg = 0for all/? = 1 , . . . , m. For n ^ l andp = l,..., m, we define

up inductively by the solution of

Apup

n + β{up

n^up

nt\- K) - β{up

nt\-k-up

n)=fp a .e . inΩ,

UP = o a.e. on Γ, where uy±{ = ul-v

It is well known that there exists a solution up e W2>r(Ω) Π Wy(Ω), 1 <; r < oo

(for example, we refer to A. Bensoussan [2], Theorem IV. 2. 1, p. 143).

LEMMA 3.1. Let up, p = l,..., m9 be a solution of (3.5). We have

PROOF. Let ? = sup l g p ^ w | | /p | | O j O O /c o . First we show that up(x)^γ by

induction on n. Clearly, the case n = 0 is valid. We assume uζ-ί^γ for

p = l,...,m. Multiply the both sides of (3.5) by (up-γ)+ and integrate over Ω.

Noting that (up-γ)+ e wy(Ω) in view of (up-y)\Γ= -γ<0, we have, by

integration by parts,

ap(A-y, (up-y)+) + (β(up-up±{-K), (up-yy)

- (flii tϊ-fc-uj;), (up-yy) = (fp-cpγ9 (up-yy).

For each term, we get

( i ) aP(up-γ9 « - 7 ) + ) ^ a| |(^-y)+ | |f,2 by (2.3);

(ii) (j8(iiS-iiSii-iO,(wS-y)+)^0;

since upt\ — k — up

n>§ implies (ŵ  — y)+ =0 by the assumption of induction, we get

(iii) (β(upn±\-k-uζ)9(μp

n-y)+) = 0;

finally, by the definition of γ9 f
p — cpγ g 0.

Combining these estimates, we obtain

so that up

It is quite similar to prove the part —γ^up. Multiply the both sides of

(3.5) by (up

n + y)~ and integrate over Ω. In this case, we have by the assumption

of induction

Using this and arguing as in the preceding case, we get — y^up. This
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completes the proof.

LEMMA 3.2. For each ε>0, there exists a solution up

ε o/(3.4) which belongs

toC2+δ(Ω), δ<l.

PROOF. Write (3.5) as

(3.6) A*u\ =f- β(up

n-uζ±{-K) + β(μ'±{-k-uζ).

By Lemma 3.1, the right hand side of this equation belongs to L°°(Ω). Hence,

by applying the linear elliptic theory, there exists a constant Mε for each ε, such

that

IKIk, S Mε.

Consequently, there exists a solution up

εeW2>r(Ω)ΐ) Wl>r(Ω) of (3.4) which

is the limit of a suitable subsequence of {uζ}. Again, in (3.6), since the right hand

side now belongs to Cι(Ω)9 we conclude uξ e C2+δ(Ω). This completes the proof.

4. A priori estimates

In this section we shall derive some a priori estimates which are independent

of ε, on the solution wf, p = l , . . . , m, of (3.4). Let the assumptions (A.1)-(A.4)

be always satisfied.

We write d/dx—di and use the summation convention for simplicity.

LEMMA 4.1. We have

PROOF. This is nothing but Lemma 3.1.

LEMMA 4.2. We have

ll«?lli,oo,r^M,

where || \\ίiO0)Γ is the norm in the space WίfCO(Γ).

PROOF. Since Γ is assumed to be smooth, the exterior sphere property holds,

i.e., there exists a positive number p such that for each j ^ e f w e can find j> e RN\Ω

satisfying

{zeR»;\z-p\£p} n Ω = {y}.

Let μ>0 be a number to be determined later and consider

w(x) = e~M2 - <TMI*-PI2.
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Since a simple calculation yields

APW(X) ^ {- Iμaϊjδtj + 4μ2*p2

where δ^ is Kronecker's delta, we can take μ > 0 so large that the inequality

AP\V(X) ^ λ

holds for some λ>0 and for all p = l , . . . , m, xeΩ.

Hence we have

AP(-MW) <fp on Ω, p = 1,..., ra,
(4.1)

- Mw ̂  0 on Γ and - Mw(y) = 0

and

AP(MW) >fp on Ω, p = l , . . . , m,

Mw I> 0 on Γ and Mw(j ) = 0

for some constant M > 0 .

Next, we show

(4.2) \uξ(x)\ g Mw(x) for x e β , p = 1,..., m.

In fact, to prove the part up

ε(x)^ — Mw(x), let/70, 1 g p 0 ^ m , x o e Ω be such

that

inp > x (up

ε(x) + Mw(x)) = uf °(x0) + Mw(x0).

If x o

e A t n e n w e immediately have up(x)^-Mw(x) by (4.1)' and wf°|Γ = 0.

Consider the case xoeΩ and suppose, on the contrary, that uζ°(x0) + Mw(x0) < 0.

Applying the maximum principle, we get

(4.3)
^fp() - Ap°(-Mw)(x0) -

Since uPo(x0)^uPo+1(x0) from the definition of/?0 and xo» ^ follows βε(μPo —

uPo+1—K) = 0. Using this and (4.1), we see that the right hand side of (4.3) is

strictly positive. This is a contradiction, and so we have φ ) ^ - M w ( x ) for

jp = 1, , m, xeΩ.

By a similar argument, we can show that up(x)^Mw(x) for p = l,...,m,

xeΩ. In this case, we may choose p0 and x 0 in such a way that

maxPtX(up(x) - Mw(x)) = nf°(x0) - Mw(x0),

whence we have (4.2).
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Moreover, we note that \gmάup

ε(y)\ = \(dldή)uξ(y)\ at yeΓ, where n is the

outer normal vector at yeΓ. Using (4.2) and that w(y) = 0, we get

3 <{y)

which concludes the proof.

LEMMA 4.3. We have

PROOF. It is sufficient to show the boundedness of the function

(4.4) zξ(x) = Igradwfl2.

Choose p0, 1 ̂ p 0 ̂  m, xoeΩ such that

If x0 e Γ, then the assertion is clear by Lemma 4.2. Consider the case x 0 e Ω.

In the following of the proof, we omit the subscripts p0, ε and write υ = uξ0+1

for simplicity.

We have

Az = - lagid

(4.5) + 2bξ(dξdiU) (3,11) + c(diU) (3,11)

^ - 20(3,3,10(3,3,11) + 2(A(3,iι))(3,iι) - co(3,iι) (3,u).

Differentiating the both sides of (3.4) with respect to xi9 we get

(4.6) A(dtu) + β'(u -v-K) (dfU - dp) - β'(v - fe - u) (dtv - dtu) = dj + Au,

where

(4.7) Au = (3,αΛ)(β€3ζiO - (dtbξ)(dζu) - (diC)u.

Substituting (4.6) and (4.7) into (4.5), we have

u) (3,u) -

)(3,ιι)α - 2/ϊ/(α-1;-JP)(3,ii-3,ϋ)(3,ιι)

- co(3,ιι)(3,iι).-

Let the right hand side be equal to (1) + (2) + + (8).

Concerning the assumption (A.3), we denote by M various constants which
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depends only on Mί and α.

We may estimate each term as follows:

(2) W ) (diU) ^ ϊ± (βtu) (diU) + M,

(3) 2(diaξζ) (dξdζu) (diU) ί oc(djdiU) (djdtu) + M(diU) (3,iι),

(4) - 2(d^) (dξu) (dtu) ^ M(diU) (diU),

(5) - 2^X3,11)11 ^ ^ (3,10(3,11) + M|M|2

(6) - 2β'(μ -υ-K) (dtu - dp) (dtu)

= β'(u-v-K)(zp

εo+i-z

p

ε°) ^ 0,

(7) similarly as in (6),

2j8'(o - fc - M) (5,0 - 3f u) (3,M)

^ β\v - k - u) (zξ°+1 - zξo) ^ 0.

Combining these estimates, we have

Az ^ - (xidjdiuXdjdiU) - ^ . (3,tt) (34ιι) + M ^ I I ) (3^) + M.

Hence if c 0 is large enough, say c o > 4 M , we get

On the other hand, since zf° attains its maximum at x0, we have by the

maximum principle

0 ^ Ap°zξ°(x0) ύ - ~ zξKxo) + Af.

Consequently, we get zf(x)^M and the proof is complete.

REMARK 4.4. In our proof of Lemma 4.3, we had to choose c0 large enough

in accordance with the boundedness of derivatives of ap

tj and bp, and α. We

need not such requirement if aP

3 and bp are constants.

In the paper of P. L. Lions [4] in which the Bellman equation was considered,

he assumed that c 0 was sufficiently large when he extended the result of L. C.
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Evans and A. Friedman [3] to variable coefficient case. However, in that paper,

the assumption was needed to derive PF2'°°(ί2)-estimate for approximate solutions.

5. Passage to the limit

In this section we shall prove the existence of solutions of (2.5) which belong

to WltCO(Ω). For that purpose, we need the stability of convex sets JΓ(w£)

defined by approximate solutions uξ.

LEMMA 5.1. Let ψε9 ε>0, and ψ be functions in Hl(Ω) and let δ(ε) =

\\Ψε — ψ\\o,<x> If Hmε^0 δ(έ) = 0, then for any v e Jf(φ)!>we can findvεeJΓ(\l/ε) for

sufficiently small ε such that vε converges to v in the strong topology of H\Ω)

as ε->0.

PROOF. By the assumption, it is sufficient to consider ιl/ε(x) only for ε such

that

For υ e Jf(ψ), we define

vε(x) =

(V(x)-

in Ω.

if t>(x) k

if φc)<

It is obvious that vε e JΓ(ψε) for all small ε. Moreover, we have by a simple

calculation

and

L δv
(x)

{
JΩ

I δv

' dx *

(x)
_ δφ

δxt

(x) dx

for all i = l,..., JV. These relations show us the strong convergence of vε to v in

) , so that the proof is complete.

THEOREM 5.2. Suppose (A.1)-(A.4). There exists a solution up, ρ = l,..., m,

o/(2.5) belonging to W^ψ) Π C(Ω).
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PROOF. By a priori estimates obtained in the preceding section, we can find

subsequences (denoted again by ε) of uP and up e WίtCO(Ω)9 p = l,..., m, such that

for every p = l,..., m, uξ converges to up in the weak* topology of WltCO(Ω).

By virtue of Sobolev's imbedding theorem, we see that up e C(Ω) and uP

converges to up in the strong topology of L°°(Ώ).

We shall show that these up, p= 1,..., m, satisfy the inequalities (2.5).

Let v e JT(up+ί) and fix it. By Lemma 5.1 there exists vε e JΓ(uf+ 1) such that

vε converges to v in the strong topology of i ί^Ω) as ε->0.

Multiplying the both sides of (3.4) by uζ — υa which belongs to H£(Ω), inte-

grating over Ω and using integration by parts, we have

- (βJίuζ+ί -k- ul), uξ - ».) = (f", uξ - vε).

Since υε, uξ are bounded in Hl(Ω), there exists a constant M such that

(βe(u>-uξ+i-K),uξ-ve)

Since

-k-uξ), uξ+ ι-k-uξ)

-(βε(uξ+ι-k-uξ),uξ-vε)

+ (βe(uξ+1 -k-Uξ), Uξ+1 - k- Vε)

-(βε(uξ+1-k-uξ),uξ-vε)

we have

(β£uξ-uξ"-K), uξ-uξ^-K) S M

and

(βε(uξ+1-k-uξ),uξ+ι-k-uξ)^M.

Noting that uξ and uf+1 converge uniformly to up and u p + 1 , respectively,

we obtain
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UP _ M P+I _ K S 0 and UP+1 - k - u? ^ 0 in Ω

and so up e Jf(up+1) for every p = l,..., m.

Next, consider the form

Xξ = a<>(uP-υε,uϊ-υε)

+ (A(l<?-Ilf+1 - * ) - βε(Ve-UPe+ί ~ K), UP~VE)

- (βjμζ+i-k-uξ) - βε{urι-k-υE\ uξ-υε).

Clearly we have Xξ ̂ 0 . On the other hand, substituting (5.1) we get

Xξ = (fp,uζ-Όj-a*(vΛ9uξ-υJ9

so that

aP(υa9ΌΛ-uζ)^(f*,Όa-uζ).

Passing to the limit as ε-»0, we obtain

(5.2) αP(v9 V-UP)^ (JP, V-UP) for all v e X*(UP+1) .

To derive the inequality (2.5) from (5.2), we can use a standard argument in

the theory of variational inequalities. Namely, for veJΓ(up+ί) a n d θ e J O , 1[,

we substitute .0i? + (l -0)ιι* e JΓ(u^+1) into v in (5.2). Dividing the both sides of

this inequality by Θ and taking the limit as θ-+0, we obtain

αP(uP, V-UP)^ (fP, V-UP)

for all υ e Jf(up+ί). This completes the proof.

REMARK 5.1. We know nothing yet about uniqueness of these solutions of

(2.5) belonging to the space ^ ' " ( Ω ) .

6. The JΓ2'r(Ω)-regularity

In this section we shall prove W2'Γ(Ω)-regularity of the solution which we

have constructed in the preceding section. For that purpose, we use the as-

sumption (A. 5).

THEOREM 6.1. Assume (A.1)-(A.5). The solution UP, p = l , . . . , m , of (2.5)

whose existence was proved in Theorem 5.2 belongs to W2'r(Ω) for any r, 1 <

r<oo.

PROOF. Let l<r<oo. First we note that for any xoeΩ there exists p,

l ^ p ^ m , such that

(6.1) uP+i(x0) -k< UP(X0) < uP+ί(x0) + K.
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Indeed, it not so, we have for all p = l,..., m

UP(X0) = UP+1(X0) + icV

where κp = K or — /c. Summing up these equations from 1 to m with respect to

p, we get Σ ^ i ^ ^ O . But this contradicts the assumption (A.5), and so we

have (6.1) for some p.

Changing the number p if necessary, we may assume

(6.2) u2(x0) -k< u^xo) < u2(x0) + K.

Since u1 and u2 are continuous, we may suppose that (6.2) is valid in Gδ =

{xeΩ; \x — xo\<δ} for some <5>0.

If weC^Ω) satisfies supp wcGδ, u1±λwe JΓ(u2) for sufficiently small

λ>0. Substituting this into (2.5), we have

(6.3) a\u\w) = (P,w).

Since the totality of such w forms a dense subset in Hl(Gδ), (6.3) is valid for

all w e Hl(Gδ). Applying the regularity theorem for linear elliptic equations, we

obtain u\ e W2>r(Gδ).

Next, we shall prove the regularity of um which is a solution of a variational

inequality whose obstacles are determined by ux.

Since the sequence of approximate solutions uξ converges uniformly to up,

respectively, we may assume

u2(x) - k < ul(x) < u2{x) + K in Gδ

for sufficiently small ε. For such uξ we have

βε(u2-k-ul) = βE(ul-u2-K) = 0,

so that the approximate equation (3.4) becomes

A^l^f1 in Gδ.

Hence, Axu\ and u\ are bounded in Lr(Gδ) and W2>r(G<5), respectively.

Put φε = ul~-k9 Φε = ul + K, and note that Λmφε9 AmΦε are also bounded in

L'(Ga).

We shall show that uψ are bounded in W2>

o

r

c(Gδ).

Let ζ e C°°(Ω) be such that supp ζ c Gδ, ζ Ξ> 0, and fix it.

Multiplying the both sides of (3.4) for p = m by ζrβε~
ί(u1

ε

n — Φε) and integrating

over Ω, we have
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ζ'β'B(u?-Φc)dx
Ω

The third term on the left hand side is equal to zero.
To estimate the first term on the left hand side, we write

(6.5) = a>»(u? - Φε, ζrβ'ε-\uf - ΦJ)

{AmΦε)ζrβ'-\u?-Φt)dx.

The first term of (6.5) can be estimated as follows:
We put uf — Φε=\l/ and use abbreviated notations as in Section 4. It follows that

a(ψ, ζ'β'

^KC^XWW) +

cψζ'β'-1 (φ))dx

jψ) + S C'/J'-

+ cφ2)dx

- \ β'-K'iβ'ψ-βH&iίδiψ) + cψ)dx
JΩ

= / +7/ + ///.

Easily we get
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and J / ^ 0 from coercivity.

Applying (3.3) we have

Ill ^ - M [ β'-2(ψ)ζrdx
JΩ

βr(φ)ζrdx - M
JΩ

for any η>09 where M may depend on η.

Applying Holder's inequality to the second term on the right hand side of

(6.5), we conclude

( (Amuf)ζrβr

8- Kw? - ΦE)dx
JΩ

^ — M \ ζr~ί\gΐ2idζ\βr

ε~
1(uε

n — Φε)dx
JΩ

- rj [ ζrβr

ε(uT-Φε)dx -M-η[ ζrβr

ε{K~Φε)dx
JΩ JΩ

ζr\AmΦε\
rdx

for any η > 0.

Hence we have by (6.4)

ζ'β'ε(Uε«-Φε)dx
Ω

which shows

(6.6)
JΩ

Next, multiply the both sides of (3.4) for p = m by ζrβr

ε~
ι(φε — u]

ε

n) and inte-

grate over Ω. Then we have

[ {A^u^βl
JΩ

= \ ζrfirKΦ*-u7)fmdx.
JΩ

In this case, the estimation of the first term of the left hand side becomes
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= - a »(φε-u?, CβΓKΦ.-u?))

ζ'fi(φt-u?)dx.{
JΩ

Arguing similarly for other terms as in the preceding case, we have

(6.7) \ ζ'βE(φε-u?

It follows from (6.6), (6.7) and (3.4) that Amu™ are bounded in Lr

loc(Gδ) with

respect to ε. Hence, we have the boundedness of u™ in Wfor

c(Gδ) by using the

standard elliptic theory.

Taking the limit as ε->0, we obtain

umeWfcr

c(GΛ) for r, 1 < r < oo.

Repeating this argument inductively with respect to the parameter p, we can

show that for any x 0 e Ω, there exists <5>0 such that

(6.8) uPeWh'e(Gδ)

for all p = l , . . . , m and r, l < r < o o .

Since, for any precompact subset Ω' in Ω, the totality of such Gδ9 xoeΩ',

forms an open covering of Ω', we may select a finite open subcovering of Ωf from

G/s. Hence we obtain

(6.9) u?e Wfcc(Ω) for p = 1,..., m and r, 1 < r < oo.

On the other hand, since wp|Γ = 0, (6.1) is satisfied in some neighborhood of

Γ for all p = l , . . . , m. Hence, each up satisfies the second order linear elliptic

equation Apup=fp there, so that up belongs to W2r in this neighborhood.

From this and (6.9), we obtain up e W2>r(Ω).

The proof is complete.

REMARK 6.1. Since up belongs to W2>r(Ω) n C(Ω), the up satisfy the in-

equalities (1.1) for almost all xeΩ.

7. Stochastic representation and uniqueness of the solution

In this section we shall introduce a stochastic switching game and represent

the solution component up of our problem as the value of this game. As a result

of such representation, we shall obtain the uniqueness of regular solutions.
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Let (U, J5*, P) be a probability space and let w(ί) be an iV-dimensional

Brownian motion on it. We denote by &t the σ-field σ(w(s), O ^ s ^ t) in & which

is generated by {w(s); O^s^t}.

Let 0* = ̂ ^ ] be a non-negative matrix satisfying ap = (l/2)σp(σp)* for each

p = l,..., m, where (σp)* is the transposed matrix of σp and tfp = [αf/l is the coeffi-

cient matrix of the principal part of Λp. Let bp = (bp,...9 b$) be a N-vector of

coefficients of the first order terms of Λp.

We may assume that σp and bp are extended to the whole of RN preserving

Lipschitz continuity.

Consider a system of stochastic differential equations

(7.1) dξp(ή = - bp(ξp(t))dt + σp(ξp(ή)dw(t), p = 1,..., m.

Let η = (η1, f/2> » > n̂» ) t>e a sequence of J5",- stopping times such that

0<ηί<η2 <"'<ηn<"-.

For xe RN and for this increasing sequence of stopping times η, by making

use of solutions of (7.1), we define a continuous process ξ(t) = ξη>x(t) starting at

x as follows:

{,.x(0 = f 1 (0 with {1(0) = x if O ^ ί ^ i h ,

U 0 = P(ί) with ξ2 ( ι y i ) = ξ i ( l ? i ) i f η ι S t ^ η 2 9

in general, for any integer /^0 and l ^ p ^ m ,

(7.2) ξηtX(t) = ξp(t) with ^( ιy l m + p - 1 ) = ί'-1(ιyi»+p-i)

where we put ξ° = ξw, ?7o = 0

The process ξηtX is a continuous process starting at xeRN with path ξ1,

and whenever it hits the next stopping time ηlm+p-ί9 the path of ξηtX switches from

the path of ξp~x to the path of ξp.

We define

f(ξη,x(t))=fp(ξp(t))

when ξηtX(t) = ξp(t).

Let Tbe the exit time of the process ξntX from the domain Ω.

For two increasing sequences 0 = (0n), τ = (τn) of stopping times, we consider

the following cost functional:
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, τ) = £ x [ J % x p ( - J

+ *Σ?=i exp(- 5^Tc(ξ(s))cίS)χ{^T= τπ}

- fc Σ?=i exp ( - J ^ c(ξ(s))ds)

where η = (ηn) is an increasing sequence of stopping times defined by ηn = θn~τn =

min{0n, τM}, and χ{η = τ} = l if η = τ, χ{ff = τ}=0 if ιy#τ.

The cost functional J*(0, τ) may be interpreted as follows: The first term of

the cost functional shows that the running cost per unit time of ξ(t) is given by

f(ξ(t)) with discounting term c(ξ(ή). When ξ(t) switches from ζp to ξp+ί at ηn =

tiim+p* positive switching cost K or negative switching cost — k or both of them

with discounting term are imposed according as ηn = τn<θn or ηn = θn<τn or ηn =

θn = τn, respectively.

Let us consider a stochastic switching game such that two players compete

for the value of the cost functional Jl(θ9 τ). Player 1 wants to maximize the value

of Jl(θ, τ) by operating the stopping times 0 = (#„), while player 2 tries to minimize

the value of J^(θ, τ) by operating the stopping times τ = (τπ).

We are interested in the value of this stochastic switching game:

supβ inft Jι

x(θ, τ) or infτ suρθ Ji(θ, τ)

where θ, τ range over the set of all increasing sequences of stopping times.

Let UPe W2>r(Ω) Π C(Ω), p=l,...9 m, be any solut ion of

+ K in Ω,

APUP=fp if UP+1 - k < UP < UP+1 + K,

(7.5) APUP Sfp if UP = UP+1 + K,

APuP^fP if UP+1 - k = uP,

UP\Γ = 0, um+1 = u1.

Let, for each p = l,..., m,

(7.6) §P = {XEΩ; UP(X) = UP+1(X) - fe}

and define an increasing sequence θ = φn) of stopping times associated with these

§P9 p = l,..., m, as follows:

θ2 = inf {t ^ θi; ξ2(t)eP, ξ\θx) =

in general,
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(7.7) Θlm+P = inf {t ^ Θlm+p^;ξp(t)e§P9 ξ*Φιm+P-i) = ξ^Φ^p-i)}

for any nonnegative integer / and p = l , . . . , m.

Similarly, let

f P = {x e Ω; UP(X) = UP+1(X) + K}

and define an increasing sequence f = (£„) of stopping times associated with

fp9 p=l , . . . , m, as follows:

τ, = inf{t ^0; ξKήefK ξKO) = x},

in general,

(7.8) fίm+p = inf{ί ^ f/m+/,_i; W O e f ' , ^ ( τ ^ ^ - O = ί ' - ^ + p - i ) }

for any nonnegative integer / and p = 1,..., m.

The next theorem asserts that any regular solution component uι of (7.5)

can be represented as the value of our stochastic switching game and that the

increasing sequences θ9 τ of stopping times constructed above are the saddle points

of this game.

THEOREM 7.1. Assume (AA)-(A.5). For any solution component upe

W2>'(Ω) n C(Ω), p = l,..., m, o/(7.5), we have

(7.9) uKx

(7.10) Jί(0, f) ^ u\x) g JJ(0, τ)

/or α// increasing sequences θ, τ of stopping times.

PROOF. In the following we assume cp(x) = c (a constant) for simplicity of

notations.

First of all, we note that the cost functional is rewritten as

Jl(θ, τ) = Σf=o Σ?=i £ j Γ ' m + P T e-«f>(ξP(t)) dt
LJ T

(7.11) + Ke-c»»»

Let ή = g.τ. We shall show (7.9).

When ήιm+p-i<t<ήιm+p, we have

(7.12)

since ί p ( 0 ^ ^ p U fp in this time interval.

Because up e W2>r(Ω) Π C(Ω), we may apply Ito's formula to have
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(7.13)

+ « ' ( ί ' ( W - ϊ')) ί" ί < <'B t'-1*T )]

Substituting this into (7.11), we obtain

JiΦ, f) = Exlu\ξ\ή

(7.14) + ΣΓ=o Σjf-i £,[{

+ Kχ{ήlm+p~T= τlm+p} - kχ{ήlm+p~T = dlm+p}}e-<

where ^ 0 = 0 .

Each term

U(l, p; d,τ)=- *>(ξP(ήlm+p~T)) + UP+\ξp^(ήlm+p~

&{f+p~T = tlm+p) - kχ{ήlm+p~T = θlm+p},

appearing in (7.14) may be estimated as follows according to the case of ήn:

(i) In the case of ήlm+p-T= f lm+p < θlm+p, we have

U(l, p; θ, f) = 0.

Indeed, since ξr(ilm+p)=ξr+i(itlm+p)efr, it follows

and χ{ήlm+p~T=θlm+p}=0.

(ii) In the case of ήιm+p-T=θlm+p< ϊ(m+p, we have also

U(l, p; θ, ΐ) = 0

since ξ»φlm+p) = ξP+Kdlm+p)e§P.

(in) In the case of ήlm+p-T= T<6lm+pΛlm+p, we get

l/(/, p; θ, f) = 0

because χ{ήlm+p-T=dlm+p}=χ{ήlm+p-T=tlm+p}=0 and u" | r =O.

(iv) Since §P nfp = §p nΓ=ff ΠΓ=φ, there occur no other cases.

Accordingly, U(l, p; θ, ΐ ) = 0 in all cases, and so we obtain (7.9) from (7.14).

Next, we show
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(7.16) JJ(0, t) ^ u\x)

for any increasing sequence θ of stopping times.

Let η — ΘΛ. In the interval ηιm+p-i<t<ηlm+p, we have ξp(t)φfp since

t<fim+P Hence it follows from (7.5) that

(7.12)'

Therefore, a calculation similar to (7.13) yields

(7.14)' Jί(0, ί) ^ ^[Vίί ' fao))] + Σ?-o Σj?=i EJV(l9 p; θ,

where Ayo = ° a n ( * U('» P; θ> *) w a s defined by (7.15).

We may estimate each of U(l, p; θ, τ) as follows:

(i)' In the case of ηιm+p~T=τlm+p<θlm+p, we have

l/(/, p; 0, ΐ) = 0

by the same reason as in the case (i).

(ii)' In the case of ηlm+p~T=θlm+p<τlm+p, we have

U(l, p; 0, ί) = - uP(ζp(ηlm+p)) + ιι'+1(^+1(ι/i»+J,)) - fc ^ 0,

since ξP(ηlm+p) =

(ϋi)' In the case of mm+p~T= T< θlm+pΛlm+p, we have

[/(/, p; 0, ΐ) = 0

similarly as in (iii).

(iv)' In the case ofηlm+p~T=θlm+p = ϊlm+p or ηιm+p~T=θlm+p=T9 we get

U(h pi θ,τ)=- uP(ξP(ηlm + p)) + uP+\ξP+\ηlm+p)) + K - k = - k < 0.

Finally, there does not occur the case f„ = T.

Therefore, since we have L/(Z, p; 0, τ ) ^ 0 in each case, we conclude (7.16)

from (7.14)r.

We proceed quite similarly to get

(7.17) u\x) £ JhΦ, τ)

for any increasing sequence τ of stopping times.

In this case we have

(7.14/ JhΦ, τ) ^ Ex\u\ξ\η0)y] + ΣT=o Σ?=i Ex[U(l9 p; θ,

and
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U(l, p; S, τ) ̂  0

in each case of ηn.

Combining (7.16) and (7.17) we obtain (7.10) and the proof is complete.

For general p = l,...9 m, we can represent the solution component up as a

value of a stochastic switching game.

Define a continuous process ξ(

η

p)

x(t) starting at x as in (7.2); the path of

ξ(

η

p)

x coincides with that of ξ*(t) with ξp(θ) = x in the first interval 0<t<ηl9 and it

switches at ηn cyclically.

The cost functional JJ(0, τ) is defined as (7.4) by using ξ(

η

p)

x(t). Then, ob-

viously, we have the same conclusion about up as Theorem 7.1. Saddle points

Q(p)9 £(p) are also defined analogously by (7.7) and (7.8) starting from p.

The uniqueness result of solutions to our problem in the class W2>r(Ω) n C(Ω)

is now an immediate consequence of this representation.

Our main theorem is the following:

THEOREM 7.2. Suppose (AA)-(A.5). There exists one and only one set of

solutions up

9 p=l,..., m, of the problem (2.5) or (1.1) which belong to W2>r(Ω) Π

C(Ω)for any r, l ^

REMARK 7.1. We can also treat the more general system

up+1(x) - kp ^ UP(X) ^ UP+\X) + KP, xeΩ,

APUP = fP if u(χP+1) - kP <UP < uP+ί(x) + KP, X e Ω,

(7.18) AW ^ fp if UP(X) = w^+1(^) + ^ , x e Ω ,

APUP ^ fP if uP+ί(x) - kP = UP(X), xeΩ,

up = 0 on Γ9 p = 1,..., m, um+1 = u1

in which the given positive constants kp and KP may different for p = l,..., m.

It is clear that, under the same assumptions (A.1)-(A.4), our arguments in

Sections 3, 4 and 5 are still valid for this system. Hence we can find a solution

up, p = l , . . . , m, such that

ap(up,υ-up) ^(fp,v-up)

for all v e Jfp(up+1), where we put

χ-p(up
+ι) = {uelJJ(Ω); W+1(x) - fc* ̂  ι (x) ^ w^+1(x) + ̂ , a.e. in Ω}.

Moreover, if we make the assumption

(A.5)7 Σp=i κp ^ 0 for every system κp, where κp = — kp or Kp,
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instead of (A.5), then we can prove the JF2'r(ί2)-regularity of these solutions by a

similar method as in Section 6. The arguments in the proof of Theorem 7.1 are

also valid if we make suitable modifications.

Consequently, we can prove the same conclusion as in Theorem 7.2 for

the system (7.18) under the assumptions (A.1)-(A.4) and (A.5)'.
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