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Introduction

In his paper [4], R. Gilmer introduced the concept of LCM-stableness,
relating to GCD-properties of a commutative group ring. The main purpose of
this paper is to point out that, in some cases, the necessary and sufficient con-
ditions for a ring extension to be LCM-stable can be given in terms of polynomial
grade, originally due to M. Hochster and developed by D. G. Northcott. For
this purpose, we shall introduce two further notions, R,-stableness and G,-
stableness, and investigate the relationship between LCM-stableness and them.
In these discussions it is important to know when ‘Gr(I)=2’ implies ‘gr(l)=2’.
We shall give in the last section an example of a finitely generated ideal I in an
integral domain, with gr(I)=1 and Gr(l)=2.

In §2, we shall show that flatness, INC and LCM-stableness are all equivalent
notions for a simple extension which satisfies some conditions (cf. Th. 2.7). In
§3, we shall examine a relation between R,-stableness and G,-stableness, and
study universality of LCM-stableness; namely, in Th. 3.5 we shall prove that Ac B
is G,-stable if and only if A[X]< B[X] is G,-stable, and also if and only if A[X] <
B[X] is R,-stable. As a corollary to this theorem, we can see that, in case A4 is
locally a GCD-domain, A< B is LCM-stable if and only if so is A[X]<B[X].

In §4, we shall examine LCM-stableness of a simple extension A< A[a].
Let I be the kernel of the canonical homomorphism of A[X] onto A[a]. We
shall first show in Th. 4.3 that if I =(f(X)) (f(X)e A[X]), then A[Y]<A[«][Y]
is R,-stable if and only if Gr(c(f))=3. Moreover, we shall show in Th. 4.5
that, under some conditions, A< A[«] is R,-stable if and only if Gr(c(f))=3.
In particular, we can show that if A4 is locally a GCD-domain, then A< A[«] is
LCM-stable if and only if Gr(c(I))=3 (cf. Cor. 4.6).

In §5 and §6, we shall deal with the case of doubly generated extension
AcAla, f]. In §5, we shall study a special case (cf. Th. 5.5). In §6, we shall
consider the case where K(a), K(f) are linearly disjoint over the quotient field
K of A. Firstly we shall treat the case when A< A[«] is (faithfully) flat (cf.
Prop. 6.1, Th. 6.4), and secondly we shall examine the kernel K, ; of the canonical
homomorphism of A[X, Y] onto A[«, ] by means of polynomial grade (cf.
Prop. 6.6, Cor. 6.7, Prop. 6.8). Moreover, in case A4 is locally a GCD-domain,
we shall give a characterization of LCM-stableness of 4= A[«, ] (cf. Th. 6.10).
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Finally, in §7, we shall give an example such that R,-stableness does not
necessarily imply G,-stableness.

The author wishes to express his hearty thanks to Professor M. Nishi for his
kind advices and constant encouragements. He is also indebted to his friends
S. Itoh and A. Ooishi for their stimulating and kind comments.

Notation and terminology

Throughout this paper, rings will be all integral domains unless otherwise
specified and X will be an indeterminate. Moreover, 4 will be an integral domain
with the quotient field K and Q will be the algebraic closure of K. We let
Spec(A4) and Max (A4) stand for the set of all prime ideals of A and that of all
maximal ideals of A respectively. An overring of A is a subring of K contain-
ing A. Let I be an ideal of A. We denote by Gr (J) and gr (I) the polynomial
grade of I and the classical grade of I respectively. Let J be an ideal of A[X].
We denote by c(J) the ideal of A generated by all coefficients of all polynomials
in J and we call it the content of J.

§1. Basic properties of LCM-stableness

Let A and B be integral domains. We say that Ac=B is LCM-stable if
(aAnbA)B=aBnbB for all a, be A (cf. [4]). It follows easily from the defini-
tion that A< B is LCM-stable if and only if (a:, b)B=a:gz b for all a, be A —{0}.
In this section, we examine basic properties of LCM-stableness. The following
proposition is a well-known result on flatness.

ProposITION 1.1.  If Ac B is flat, then AcB is LCM-stable. In particular,
Ac Ag is LCM-stable for each multiplicatively closed set S in A.

As for transitivity, the following proposition is important. However it can
be proved easily, and so the proof is omitted.

PROPOSITION 1.2. Let A, cA,cA; be integral domains. Then we have
the following statements.

(1) If both A;c A, and A,=A; are LCM-stable, then so is A; = A;.
(2) Assume that 1A5nN A,=1 for any ideal I of A,. If A;cA; is LCM-
stable, then so is A; < A,.

ReMARK 1.3. LCM-stableness of both 4, = A, and 4, = A; does not neces-
sarily imply that of A,cA;. Moreover, LCM-stableness of both 4; =A; and
A, = Ay does not necessarily imply that of A; < A4,. For example, the
former case is Z<Z[\/5]1=Z[(1++/5)/2] and the latter case is Z[./5]c
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Z[(1+./5)/21=Q[ /5], where Z is the ring of integers and Q is the rational
number field.

ProrosITION 1.4 (cf. [12], Lemma 2). Let AcT<B be integral domains
with TcK. If AcB is LCM-stable, then so is T< B.

Proor. Let x, ye T—{0}. Put x=a/c and y=>b/c, where a, b, ce A—{0}.
Then we have x:py=a:zb=(a:;b)Bc(a:rb)B=(x:yy)B. Thus, x:igy=
(x:7 y)B. This shows that T< B is LCM-stable.

COROLLARY 1.5. Let AcB be LCM-stable. Then the following statements
hold.
(1) For each multiplicatively closed set S in A with AgcB, AgcB is
LCM-stable.
(2) Suppose that S and T are multiplicatively closed sets of A and B
respectively and that ScT. Then Ag< By is LCM-stable.

As for A-algebras, we give some characterizations of LCM-stableness.

PROPOSITION 1.6. For AcB<C, the following statements are equivalent.
(1) B<C is LCM-stable.

(2) For each PeSpec(A), Bp=Cp is LCM-stable.

(3) For each M e Max (A), By, =C,, is LCM-stable.

(4) For each Q e Max (C) with Q n B=P, Bp=C, is LCM-stable.

Proor. We first prove (3)=-(1). Let a, be B and M € Max(4). We have
obviously (a:p b)Cca:cb. Since By, <=C), is LCM-stable, (a:5 b)C,, =(a:pb)Cy
=a:c,, b=(a:cb)Cy. Therefore, (a:;zb)C=a:cb. That is, BcC is LCM-
stable.

(4)=>(1) can be proved similarly. Moreover, the assertions (1)=>(2)=>(3) and
(1)=(4) follow immediately from Cor. 1.5.

ProposITION 1.7 (cf. [3], Lemma 6.5). Let B be an overring of A. Then
the following statements are equivalent.

(1) AcBis LCM-stable.

(2) (y:4x)B=B for each x|y € B.

(3) Ac<B s flat.

Proor. The equivalence of (2) and (3) follows from Lemma 1 and Th. 1 in
[12]. The implication (3)=>(1) is obvious (cf. Prop. 1.1).

(1)=(2). Let x/yeB, where x, ye A and y#0. Then since A<B is LCM-
stable, we have (y:, x)B=y:g x=B.

F. Richman and D. E. Dobbs gave some characterizations of a Priifer domain
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in terms of flatness (cf. [12], Th. 4 and [2], Prop. 3.1). By virtue of Prop. 1.7,
we have a new characterization of a Priifer domain.

COROLLARY 1.8. The following statements are equivalent.

(1) A is a Priifer domain.

(2) For any integral domain B containing A, A< B is LCM-stable.
(3) ForeachuekK, AcA[u] is LCM-stable.

Next, we give a sufficient condition for A =B to be LCM-stable.

PROPOSITION 1.9. Let A< B be integral domains. If Ac A[x, y] is LCM-
stable for any x, y€ B, then A=B is LCM-stable.

Proor. Let a,be A and assume that ax=byeaBn bB, where x, y€B.
Then since A< A[x, y] is LCM-stable, we have ax=by e aA[x, y]n bA[x, y]=
(aAnbA)A[x, yl=(aAnbA)B. Therefore, aBn bB=(aA N bA)B. Thus, AcB
is LCM-stable.

Remark 1.10. In the above proposition, we can not replace two elements
x and y by a single element x. In fact, let A=Q[s, t],), Where s, t are indeter-
minates over Q. We can take x, y € Q with the properties that x2+sx+s2=0,
y2+ty+1t2=0 and tx=sy. Then since A is integrally closed and A[x, y] is
integral over A, A[z] is a free A-module for each ze€ A[x, y]. In particular,
Ac A[z] is LCM-stable for each z e A[x, y]. On the other hand, since (s, 1) # A4,
Ac A[x, y] is not LCM-stable (cf. Prop. 5.3).

It is well-known that for an overring B of A, if A<B is flat and B is integral
over A, then A=B (see [12]). This fact suggests to us the following propositions
on LCM-stableness.

PrOPOSITION 1.11. Let A be a quasi-local domain with the unique maximal
ideal M and B be an integral domain containing A. Assume that MB#B. If
AcB is LCM-stable, then we have BN K =A.

Proor. Let x=a/beBnK, where a, be A—{0}. Since AcB is LCM-
stable, we have a=bx e (a4 n bA)B. Therefore, there exist x;€ ad N bA and f;€ B
such that a=bx=3%7_, x;8;. We can put x;=ay,=bz; for 1<i<r, where
Vi z;€ A. Then we have 1=Y"%_, y;,8;. Since MB# B, there exists i such that
y;&M. Therefore, aecbA. Thus, xe A. That is, we have Bn K=A.

From Prop. 1.11 and Prop. 1.6, the following corollaries follow easily.

COROLLARY 1.12. Let AcB be integral domains. Assume that for each
PeSpec(A) there exists Q€ Spec(B) such that QnA=P. If AcB is LCM-
stable, then we have BN K= A.
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COROLLARY 1.13. Let B be an overring of A with B#A. Assume that
A<B is LCM-stable. Then there exists M € Max (A) such that MB=B. In
particular, B is not integral over A.

Finally, we give a property of LCM-stableness in terms of prime ideals.
For P e Spec(A), we denote by ht (P) the height of P.

ProrosiTiON 1.14 (cf. [3], Prop. 6.4). Assume that A=B is LCM-stable.
Let P e Spec(B) with ht (P)<1. Then we have ht (P n A)<1.

Proor. By Cor. 1.5, Apq <= Bp is LCM-stable. Therefore, we may assume
that 4 and B are quasi-local domains with the maximal ideals P and M,
respectively, and that M nNA=P#0 and ht(M)=<1. Let aeP—{0}. Since
ht (M)=1 and B is a quasi-local domain, we have M =rad (aB). On the other
hand, since A =B is LCM-stable and PB#B, aBn A=aA by Prop. 1.11. There-
fore, P=MnA=rad(aB)nA=rad(aBn A)=rad(a4). This implies that
ht (P)=1.

§2. LCM-stableness of A A[a] with a™e K

Let o e Q with ame K for some m>0. In this section, we shall give some
characterizations for A = A[«] to be LCM-stable.

PROPOSITION 2.1. Let A be a quasi-local domain and « € Q. Assume that
o"=ueK—A and that Ac A[a] is LCM-stable. Then we have o~!e A[«].
Therefore, a~! is integral over A and also so is u™!.

ProoF. Put u=a/b, where a, be A—{0}. Since A=A[x] is LCM-stable,
we have a=boame(aA nbA)A[a]. Therefore, there exist r>0 and x;, y;, z;€ A4
such that a=ba™=Y"_, x;¢' and x;=ay,=bz; for 0<i<r. Now since ué& 4,
y; is a non-unit for every i. Thus, 1—y;is a unit in A4 for each i. Therefore, we
have a '=(1—yo)™! 35, yiai~t€ A[«]. This completes the proof.

Let AcB be integral domains. We say that A< B is INC if two different
prime ideals of B with the same contraction in A can not be comparable (see [7],

[16]).

COROLLARY 2.2. Let aeQ with a®me K for some m>0. If AcA[a] is
LCM-stable, then A= A[a] is INC.

Proor. By virtue of §1 and [16], we may assume that 4 is a quasi-local
domain. Then A< A[«] is INC by Prop. 2.1 and Cor. 3.2 in [16].

REMARK 2.3. The converse of Cor. 2.2 is false as is seen in Z[./5]<
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Z[(1+/5)/2].

Let ae Q. Hereafter, by K, we shall denote the kernel of the canonical
homomorphism of A[ X] onto A[«]. From now on, we examine some conditions
for the converse of Cor. 2.2 to be true.

COROLLARY 2.4. Let aeQ with a"e K for some m>0. Assume that K,
is invertible. Then A< A[a] is LCM-stable if and only if AcA[a] is INC;
and when that is so, A< A[a] is flat.

PrOOF. The assertions follow immediately from Prop. 1.1, Cor. 2.2, Cor.
3.2 in [16] and Cor. 2.20 in [10].

Here, we need two lemmas relating to a linear base. It is well-known that 4
is integrally closed if and only if K, has a linear base for each u e K (cf. (11.13)
in [8] and [11]). The following lemma is a generalization of Th. 1 in [11] which
can be proved in the same manner.

LEMMA 2.5. Let aeQ with a"=ue K—{0} for some m>0 and put u=
a/b where a,be A—{0}. Put B,={dx—e|d,ec A and be=ad} and B,=
{dX™—e|d, ee A and be=ad}. Then the following statements are equivalent.

(1) K,=B,A[X]; that is, K, has a linear base.

(2) IfbXm™—a is irreducible over K, then K,=B,A[X].

(3) (a, b)"n(b**t: a)cb"A for each n>0.

Generally, it is easily shown that for u € K if A is integrally closed in A[u],
then K, has a linear base (cf. (11.13) in [8]). On the other hand, the converse
is false as is seen in A< A[u], where A=Z+ Z2,/—1and u=1/2,/—1. There-
fore, the following lemma is a slight generalization of the u—u~! Lemma which
are essentially proved in Th. 67 in [7].

LEMMA 2.6. Let A be a quasi-local domain with the unique maximal ideal
M and take ue K. Assume that K, has a linear base. If K,z MA[X], then
either ue A or u=' e A.

THEOREM 2.7. Let a € Q—{0} with om=ue K for some m>0. Put u=alb,
where a, be A—{0}. Assume that K, has a linear base and that bX™—a is
irreducible over K. Then the following statements are equivalent.

(1) A<A[a] is LCM-stable.

(2) AcA[a] is INC.

(3) AcA[«] is flat.

(4) (a, b) is invertible.

PrROOF. Since incomparability, LCM-stableness, flatness and the property
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that K, has a linear base, where u € K, are local properties (see [16] and §1), we
may assume that A is a quasi-local domain with the unique maximal ideal M.
Then we have only to show the implications (2)=>(4) and (4)=(3), since the
others are obvious (cf. Cor. 2.2).

(2)=(4). Assume that Ac A[«] is INC. Then we have ¢(K,)=A4 by Cor.
3.2 in [16]. On the other hand, it follows easily from Lemma 2.5 that ¢(K,)=
¢(K,). Therefore, K,A[X]¢ MA[X]. Thus, by Lemma 2.6, we have either
ueAoruteA. Thatis, (a, b)is principal.

(4)=(3). Assume that (a, b) is invertible. Since A is a quasi-local domain,
we have easily either ued or u"!'e A. Suppose that ue A. Then we have
K,=(X"—u)A[X] by the assumption. Therefore, 4= A[a] is obviously flat.
We now proceed to the case u=!€ A. Similarly, we have K,=(u"1X"—1)A[X].
Therefore, A = A[«] is flat by Cor. 2.20 in [10].

COROLLARY 2.8 (cf. Cor. 4.4). Let aX™—b be a prime element of A[X],
where m>0 and a, be A—{0}. Then the following statements are equivalent.

(1) AcA[X]/(aX™—b) is LCM-stable.

(2) AcA[X]/(aX™—Db) is flat.

3) (a, b)y=A.

§3. Universality

In this section, we shall examine the universality of LCM-stableness. For
this purpose, we prepare two notions, R,-stableness and G,-stableness, related to
LCM-stableness. Let A< B be integral domains. We say that AcB is G,-
stable if Gr (IB) =2 for each non-zero finitely generated ideal I of 4 with Gr (I)=2.
Moreover, we say that AcB is R,-stable if a:zb=a for any a, be A—{0} with
a: b=a. Obviously, if AcB is LCM-stable, then A= B is R,-stable and if 4
is a GCD-domain, then the converse holds. Let I be an ideal of 4. If Gr(1)<2,
then we have A:x I=A. But the converse is false as is seen in Remark 2.4 in [6].
On the other hand, in case [ is finitely generated, Gr (I)=2 if and only if A:x [=A
by virtue of Th. 7 of Chap. 5 in [9]. Therefore, by Ex. 1 and Ex. 2 (p. 102) in
[7], if A=B is G,-stable, then A<= B is R,-stable and moreover, if 4 is a Noe-
therian domain, then the converse is true. However, neither G,-stableness nor
R,-stableness does necessarily imply LCM-stableness as is seen in Z [ﬁ =
Z[(1 +\/§)/2]. So we first study a regular sequence of length 2 in a polynomial
ring. We denote by Z(R) the set of all zero-divisors of a ring R.

LEMMA 3.1. Let R be a commutative ring with identity and Q be the total
quotient ring of R. Let f(X)=ag+a,; X+ ---+aX*eR[X]. Assume that
c(f) contains a non-zero-divisor. Then the following statements are equivalent.

(1) a:gxyf(X)=a for each a € R—Z(R).
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(2) a:pxyf(X)=a for each aec(f)—Z(R).
(3) a:xc(f)=a for each aec(f)—Z(R).
4) a:xc(f)=a for some aec(f)—Z(R).
(5) R:c(f)=R.

ProOF. The equivalences (3)<>(4)<>(5) are easy and (2)<>(3) follows from
Th. 7 of Chap. 5 in [9]. Moreover, (1)=>(2) is obvious.

(2)=(1). Let aeR—Z(R). By the assumption, there exists b e c(f)—Z(R).
Since ab € c(f)—Z(R), we have ab:gx,f(X)=ab, Thus, a:gx f(X)=a.

THEOREM 3.2. Let R be a commutative ring with identity and Q be the total
quotient ring of R. Let f(X), g(X)e R[X]. Assume that c(f) contains a non-
zero-divisor. Then f(X):pixy9(X)=f(X) if and only if (i) f(X):gx;9(X)=
f(X) and (i) R:g (c(f)+c(g))=R.

ProOF. Suppose first that f(X):gx;9(X)=f(X). Since R[X]<=Q[X] is
flat, we have obviously f(X):g;x; 9(X)=f(X). Let a/beR:q(c(f)+c(g)), where
aeR and be R—Z(R). Then there exist ¢(X), Y(X)e R[X] such that af(X)=
bd(X), ag(X)=by(X). Since b&Z(R), we have f(X)W(X)=g(X)P(X). There-
fore, ¢(X)ef(X):gex;9(X)=f(X). That is, we can take c(X)eR[X] so that
d(X)=c(X)f(X). Since f(X)&Z(R[X]), we have a=bc(X)e bR[X]N R=bR.
Thus, a/be R. This implies that R:g (c(f)+c(g))=R.

Conversely, let h(X) € f(X):grx79(X) and take ¢(X) e R[X] so that h(X)g(X)
=f(X)$(X). Since h(X)ef(X)Q[X] by (i), there exist ae R—Z(R) and Yy(X) e
R[X7] such that ah(X)=f(X)Y(X). Then since f(X)& Z(R[X]), we have ad(X)=
g(XW(X). Put F(X)=X"f(X)+g(X), where n>degg. Then c(F)=c(f)+c(g)
and by (ii) R:gc(F)=R. Since F(X)Y(X)=a(X"h(X)+ ¢(X)), we have Y(X)e
aR[X] by Lemma 3.1. Therefore, h(X) ef(X)R[X] by noting a&Z(R). That
is, f(X)rxy 9(X) =f(X).

COROLLARY 3.3. With the notation of Th. 3.2, let aeR—Z(R). Then
agxif(X)=a if and only if R:y(a,c(f))=R. Moreover, assume that
R:pc(f)=R. Then for each be R—{0}, a:g;x; bf (X)=a if and only if a:;g b=a.

PROPOSITION 3.4. Let I be a non-zero proper ideal of A[X]. If Gr(I)=2,
then gr(I)=2.

ProoOF. Suppose that 1N A=0. Then we have IK[X]#K[X]. There-
fore, Gr(IK[X])<1. On the other hand, Gr(I)£Gr(IK[X])=1 by Ex. 10 of
Chap. 5 in [9], a contradiction. Thus, IN A#0. Take aelIn A—{0}. Since
Gr(I/(a))=1 by Th. 15 of Chap. 5 in [9], we have obviously gr (I/(a))=1. Thus,
gr(D=2.
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With these preparations, we study universality.

THEOREM 3.5. For AcB, the following statements are equivalent.
(1) Ac<Bis G,-stable.

(2) A[X]<B[X] is G,-stable.

(3) A[X]<B[X] is R,-stable.

Proor. (1)=(3). Let f(X), g(X)eA[X]—{0} and assume that
f(X):4x;9(X)=f(X). Then by Th. 3.2, we have (i) f(X):kx;9(X)=f(X) and
(i) A:x(c(f)+c(g))=A. Let L be the quotient field of B. By (i), we have
immediately f(X):yx9(X)=f(X). Since Gr(c(f)+c(g9))=2 by (ii) and AcB
is G,-stable, Gr((c(f)+c(g))B)=2. Therefore, B:; (c(f)+ c(g9))=B. Thus,
f(X):px;9(X)=f(X) by Th. 3.2. That is, A[X]<B[X] is R,-stable.

(3)=(2). Let I be a finitely generated ideal of A[X] with Gr(I)=2. We
may assume that I# A[X]. Then by Prop. 3.4 we have gr (I)=2. Since A[X]<
B[X] is R,-stable, gr(IB)=2. Therefore, Gr(IB)=2. That is, A[X]<=B[X]
is G,-stable.

The implication (2)=-(1) follows easily from the definition.

If A[X]<B[X] is R,-stable, then obviously so is A=B. The converse is
false as is seen in §7. As for the converse, we consider the following condition.
We say that A satisfies the condition (x) if Ap is a valuation ring for any P € Spec (4)
with gr (P)=1. By Th. 2.2 in [14], if A is a GCD-domain, then A satsisfies (*).
Moreover, if A satisfies (x), A is integrally closed by Cor. 2.16 in [1].

THEOREM 3.6. Assume that A satisfies the condition (). Then for AcB,
AcB is G,-stable if and only if AcB is R,-stable.

PROOF. Suppose that A< B is R,-stable. Let I be a finitely generated
ideal of A with Gr(I)=2. We may assume that IB#B. Then there exists Q €
Spec (B) such that Gr(IB)=Gr (Q) by Th. 16 of Chap. 5in [9]. Put Qn A=P.
Then we have I P. Assume that gr(P)=1. By the assumption, A4, is a valu-
ation ring. Therefore, IAp is a proper principal ideal of 4p. On the other hand,
since A:ixI=A, Ap:xlIAp=Ap. This is a contradiction. Thus, gr(P)=2.
Since Ac=B is R,-stable, gr (PB)=2. Therefore, Gr (IB)=Gr (Q)=Gr (PB)=2.
That is, A< B is G,-stable.

COROLLARY 3.7. Let A be a GCD-domain. Then the following statements
are equivalent.

(1) A<Bis LCM-stable.

(2) A<Bis R,-stable.

(3) AcB is G,-stable.

(4) A[X]<B[X]is LCM-stable.
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(5) A[X]<B[X] is R,-stable.
(6) A[X]<B[X] is G,-stable.

COROLLARY 3.8. Let A be locally a GCD-domain. Then A<B is LCM-
stable if and only if A{X]<=B[X] is LCM-stable.

Hereafter, we shall fix A< B and let L be the quotient field of B. Assume
that A is integrally closed. With this assumption, we examine LCM-stableness
of A[X]<B[X].

LemMA 3.9. Let f(X), g(X)e ALX]—{0}. If f(X):kx19(X)=f(X), then we
have f(X): 40x79(X)=(A:x (c(f) +c(9)) f(X)ALX].

ProOF. Let xeA:x(c(f)+c(g)). Then xf(X), xg(X)e A[X]. There-
fore, we have xf(X)ef(X):yx39(X). Thus, (A (c(f) +c(P)f(X)A[X] <
F(X) i 4x9(X).

Conversely, let h(X)ef(X):4x;9(X). Then there exists ¢(X)e A[X] such
that A(X)g(X)=f(X)p(X). Since f(X):kx;9(X)=f(X), there exist ae A—{0}
and Y(X) € A[X] such that ah(X)=f(X)¥(X). Then we have a¢(X)=g(X)Y(X).
Put F(X)=f(X)X"+g(X), where n>degg. Then c(F)=c(f)+c(g) and
a(M(X)X + (X)) = F(X)Y(X). Therefore, h(X)X" + Y(X)e F(X)K[X]n A[X].
On the other hand, since A4 is integrally closed, we have F(X)K[X]n A[X]=
(A:x (F)F(X)A[X] by Th.B in [15]. Thus, there exist x;e A:xc(F) and
g{(X) e A[X] such that W(X)X"+ ¢(X)= 25, x;F(X)g(X). Therefore, we have
Y(X)=aXi=y xig(X). Thus, h(X)= -, x,f(X)g:(X)€(A:x c(F)f(X)A[X].
That is, f(X):4x;9(X) =(A4:x (c(f)+c(9))f(X)A[X]. This completes the proof.

PROPOSITION 3.10. Assume that A[X]<B[X] is LCM-stable. Then for
each non-zero finitely generated ideal I of A, B:; I=(A:x I)B.

PrOOF. Suppose that I=(a, ay, a,..., a,) is a non-zero finitely generated
ideal of A (in case I is principal, we set n=0 and a,=a), and put f(X)=
>hoa; X!, By Lemma 3.9, we have f(X): x;a=(4:x Df(X)A[X]. On the
other hand, generally (4:x I)f(X)B[X]<=(B: I)f(X)B[X]<f(X):pxya. Since
A[X]<=B[X] is LCM-stable, (A:x I)f(X)B[X]=(B:.I)f(X)B[X]. Therefore,
(A:xDB=B:,I.

THEOREM 3.11. Assume that B is integrally closed and that L is algebraic
over K. Then the following statements are equivalent.
(1) A[X]<=B[X] is LCM-stable.
(2) B: I=(A:xI)B for any non-zero finitely generated ideal I of A.
(3) awpgl=(a:,I)B for any ae A—{0} and non-zero finitely generated
ideal I of A.
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Proor. (1)=>(2). This follows from Prop. 3.10.

2)=(1). Let f(X), g(X)e A[X]—{0}. Since K[X] is a PID, there exist
d(X)e K[X] and f(X), g,(X)eA[X] such that f(X)=d(X)f,(X), g(X)=
d(X)g,(X) and f1(X)kx1 91(X)=f1(X). Then f(X):4x39(X)=11(X): 4x91(X).
Therefore, we may assume that f(X):xx;9(X)=f(X). Then we have obviously
f(X)ix;9(X)=f(X). Thus, since B is integrally closed, by Lemma 3.9 and the
assumption we have

J(X):pxy 9(X) = (B: (c(f) +c(9))f(X)B[X]
= (4:x (c(f) +(9))f(X)B[X]
=(f(X):4pxy 9(X)f (X)BLX].

Therefore, A[X]<B[X] is LCM-stable.
(2)<>(3). Since L is algebraic over K, L=B® ,K and the assertion follows
easily.

§4. Simple extensions

In this section, we shall give a necessary and sufficient condition for a simple
extension over A, which is locally a GCD-domain, to be LCM-stable and discuss
a difference between LCM-stableness and flatness. Let I be a finitely generated
proper ideal of A. It is well-known that if gr(/)=2, then Gr(I)=2, or equi-
valently A:x I=A, and if 4 is a Noetherian domain, then the converse is true.
Moreover, the converse holds for a polynomial ring as is seen in Prop. 3.4. More
generally we can show that this is true for a wider class of domains, containing
Noetherian domains and Krull domains. We say that I has a primary decom-
position if I =\, Q; for some primary ideals Q,, Q,,..., Q,.

LeEmMMA 4.1. Assume that each proper principal ideal of A has a primary
decomposition. Let I be a finitely generated proper ideal of A. If Gr(I)=2,
then we have gr(I)=2.

PrROOF. Suppose that Gr(I)=2. In particular, I#0. Let ae A—{0}.
Then we have a:,I=a. Let aA=N_, Q; be an irredundant primary decom-
position of a4d. We put P;=rad (Q;). Then Z(A4/aA)=\U’-, P,, Assume that
IcZ(AlaA). There exists i such that < P;. Since I is finitely generated, I" =Q;
for some n>0. Take be N;4;Q;—Q;. Then b&ad and bI"caA. Since
a:,I=a, we have a:,I"=a. This is a contradiction. Therefore, I¢Z(A/aA),
by which we have easily gr(I)=2.

The following Lemma follows immediately from Ex. 10 of Chap. 5, Th. 5
of Chap. 6 in [9] and Th. 3.5 in [13].
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LEMMA 4.2. Let I be an ideal of A[X] generated by an A[X]-sequence of
length n (n=0) and let a(X) e A[X] with a(X)&I. Let Q be a minimal prime
ideal of I.yx,a(X). Put QnA=P. Then Gr(Q)=Gr(QA[X]y)=n and if
Gr(P)=n, then Q=PA[X].

Throughout the following Th. 4.3, Cor. 4.4 and Th. 4.5, let f(X) be a prime
element of A[X] with deg f =21 and let B=A[X]/(f(X)).

THEOREM 4.3. A[Y]<B[Y] is R,-stable if and only if Gr(c(f))=3, where
Y is an indeterminate. In particular, if Gr(c(f))=3, then A<B is R,-stable.

ProOOF. Suppose that A[Y]<B[Y] is R,-stable. We may assume that
c(f)#A. Letaec(f)—{0}. Since f(X) is a prime element of A[X7], a:,;yf(Y)
=a. Also, since A[Y]<B[Y] is R,-stable, a:py;f(Y)=a. Therefore, {f(X),
a, f(Y)} is an A[X, Y]-sequence in c(f)A[X, Y]. Thus, Gr(c(f))=3.

Conversely, suppose that Gr(c(f))=3. Let a(Y), b(Y)e A[Y]—{0} and as-
sume that a(Y): 4y; b(Y)=a(Y). Since f(X) is a prime element of A[X], we have
either f(X):4px,v; a(Y)=f(X) or f(X)iyx,y; b(Y)=f(X). Say f(X):4x,y;a(Y)=
f(X). If (f(X), a(Y), b(Y)=A[X, Y], then (a(Y), b(Y))B[Y]=B[Y] and
therefore, we have a(Y):py; b(Y)=a(Y). So suppose that (f(X), a(Y), b(Y))#
A[X, Y]. Assume that {f(X), a(Y), b(Y)} is not an A[X, Y]-sequence. Then
there exists h(X, Y)e A[X, Y] such that b(Y)h(X, Y) e (f(X), a(Y)) and h(X, Y)
&(f(X), a(Y)). Let Q be a minimal prime ideal of (f(X), a(Y)): 4x,y; H(X, Y)
and put Qn A[Y]=P. Then Q>(f(X), a(Y), b(Y)) and therefore, P> (a(Y),
b(Y)). Thus, Gr(P)=2. By Lemma 4.2, we have Gr(Q)=2 and Q=PA[X, Y].
Then since f(X)eQ, c(f)cPnA. Therefore, Gr(Q)=Gr(P)=Gr(c(f))=3.
This is a contradiction. Thus, {f(X), a(Y), b(Y)} is an A[X, Y]-sequence. That
is, a(Y):py; b(Y)=a(Y). This implies that ALY]<=B[Y] is R,-stable.

COROLLARY 4.4. Let A be a GCD-domain. Then AcB is LCM-stable if
and only if Gr(c(f))=3.

THEOREM 4.5. Assume that each principal proper ideal of A has a primary
decomposition. Then the following statements are equivalent.

(1) AcB is R,-stable.

(2) A[X]<=B[X] is R,-stable.

(3) Gr(c(f)=z3.

ProoF. We have only to prove (1)=>(3). Suppose that A<=B is R,-stable.
We may assume that c(f)#A4. By Lemma 3.1, Gr(c(f))=2. Therefore, by
Lemma 4.1, there exist a, bec(f) such that {a, b} is an A-sequence. Since
AcBis R,-stable, we have a:zb=a. Thus, {f(X), a, b} is an A[ X]-sequence in
c(f)A[X]. Therefore, Gr(c(f))=3.
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LEMMA 4.6. Let I be a finitely generated ideal of‘ A. Then we have
Gr(I)=inf {Gr(I4,); M € Max (A4)}.

PrOOF. Let A(Y) be a localization of A[Y] by a multiplicatively closed set
consisting of all polynomials f(Y) of A[Y] with c(f)= A, where Y is a finite set of
variables. By Cor. 1 of Prop. 2 in [5], we have Gr(I)=Gr(IA(Y)). Therefore,
inf {IAy} =inf {IA)(Y)} =inf {IA(Y)pr4(y)}, M €Max(4). Since there exists a
bijection between Max (4) and Max (4(Y)), we may assume that Gr(I[)=n and
{a,, a,,..., a,} is an A-sequence in I. Then Gr(I/(a,, ay,..., a,))=Gr(I)—n=0
and inf {Gr(IAy/(a,, a,,..., a,)}=inf {Gr(I4,,)} —n, M € Max (4). Therefore,
we may assume that Gr(I)=0. Then since I is finitely generated, there exists
x € A—{0} such that xI=0 by Th. 8 of Chap. 5 in [9]. Take M e Max (4) so
that x/1#0 in A,,. Then we have Gr(I4,,)=0 by Th. 8 of Chap.S5in [9]. This
completes the proof.

THEOREM 4.7. Let A be locally a GCD-domain and a€ Q—{0}. Let I be
the kernel of the canonical homomorphism of A[X] onto A[«]. Then A<= A[«]
is LCM-stable if and only if Gr(c(I))=3.

PrROOF. Suppose that Gr(c(/))=3. Let M e Max(4). Since 4,, is a GCD-
domain, there exists f(X)€ Ay [X] such that IA,[X]=fy(X)Ay[X]. There-
fore, we have c(JAy,[X])=c(fy). Thus, Gr(c(fy))=3. By Cor.4.4, Ay, c
Apla] is LCM-stable. Therefore, A = A[a] is LCM-stable by Prop. 1.6.

Conversely, suppose that AcA[a] is LCM-stable. Let M e Max (A).
Take fy(X)e Ay[X] so that 14, [X]=fu,(X)A,[X]. Since A, < Ap[a] is
LCM-stable by Cor. 1.5, we have Gr(c(I4,[X]))=Gr(c(fy))=3 by Cor. 4.4.
That is, Gr(c(I)Ay) =3 for each M eMax(A4). Therefore, Gr(c(I))=3 by
Lemma 4.6.

Finally, we give an example of 4 = B which is not flat but LCM-stable.

Example 4.8. Let A=k[s, t, u] where k is a field and s, t and u are indeter-
minates. Let B=A[X]/(sX?2+tX+u). Then AcB is LCM-stable but is not
flat.

§5. LCM-stableness of Ac A[a, 5]

Let o, e 2—{0}. Even if both AcA[a] and A=A[B] are LCM-stable,
A< A[a, B] is not necessarily LCM-stable as is seen in Remark 1.10. So we shall
examine LCM-stableness of A< A[«, f] under the condition a/fe€ K in §5 and
under the condition that K(a), K(B) are linearly disjoint over K in §6. The fol-
lowing lemma follows easily from Prop. 1.2, Cor. 1.5 and Prop. 1.6.
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LemMMA 5.1. Let AcB be integral domains and a,, a,,...,a,€ A. Assume
that (ay, ay,..., a,)B=B. Then AcB is LCM-stable if and only if AcB,, is
LCM-stable for every i with 1<i<n.

Throughout this section, we assume that A is integrally closed and that
ax=>bp for some a, be A—{0} with a:, b=a.

LEmMMA 5.2. If AcA[a, B] is LCM-stable, then there exists ye Ala, B]
such that a=by, f=ay and A[a, f]=A[y].

PROPOSITION 5.3.  Assume that both a and B are integral over A. Then
Ac Al[a, B] is LCM-stable if and only if (a, b)=A.

PROOF. Suppose that (a, b)=A. Since aa=>bp, we have A,[[a, f1=A4,[F]
and Ap[a, B1=A,[«]. Since both A= A4,[f] and A= A,[a] are LCM-stable, so
is Ac A[a, f] by Lemma 5.1.

Conversely, suppose that 4= A[a, f] is LCM-stable. By Lemma 5.2, we
can take ye A[a, f] so that a=by, f=ay and A[a, f]=A[y]. Put y=f(a, )€
A[a, f]. Since both o and f are integral over A4, so is y. Therefore, A[y] is a
free A-module. Since y=f(a, f)=f(by, ay), we have 1 €(a, b). Thus, (a, b)=A.

In order to generalize Prop. 5.3, we need a lemma.

LEMMA 5.4. Let f(X)=3%(sX! and f(X)=3X%ot; X! be irreducible
polynomials of « and B over K with coefficients in A, respectively. Then we have
teak i s, and s;e bt for 0Si<k—1.

PrROOF. Put g(X)=Xk,t;b*"ialX!. Then since g(a)=Db*f(f)=0, f(X)
devides g(X) in K[X]. Since degf,=degg, there exist ¢, de A—{0} such that
of (X)=dg(X). Then we have cs;=dt;b*"ia’ for 0<i<k. Therefore, s,t;b* i=
hs;a*~t for 0<i<k—1. Since a:yb=a, a* i b*i=a*"! for 0Zi<k-1.
Thus, for 1<i<k—1, there exists x;€ A such that s;t;=a*"ix; and t,s;,=b*"ix,.
This completes the proof.

THEOREM 5.5. Let a be integral over A. Then A< A[a, B] is LCM-stable
if and only if Ac A[B] is LCM-stable and (a, b)=A.

Proof. Since A4,[a, f1=A,[B] and A,[a, f]1=A,[«], it suffices to prove the
‘only if” part by Lemma 5.1. Suppose that A<A[«, f] is LCM-stable. We
first show that (a, b)=A. Letl, a,..., a*¥~! be a free basis of A[a] over A. Since
ak—lgk—l=pk-1gk=1" gk=1: pk-1=gk=-1 and AcA[a, f] is LCM-stable, there
exist fi(f)eA[f] 0=<i<k-—1) such that f*1=qa*1 >kl f(B)al. Thus, we
have

* BEt = ZE=5 akTITIDIB(B) -
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Let f(X)=3%z§ t;X? € A[X] be an irreducible polynomial of f over K. Since
A is integrally closed, the kernel of the canonical homomorphism of A[X] onto
A[B] equals (A:x c(fp)fs(X)A[X] by Th. B in [15]. By (#), there exist x;e
A c(fp) and g«(X) € A[X] such that

X1 =3 kb a1 (X)) X
=251 fp(X)g:(X).

Therefore, 1€(a, b)+ Y%=, c(x;fp). Put xitp=t; for 1<i<r. Then t;eA.
Since « is integral over A4, 1e(a, b)+ Y -, t,A by Lemma 5.4. For each i with
1gigr, A,,[B] is integral over 4,, and A4, <A, [«, f] is LCM-stable. There-
fore, we have (a, b)4,,=A,, by Prop. 5.3. Thus, t;erad(a, b) for each i.
That is, (a, b)=A.

We now prove that A< A[f] is LCM-stable. Since A,[a, f1=A4,[f], A<
A,J[B] is LCM-stable by Cor. 1.5. Moreover, since A,[flcA,[a, f]1=A4,[«]
and since a is integral over 4, A = A,[f] is obviously LCM-stable. Thus, A< A[f]
is LCM-stable by Lemma 5.1.

REMARK 5.6. Let k be a field and s, t, u and b be indeterminates.

(1) Leta, feQ. Even if both AcA[«] and A< A[a, ] are LCM-stable,
Ac A[B] is not necessarily so. In fact, let A=k[s, ¢, u, b] and take y e Q which
satisfies sy2+ty+u=0. Puta=1-—sb, x=ay and f=>by. Then we have A[y]=
Ala, B]. Both AcA[«] and A< A[a, B] are LCM-stable. But A< A[f] is not
LCM-stable.

(2) Leta, feQ. LCM-stableness of 4= A[a, f] does not necessarily imply
(a, b)=A. In fact, let A=k[s, t, u] and take yeQ which satisfies s2u2y2+
stuy+(1—su)=0. Puta=uy and f=sy. Then we have A[a, f1=A[y]. More-
over, AcA[a], Ac A[B] and A< A[a, ] are all LCM-stable. But, obviously
(u, s)#A.

§6. LCM-stableness of A< A[a, 8] (continued)

Throughout this section, let «, f € Q—{0} and assume that K(x), K(f) are
linearly disjoint over K.

PRrROPOSITION 6.1. If AcA[a] is flat and if Ac A[B] is LCM-stable, then
AcAla, f] is LCM-stable. Moreover, if AcA[a] is faithfully flat, then
Ac Afa, B] is LCM-stable if and only if so is A= A[f].

ProoF. Since A< A[a] is flat and K(e), K(B) are linearly disjoint over K,

we have A[a, f]l=A[e]® (A[B]. Therefore, AcA[a, f] is LCM-stable by
Prop. 1.2, (1).
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Suppose that AcA[a] is faithfully flat and A< Afa, f] is LCM-stable.
Then A[B]<A[a, B] is faithfully flat and therefore, 4 = A[f] is LCM-stable by
Prop. 1.2, (2).

COROLLARY 6.2. Assume that A is integrally closed and o is integral over
A. Then AcA[a, B] is LCM-stable if and only if so is A< A[B].

LEMMA 6.3. Assume that (3%, a;X?) is the kernel of the canonical homo-
morphism of A[X] onto A[a]. Then AcA[a] is faithfully flat if and only if
(ay, ay,..., a)=A.

PrOOF. Let M e Max(A4). Put f(X)=3Y%a;X'and A=A/M. We denote
by f(X) the reduction of f(X) modulo M. Then we have A[a]/MA[«]=
A[X]/(f(X)). Therefore, thislemma follows immediately from Cor. 2.20 in [10].

THEOREM 6.4. In addition to the assumption of Lemma 6.3, we assume that
AcAla] is flat. Then AcA[a, B] is LCM-stable if and only if AcA,[f] is
LCM-stable for every i, 1Zi<k.

Proor. Since AcA[«] is flat, (aq, ay,...,ar)=A by Cor. 2.20 in [10].
Therefore, we have (a,, as,..., a)A[a]=A[«]. By Lemma 5.1, A< A[a, f] is
LCM-stable if and only if A= A,[«, f] is LCM-stable for every i. Fix i with
1<i<k. By Prop. 1.2 and Cor. 1.5, A=A, [«, f] is LCM-stable if and only if
A, <A, [a, ] is LCM-stable. Moreover, since A4, <A,[a] is faithfully flat by
Lemma 6.3, 4, cA,[a, f] is LCM-stable if and only if 4, <A4,[B] is LCM-
stable by Prop. 6.1. Also, 4, =A4,[B] is LCM-stable if and only if AcA4,[f]
is LCM-stable. Thus, this theorem holds.

REMARK 6.5. In Th. 6.4, AcA[B] is not necessarily LCM-stable and
therefore, the converse of the first half of Prop. 6.1 is false. In fact, let A=
k[s, t] where k is a field and s, t are indeterminates. Take o, f€Q so that
se2+ta+1=0 and sp+1t=0, respectively. Then A< A[«] is flat, but 4<A[f]
is not LCM-stable by Cor. 2.8. Since K(f)=K, K(«), K(B) are obviously linearly
disjoint over K. On the other hand, A = A[«, f] is LCM-stable by Th. 6.4.

In what follows, let Y be an indeterminate and we denote by K, (resp. Kj)
the kernel of the canonical homomorphism of A[X] (resp. A[Y]) onto Af[o]
(resp. A[f]). Moreover, we denote by K, ; the kerenel of the canonical homo-
morphism of A[X, Y] onto A[«, f]. We now examine K, ;. In the following
Prop. 6.6 and Cor. 6.7, we assume that K,=(fy(X)) and K;=(f4(Y)), where

JdX), fo(X) e A[X].
PROPOSITION 6.6. K, ;=(f,(X), f(Y)) if and only if Gr(c(f,) +c(fp)=3.
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Proor. Suppose that K, ;=(f(X), fe(Y)). We may assume that c(f,)+
c(fp)#A. Let aec(f)—{0}. Then {a, f(X)} is an A[X]-sequence since f,(X)
is a prime element of A[X]. Let f(X, Y)e(a, f(X)):4x,x1fs(Y). Then we can
take g(X, Y), h(X, Y)e A[X, Y] so that f(X, Y)fy(Y)=ag(X, Y)+f(X)h(X, Y).
We have g(X, Y)eK,;. By the assumption, there exist ¢ (X, Y), ¢u(X, Y)e
A[X, Y] such that g(X, Y)=f(X)¢(X, Y)+f(Y)Ps(X, Y). Therefore, f(X)-
(h(X, Y) + ag(X, ) =f(N(fX, V)~ ady(X, V).  Since f,(X):apxnfp(¥)=
fAX), f(X, Y)—ady(X, Y)ef(X)A[X, Y], and therefore f(X, Y)e(a, f(X)).
Thus, (a, f(X)): aix, 11 fe(Y)=(a, f(X)). That is, {a, f(X), f(Y)} is an A[X, Y]-
sequence in ¢(f,) +c(fj), which shows that Gr (c(f,) +c(f5)) =2 3.

Conversely, suppose that Gr(c(f)+c(fg)=3. Let ae(c(f)+c(fp)—{0}.
Assume that (f(X), f5(Y)):4x,y; @ # (f(X), f5(Y)). Then we can take h(X, Y)e
A[X, Y] so that ah(X, Y)e(f(X), f5(Y)) and h(X, V)& (f(X), f(Y)). Let Q
be a minimal prime ideal of (f,(X), fo(Y)): 4rx, vy (X, Y). Then a, f(X), f(Y)€Q.
Put Q n A[X]=P. Since {f(X), fy(Y)} is an A[X, Y]-sequence and a, f(X)€ P,
we have Gr(Q)=Gr(QA[X, Y],)=2 and Q=PA[X, Y] by Lemma 4.2. Since
fi(Y)eQ, c(f))=@nA. On the other hand, {a, fi(Y)} is an A[X]-sequence.
Thus, Gr(Qn A)=Gr(PnA)=2. Since Gr(PA[X]p)=Gr(QA[X, Y]y =2, P=
(PN A)A[X] by Th. 3.5 in [13]. That is, Q=(Q n A)A[X, Y]. Thus, c(f,)+
o(fp)=cQnA. By the assumption, we have Gr(Q)=Gr(Qn A4)=Gr(c(f)+
c(fg))=3. This is a contradiction. Therefore, (f(X), fe(Y)):4rx,v7a=(fX),
fp(Y)). Let S be the multiplicatively closed set of A generated by the leading
coefficients of f(X) and fy(Y). Since K(«), K(f) are linearly disjoint over K,
we have K, ;A[X, Y1=(f(X), f(Y))As[X, Y]. Therefore, K, ;=(f(X), fo(Y))
by the relation obtained above.

CoRrOLLARY 6.7. If AcA[a] is G,-stable, then we have K, 5 =(f(X), fo(Y)).

Proor. Let aec(f,)—{0}. Since fy(Y):4yja=fp(Y) and since A[Y]c
A[«][Y] is R,-stable by Th. 3.5, we have fy(Y): p4y3a=f4(Y). Therefore,
(fX), fﬂ(Y)):A[X,Y] a=(f(X), fp(Y)) Thus, Gf(c(fa)+c(fp))3.3, and K, 5=
(f«X), f4(Y)) by Prop. 6.6.

COROLLARY 6.8. Let A be locally a GCD-domain. If AcA[«] is LCM-
stable, then K, s=(K,, KpA[X, Y].

Proor. Let MeMax(4). Since 4, is a GCD-domain, both K, A4,,[X]
and KA, [Y] are principal and A, = Ay/[a] is G,-stable by Cor. 1.5 and Cor.
3.7. Therefore, we have K, ;4 [X, Y]=(K,, Kp)Ay[X, Y] by Cor. 6.7. Thus,
K, p=(K,, KpA[X, Y].

Let ay, a,,..., a,€ A. Hereafter, we say that {a,, a,,..., a,} is an A-sequence
even if (ay, a,,..., a,)=A.
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PROPOSITION 6.9. Let A be locally a GCD-domain. If both A< A[a] and
Ac Ala, ] are LCM-stable, then we have Gr (c(f,)+c(fp)) = 4.

ProOF. By virtue of Lemma 4.6, we may assume that A is a local domain.
Then A is a GCD-domain by the assumption. Therefore, both K, and K, are
principal. Put K,=(f(X)) and Ky=(f4(Y)), where f(X), fo(X)e A[X]. More-
over, Ac A[a] is G,-stable by Cor. 3.7. Let Z be an indeterminate. We can take
a positive integer n so that c(f(Z)+fy(Z)Z")=c(f)+c(fp). Put F(Z)=f(Z)+
f(Z)Z". Since f(Z) is a prime element of A[Z], we have A:xc(F)=A. Let
aec(f,)—{0}. Then a:yz F(Z)=a by Lemma 3.1. Since A[Z]<A[a, f]1[Z]
is R,-stable by Th. 3.5, a:,42;F(Z)=a. Therefore, we have (f(X),
So(Y), @) grx,v,21 F(2)=(fX), fy(Y), a) by Cor. 6.7. On the other hand, it is
easily shown by Cor. 6.7 that {f(X), fi(Y), a} is an A[X, Y]-sequence. Thus,
{fX), fy(Y), a, F(Z)} is an A[X, Y, Z]-sequence in (c(f)+c(fp)A[X, Y, Z].
Thus, Gr(c(f,)+c(fg))=4. This implies that Gr(c(K,)+c(Kj)) 2 4.

THEOREM 6.10. Let A be locally a GCD-domain. Assume that both
AcA[a] and A< A[B] are LCM-stable. Then AcAla, f] is LCM-stable if
and only if Gr(c(K,)+c(Kp))=4.

Proor. By virtue of Prop. 6.9, it is sufficient to prove the ‘if’ part. By
Prop. 1.6 and Ex. 10 of Chap. 5 in [9], we may assume that A is a local domain.
Then A is a GCD-domain. Therefore, it is sufficient to show that A< A[a, ]
is R,-stable. Moreover, we can put K,=(f(X)) and K;=(f4(Y)), where f,(X),
fs(X)e A[X]. Suppose that Gr(c(f,)+c(f5))=4. Let a, be A—{0} and assume
that a:y b=a. Since AcA[«a] is G,-stable by Cor. 3.7, it is easily shown by Cor.
6.7 that {f(X), fo(Y), a} is an A[X, Y]-sequence. Assume that {f(X), fi(Y),
a, b} is not an A[X, Y]-sequence. Then there exists h(X)e A[X, Y] such that
bh(X, Y) e (f(X), f5(Y), a) and h(X, Y)&(f(X), f4(Y), a). Let Q be a minimal
prime ideal of (fy(X),fs(Y), a):x,yyH(X, Y). Then we have f(X), f5(Y), a,
beQ. Put QnA[X]=P and QnA=P, Since AcA[a] is LCM-stable,
{f(X), a, b} is an A[X]-sequence in P. Thus, Gr(P)=3. Therefore, Gr(Q)=
Gr(QA[X, Y]p)=3 and Q=PA[X, Y] by Lemma 4.2. Hence, Gr(PA[X]p)=
Gr(QA[X, Y]p)=3 and o(fs)=P,. Since AcA[f] is LCM-stable, Gr(Py)=
Gr(c(fg))=3 by Th. 4.7. Therefore, P=PyA[X] by Th. 3.5 in [13]. Thus,
Q=PyA[X, Y]. Then we have c(f,), c(f;)=P,. By the assumption, Gr(Q)=
Gr(Py)2Gr(c(f) +c(fp)=4. This is a contradiction. That is, (f(X),
Fo(Y), @)t ypx,v1 b=(fX), f5(Y), a). By Cor. 6.7, we have a: 4z b=a. Thus,
Ac A[a, f]is R,-stable. This completes the proof.

REMARK 6.11. In Th. 6.10, the condition that 4= A[#] is LCM-stable can
not be omitted. In fact, let A=Q[s, t, u, v], where s, t, u, v are indeterminates
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and take a, f€Q so that sa?+ta+u=0 and vf?+tf+1t=0 respectively. Then
Ac A[a] is LCM-stable, but 4 = A[f] is not LCM-stable. By prop. 6.6, we see
that the kernel of the canonical homomorphism of A[ X, Y] onto A[«, f] is equal
to (sX?+tX+u, vY2+1tY+1), and therefore it is easily shown that A = A[«, ] is
not LCM-stable.

§7. Examples

In §4 we have seen that, if Gr(I)=2, then gr(/)=2 under some conditions
on the ideal I. It seems plausible to the author that ‘Gr(I)=2’ does not neces-
sarily imply ‘gr(I)=2’; however such an example can be found nowhere in the
literature. So, in this section we give an example and by making use of it, we
show that R,-stableness does not necessarily imply G,-stableness.

Let I be a non-zero proper ideal of 4. We first construct a ring B so that
gr(IB)=1. For the ideal I, we consider a set of indeterminates {X;,}; .cs-
Let R=A[{X;,}suer] and J=(X,, X5l 4, u, @, peDR. Put I,,=(4, p) for any
A, wel. We denote by B a subdomain A+3 I,,X,,+J (4, pel) of R. Let
feB. Then there exist uniquely fo€ A4, f;,€1;,(4, uel) and f, €J such that
f=fo+ X fouXau+f1 (4, uel), where f;,=0 for almost all 4, uel. We say that
f=fo+ 2 f1,X:,+f1 (4, uel) is the decomposition of f.

LemMMA 7.1. Let fe B and fo+ 3 f,,X,,+f1 (A, pel) be the decomposition
of f. Then we have

(1) for A, pel, X;,feB if and only if foel,,,
(2) if X,,feB, then X,,f & fB.

COROLLARY 7.2. gr(IB)=1.

PrOOF. Let f,gelIB and let fo+ 3 f3,X;,+f1, go+ 2 92, X3, +91 be the
decompositions of f, g respectively. Since f, g € IB, we have f,, goel. There-

fore, X, 4. f€f:pg and X, f&fB by Lemma 7.1. Thus, f:pg#f. This
implies that gr(IB)=1.

Next, we consider the following condition (*#) to make Gr(/B)=2.
(x%) (a, Bl = (o, B) for any a, fel.

For example, let A=k[s, t, u] where k is a field and s, t, u are all indeterminates.
Put I=(s, t, u). Then I satisfies the condition (#x).

PROPOSITION 7.3.  Assume that I satisfies the condition (). Then we have
A:gl=A for each Ael. In particular, if I is finitely generated, then Gr(IB)=2.

ProOF. Let Ael. We assume that A#0. Let feld:zl and let fo+
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> fupXap+f1 be the decomposition of f. Then for each pel, there exists g, € B
such that uf=1g,. Let g5+ 3 g4pX,.5+g1 be the decomposition of g, for each
nel. Then the following (i), (ii) and (iii) hold for each uel: (i) uf,=Agh, (i)
Ufus=2ghs for any a, fel, (iii) uf; =Agi. By (i) and the condition (*x), foe A:, 1
=J. Therefore, we can take hy e A4 so that f,=Ah,. Next, by (iii) and the con-
dition (xx), f;€A:xg[=(A:,)R=AR. Therefore, we can take h, € R so that
fi=Ah;. Then since f; € J, we have h; e J. Moreover, by (ii) and the condition
(%), fyp€ AiyI=4 for any a, Bel. Therefore, we can take h,z€ A so that f,,=
Ah, for any o, Bel. Put h=ho+3 h,X,z+h, (o, feI). Then we have
heRand f=Ah. Since ph=g,, ph,z=g4s€l,pforany u, «, Bel. Thus, we have
hpe(a, B):4I=(x, B) by the condition (#+). That is, he B. Therefore, fe AB.
This implies that A:z I=A.

LEMMA 7.4. Let A[{X,},ca] be a polynomial ring in variables {X;};c4
over A. Let fe A[{X;};ca]l with f(0)=1. Then we have a: i x,j1ea1f=a for
each ae A.

Here, let A=K[s, t, u] .., Where k is a field and s, ¢, u are all indeterminates.
Put M=(s, t, u)A and let R=A[{X 4}, pem], Where {X 4}, gepr is a set of variables.
Moreover, put M,;=(«, f) for any a, f€ M and put J =(X,4X,,la, B, 4, pe M)R.
Let B=A+Y M X 5+J (0, feM) and T=A+3 MX,;+J (a, feM, a#0 or
B#0). Then we have Ac B=TcR.

PROPOSITION 7.5. With the above notation, we have Gr(MT)=1. In
particular, B=T is not G,-stable.

PrOOF. Let a, a0, fe M—{0}. Then we have aX,eT. Since m(aX,z)=
a(mX,;) for each meM, aX,;ea:r M. On the other hand, since X,,&T,
aX,&aT. Therefore, a:r M#a. Thus, Gr(MT)=1. Furthermore, we have
Gr(MB)=2 by Prop. 7.3. That is, B< T is not G,-stable.

PROPOSITION 7.6. With the notation of Prop. 7.5, BT is R,-stable.

PrOOF. Let f,geB and assume that fipg=f Let fo+ 2 fosXup+f1,
go+ X 9upXas+91 (¢, fe M) be the decompositions of f, g respectively. By the
proof of Cor. 7.2, it is easy to see that either f,&M or go&sM. Say fo&M.
Since A4 is a local domain, we may assume that f,=1. Let hef:rg and take
¢eT so that hg=fp. Put h=ho+ Y hyX,z+h; (0, Be M, a#0 or B#0) and
d=¢o+ 2 PpXopt+ ¢y (0, Be M, a#0 or f#0), where hy, Po€ A, hyp, bpeM
for any a, pe M and hy, ¢, €J. If hy=¢,,=0 for any «, B M, then h, p € B.
Therefore, hef:gg=f. That is, hefB<fT. Now, suppose that there exist
o, fe M such that h,;#0 and ¢,;#0. Then we can take ae N M,;—{0}, the
interesection ranging over all «, fe M with h,;#0 and ¢,;#0. Then we have
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ah, apeB. Since f:zg=f and g(ah)=f(a¢), there exists Y € B such that ah=
fib and ag=gy. Moreover, there exists £ € R such that h=f¢ and Yy =al by
Lemma 7.4. Put &=Co+ X EpXpp+E4 (@, fe M), where &g, ;€A for any
a, feM and &, €J. Then we have h,z=C&,,+&,f for any «, fe M. (In parti-
cular, £40=0). Therefore, {,;eM for any o, fe M. Thus, (e T. That is,
h=f&efT. This implies that f:rg=f. Thus, BT is R,-stable.
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