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Introduction

In his paper [4], R. Gilmer introduced the concept of LCM-stableness,
relating to GCD-properties of a commutative group ring. The main purpose of
this paper is to point out that, in some cases, the necessary and sufficient con-
ditions for a ring extension to be LCM-stable can be given in terms of polynomial
grade, originally due to M. Hochster and developed by D. G. Northcott. For
this purpose, we shall introduce two further notions, R2-stableness and G2-
stableness, and investigate the relationship between LCM-stableness and them.
In these discussions it is important to know when 'Gr(/)^2' implies 'gr(J)^2\
We shall give in the last section an example of a finitely generated ideal / in an
integral domain, with gr(/) = l and Gr(/)^2.

In §2, we shall show that flatness, INC and LCM-stableness are all equivalent
notions for a simple extension which satisfies some conditions (cf. Th. 2.7). In
§3, we shall examine a relation between #2-stableness and G2-stableness, and
study universality of LCM-stableness; namely, in Th. 3.5 we shall prove that Λc:B
is G2-stable if and only if A[X~\ d£[X] is G2-stable, and also if and only if A\_X~\ c=
B[X~\ is jR2-stable. As a corollary to this theorem, we can see that, in case A is
locally a GCD-domain, i c β is LCM-stable if and only if so is A\_X~\aB[_X].

In §4, we shall examine LCM-stableness of a simple extension ^4ciy4[α].
Let I be the kernel of the canonical homomorphism of A[X~\ onto A[μ\. We
shall first show in Th. 4.3 that if / = (/(*)) (/PO e A\X]\ then A[Y]czΛlά] [Y]
is K2-stable if and only if Gr(c(/))^3. Moreover, we shall show in Th. 4.5
that, under some conditions, ^4c,4[α] is £2-stable if and only if Gr(c(/))Ξ>3.
In particular, we can show that if A is locally a GCD-domain, then i c i [ α ] is
LCM-stable if and only if Gr(c(/))^3 (cf. Cor. 4.6).

In §5 and §6, we shall deal with the case of doubly generated extension
AaA[μ, /?]. In §5, we shall study a special case (cf. Th. 5.5). In §6, we shall
consider the case where K(oc), K(β) are linearly disjoint over the quotient field
K of A. Firstly we shall treat the case when ^4cy4[a] is (faithfully) flat (cf.
Prop. 6.1, Th. 6.4), and secondly we shall examine the kernel Katβ of the canonical
homomorphism of A[X, Y] onto A[μ, β~\ by means of polynomial grade (cf.
Prop. 6.6, Cor. 6.7, Prop. 6.8). Moreover, in case A is locally a GCD-domain,
we shall give a characterization of LCM-stableness of AaA[μ, β~] (cf. Th. 6.10).
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Finally, in §7, we shall give an example such that i ? 2 ~ s t a ^ e n e s s does n o t

necessarily imply G2-stableness.

The author wishes to express his hearty thanks to Professor M. Nishi for his

kind advices and constant encouragements. He is also indebted to his friends

S. Itoh and A. Ooishi for their stimulating and kind comments.

Notation and terminology

Throughout this paper, rings will be all integral domains unless otherwise

specified and X will be an indeterminate. Moreover, A will be an integral domain

with the quotient field K and Ω will be the algebraic closure of K. We let

Spec (A) and Max (/I) stand for the set of all prime ideals of A and that of all

maximal ideals of A respectively. An overring of A is a subring of K contain-

ing A. Let / be an ideal of A. We denote by Gr (/) and gr (/) the polynomial

grade of / and the classical grade of / respectively. Let J be an ideal of i4[X].

We denote by c(J) the ideal of A generated by all coefficients of all polynomials

in J and we call it the content of /.

§ 1. Basic properties of LCM-stableness

Let A and B be integral domains. We say that AaB is LCM-stable if

(a An bA)B = aB Π bB for all a, be A (cf. [4]). It follows easily from the defini-

tion that A c B is LCM-stable if and only if (α :A b)B = a:Bb for all a, be A- {0}.

In this section, we examine basic properties of LCM-stableness. The following

proposition is a well-known result on flatness.

PROPOSITION 1.1. If AaB is flat, then AczB is LCM-stable. In particular,

AczAs is LCM-stable for each multiplίcatiυely closed set S in A.

As for transitivity, the following proposition is important. However it can

be proved easily, and so the proof is omitted.

PROPOSITION 1.2. Let AιaA2<^A3 be integral domains. Then we have

the following statements.

(1) If both Aίc:A2 and A2czA3 are LCM-stable, then so is A1aA3.

(2) Assume that IA3 f]A2 = I for any ideal I of A2. If A1<^A3 is LCM-

stable, then so is A1aA2.

REMARK 1.3. LCM-stableness of both Aίc:A2 and Atc:A3 does not neces-

sarily imply that of A2aA3. Moreover, LCM-stableness of both AίczA3 and

A2 c A3 does not necessarily imply that of A± cz A2. For example, the

former case is ZczZ[ λ /5"]<=Z[( l+ ^/J)/2] and the latter case is
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+ \J5)β~]<^Q[yf5~\, where Z is the ring of integers and Q is the rational

number field.

PROPOSITION 1.4 (cf. [12], Lemma 2). Let AczTaB be integral domains

with TaK. IfΛczB is LCM-stable, then so is TczB.

PROOF. Let x, ye Γ-{0}. Put x = a/c and y = b/c, where a, b, ceA-{0}.

Then we have x:By = a:Bb — (a:Ab)Bc:(a:τb)B = (x:τy)B. Thus, x:By =

(x:Ί y)B. This shows that T^B is LCM-stable.

COROLLARY 1.5. Let A^B be LCM-stable. Then the following statements

hold.

(1) For each multiplicatively closed set S in A with AsczB, AS<=B is

LCM-stable.

(2) Suppose that S and T are multiplicatively closed sets of A and B

respectively and that SaT. Then AsaBτ is LCM-stable.

As for >l-algebras, we give some characterizations of LCM-stableness.

PROPOSITION 1.6. For AaBaC, the following statements are equivalent.

(1) BczC is LCM-stable.

(2) For each P e Spec (A), BP c= CP is LCM-stable.

(3) For each M e Max (A), BM c= CM is LCM-stable.

(4) For each QeMax(C) with QnB = P, BPaCQ is LCM-stable.

PROOF. We first prove (3)=>(1). Let a, beB and M e Max (4). We have

obviously (a:B b)Ccza:c b. Since BMaCM is LCM-stable, (a:B b)CM=(a:B b)CM

= a:CM b = (a:cb)CM. Therefore, (a:Bb)C = a:cb. That is, BczC is LCM-

stable.

(4)=>(1) can be proved similarly. Moreover, the assertions (1)=>(2)=>(3) and

(1)=>(4) follow immediately from Cor. 1.5.

PROPOSITION 1.7 (cf. [3], Lemma 6.5). Let B be an overring of A. Then

the following statements are equivalent.

(1) AaB is LCM-stable.

(2) (y :A x)B = B for each x/y e B.

(3) AczBisflat.

PROOF. The equivalence of (2) and (3) follows from Lemma 1 and Th. 1 in

[12]. The implication (3)=>(1) is obvious (cf. Prop. 1.1).

(1)=>(2). Let xjyeB, where x, yeA and yΦ0. Then since Ac= B is LCM-

stable, we have (y :A x)B = y:Bx = B.

F. Richman and D. E. Dobbs gave some characterizations of a Prϋfer domain
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in terms of flatness (cf. [12], Th. 4 and [2], Prop. 3.1). By virtue of Prop. 1.7,

we have a new characterization of a Prϋfer domain.

COROLLARY 1.8. The following statements are equivalent.

(1) A is a Prύfer domain.

(2) For any integral domain B containing A, AczB is LCM-stable.

(3) For each ueK, A<=LA[U] is LCM-stable.

Next, we give a sufficient condition for AczB to be LCM-stable.

PROPOSITION 1.9. Let AczB be integral domains. If AczA[x, y~] is LCM-

stable for any x, yeB, then AczB is LCM-stable.

PROOF. Let a, be A and assume that ax = byeaB n bB, where x, yeB.

Then since AczA[x, y] is LCM-stable, we have ax = byeaA[x, y~\ n bA[x, y] =

{aA Π bA)A[_x, y~]cz(aA n bA)B. Therefore, aB n bB = (aA Π bA)B. Thus, AczB

is LCM-stable.

REMARK 1.10. In the above proposition, we can not replace two elements

x and y by a single element x. In fact, let A = Q[s, i]M, where s, t are indeter-

minates over Q. We can take x, yeΩ with the properties that x 2 + sx + s2 = 0,

y2 + ty + t2 = O and tx = sy. Then since 4̂ is integrally closed and A[x, y] is

integral over A, A[z~] is a free ^[-module for each zeA[_x9 y~]. In particular,

AczA\_z] is LCM-stable for each zeA[x, y~\. On the other hand, since (s, ί ) ^ ^ *

4c,4[χ , ;;] is not LCM-stable (cf. Prop. 5.3).

It is well-known that for an overring B of A, if AczB is flat and B is integral

over A, then A — B (see [12]). This fact suggests to us the following propositions

on LCM-stableness.

PROPOSITION 1.11. Let Abe a quasi-local domain with the unique maximal

ideal M and B be an integral domain containing A. Assume that MBΦB. If

AczB is LCM-stable, then we have BnK = A.

PROOF. Let x = a/beB πK, where a, beA-{0}. Since AczB is LCM-

stable, we have a = bxe (a A Π bA)B. Therefore, there exist xf e a A Π bA and βt e B

such that α = l?x = Σ i = i ^ f t . We can put x^ay^bzi for l ^ i ^ r , where

yi9 zteA. Then we have l = Σi=i yiβi- Since MBΦB, there exists i such that

y&M. Therefore, a e bA. Thus, x e A That is, we have B n !C = i4.

From Prop. 1.11 and Prop. 1.6, the following corollaries follow easily.

COROLLARY 1.12. Let AczB be integral domains. Assume that for each

PeSpec04) there exists β e S p e c ( £ ) such that QnA = P. If AczB is LCM-

stable, then we have B Π K = A.
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COROLLARY 1.13. Let B be an overring of A with BΦA. Assume that
AaB is LCM-stable. Then there exists Me Max(.4) such that MB = B. In
particular, B is not integral over A.

Finally, we give a property of LCM-stableness in terms of prime ideals.
For P e Spec (A), we denote by ht(P) the height of P.

PROPOSITION 1.14 (cf. [3], Prop. 6.4). Assume that AcB is LCM-stable.
Let PeSpec(B) with ht(P)^l . Then we haveht(P

PROOF. By Cor. 1.5, ApnAcBP is LCM-stable. Therefore, we may assume
that A and B are quasi-local domains with the maximal ideals P and M,
respectively, and that MnA=PΦθ and ht(M)^l . Let aeP-{0}. Since
ht(M) = l and B is a quasi-local domain, we have M = rad(αJ5). On the other
hand, since Ac Bis LCM-stable and PBΦB, aB Π A = aA by Prop. 1.11. There-
fore, P = M Π A = rad (aB) n A = rad (aB (]A) = rad (aA). This implies that
ht(P) = l.

§ 2. LCM-stableness of A a A [α] with ameK

Let oteΩ with ameK for some m>0. In this section, we shall give some
characterizations for >4c:̂ 4[α] to be LCM-stable.

PROPOSITION 2.1. Let A be a quasi-local domain and α eΩ. Assume that
<xm = ueK — A and that AczA[μ\ is LCM-stable. Then we have or1 e^4[α].
Therefore, α"1 is integral over A and also so is u~x.

P R O O F . Put u = ajb, where α, beA-{0}. Since AcA[μ~\ is LCM-stable,

we have a = boLme(aAnbA)A[oi]. Therefore, there exist r > 0 and xh yb zteA

such that a = bccm=Σr

i=oxi(xί and x^ay—bzi for O^i^r. Now since u^A,
yt is a non-unit for every i. Thus, 1 — yt is a unit in A for each i. Therefore, we
have α~1=(l— JΌ)" 1 Σi=i y^"1 e^4[α]. This completes the proof.

Let AcB be integral domains. We say that AaB is INC if two different
prime ideals of B with the same contraction in A can not be comparable (see [7],
[16]).

COROLLARY 2.2. Let oceΩ with <xmeK for some m>0. // AaA[μ] is
LCM-stable, then AaA\β\ is INC.

PROOF. By virtue of §1 and [16], we may assume that A is a quasi-local
domain. Then AcA[μ~\ is INC by Prop. 2.1 and Cor. 3.2 in [16].

REMARK 2.3. The converse of Cor. 2.2 is false as is seen in
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Let oceΩ. Hereafter, by Ka we shall denote the kernel of the canonical

homomorphism of A[X] onto A[μ]- From now on, we examine some conditions

for the converse of Cor. 2.2 to be true.

COROLLARY 2.4. Let oceΩ with ameKfor some m > 0 . Assume that Ka

is invertible. Then AaA[oc] is LCM-stable if and only if AczA[μ\ is INC;

and when that is so, AaA\oi\ is flat.

PROOF. The assertions follow immediately from Prop. 1.1, Cor. 2.2, Cor.

3.2 in [16] and Cor. 2.20 in [10].

Here, we need two lemmas relating to a linear base. It is well-known that A

is integrally closed if and only if Ku has a linear base for each ueK (cf. (11.13)

in [8] and [11]). The following lemma is a generalization of Th. 1 in [11] which

can be proved in the same manner.

LEMMA 2.5. Let aeΩ with am = ueK — {0} for some m>0 and put u =

a/b where a, be A — {0}. Put Bu = {dx — e\d, eeA and be = ad) and Ba =

{dXm — e\d, eeA and be —ad). Then the following statements are equivalent.

(1) KU = BUA[_X~]\ that is, Ku has a linear base.

(2) // bXm - a is irreducible over K9 then Ka = BaA\_X~\.

(3) O, b)n Γ\{bn+1:Aa)czbnA for each n>0.

Generally, it is easily shown that for u eK if A is integrally closed in A[u],

then Ku has a linear base (cf. (11.13) in [8]). On the other hand, the converse

is false as is seen in A<^A\u], where A = Z+Z2yj — 1 and w = l/2λ/ — 1 . There-

fore, the following lemma is a slight generalization of the u — u~ι Lemma which

are essentially proved in Th. 67 in [7].

LEMMA 2.6. Let A be a quasi-local domain with the unique maximal ideal

M and take ueK. Assume that Ku has a linear base. If KuφMA[X~\, then

either ueA or u~ι eA.

THEOREM 2.7. Let α e Ω - { 0 } with ocm = ueK for some m>0. Put u = a/b,

where a, be A — {0}. Assume that Ku has a linear base and that bXm — a is

irreducible over K. Then the following statements are equivalent.

(1) AaA[oc] is LCM-stable.

(2) AczAl<x]isINC.

(3) Ac=A[a] is flat.

(4) (a, b) is invertible.

PROOF. Since incomparability, LCM-stableness, flatness and the property
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that Ku has a linear base, where ueK, are local properties (see [16] and §1), we

may assume that A is a quasi-local domain with the unique maximal ideal M.

Then we have only to show the implications (2)=>(4) and (4)=>(3), since the

others are obvious (cf. Cor. 2.2).

(2)=>(4). Assume that AczA[μ\ is INC. Then we have c(Ka) = A by Cor.

3.2 in [16]. On the other hand, it follows easily from Lemma 2.5 that c(Xα) =

c(Ku). Therefore, KUA[X](£MA[X']. Thus, by Lemma 2.6, we have either

u e A or u~ι e A. That is, (a, b) is principal.

(4)=>(3). Assume that (a, b) is invertible. Since A is a quasi-local domain,

we have easily either u eA or u~1eA. Suppose that us A. Then we have

Ka — (Xm — u)A[X~] by the assumption. Therefore, AczA[oi] is obviously flat.

We now proceed to the case u~λ eA. Similarly, we have K(t~{μ~ιXm — ϊ)A{_X~\.

Therefore, AczA\a] is flat by Cor. 2.20 in [10].

COROLLARY 2.8 (cf. Cor. 4.4). Let aXm-b be a prime element of A[X~\,

where m > 0 and a, be A — {0}. Then the following statements are equivalent.

(1) AczA\X]l(aXm-b) is LCMstable.

(2) AczA\_X~]j(aXm-b)isflat.
(3) (a,b) = A.

§3. Universality

In this section, we shall examine the universality of LCM-stableness. For

this purpose, we prepare two notions, R2-stableness and G2-stableness, related to

LCM-stableness. Let AczB be integral domains. We say that AczB is G2-

stable if Gr (IB) ̂  2 for each non-zero finitely generated ideal I of A with Gr (/) ̂  2.

Moreover, we say that i c β is R2-stable if a\Bb — a for any a, be A — {0} with

a:Ab = a. Obviously, if AczB is LCM-stable, then AczB is R2-stable and if A

is a GCD-domain, then the converse holds. Let / be an ideal of A. If Gr (/) :g 2,

then we have A:KI = A. But the converse is false as is seen in Remark 2.4 in [6].

On the other hand, in case / is finitely generated, Gr (/) ̂  2 if and only if A :κ I = A

by virtue of Th. 7 of Chap. 5 in [9]. Therefore, by Ex. 1 and Ex. 2 (p. 102) in

[7], if AczB is G2-stable, then AczB is R2-stable and moreover, if A is a Noe-

therian domain, then the converse is true. However, neither G2-stableness nor

^2-stableness does necessarily imply LCM-stableness as is seen in Z[^f5]cz

Z [ ( l +Λ/5 )/2], So we first study a regular sequence of length 2 in a polynomial

ring. We denote by Z(R) the set of all zero-divisors of a ring R.

LEMMA 3.1. Let R be α commutative ring with identity and Q be the total

quotient ring of R. Let f(X) = ao + axX-{ bakX
k e R[X~\. Assume that

c(/) contains a non-zero-divisor. Then the following statements are equivalent.

(1) a:Rmf(X) = a for each a e R-Z(R).
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(2) a :Rmf(X) = a for each a e c(/) - Z(R).
(3) a :R c(/) = a for each a e c(/) - Z(R).
(4) a :R c(/) = a for some a e c(/) - Z(R).
(5) R:Qc(f) = R.

PROOF. The equivalences (3)o(4)<=>(5) are easy and (2)o(3) follows from
Th. 7 of Chap. 5 in [9]. Moreover, (1)=>(2) is obvious.

(2)=>(1). Let a e R - Z(R). By the assumption, there exists b e c(/) - Z(R).
Since abec(f) — Z(R), we have ab:Rmf(X) = ab, Thus, a:Rmf(X) = a.

THEOREM 3.2. Let R be a commutative ring with identity and Q be the total
quotient ring of R. Let f(X), g(X)eK[X]. Assume that c(/) contains a non-
zero-divisor. Then f(X):RίX1g(X)=f(X) if and only if (i) f(X):Qmg(X) =
f(X)and(iϊ)R:Q(c(f) + c(g)) = R.

PROOF. Suppose first that f(X):Rmg(X)=f(X). Since K[X]c:Q[X] is
flat, we have obviously f(X):Qmg(X) =f(X). Let ajbeR:Q(c(/) + c(̂ f)), where
aeR and beR-Z(R). Then there exist φ(X), ψ(X)eR[X] such that af(X) =
bφ(X), ag(X) = bφ(X). Since b ̂  Z(R\ we have f(X)φ(X) = g(X)φ(X). There-
fore, φ(X)ef(X):Rmg(X)=f(X). That is, we can take C(Z)G.R[Z] SO that
φ(X) = c(X)f(X). Since f(X) ^ZCR[X]), we have a = bc{X) e b^[Z] Π R = &K.
Thus, afbeR. This implies that JR :Q (c(/) -h c(g)) = R.

Conversely, let ft(Jf) e/(X) :Λ [ j r ] ̂ (X) and take φ{X)eR[X\ so that h{X)g(X)
=f(X)φ(X). Since Λ(X)e/(Z)β[Z] by (i), there exist aeR-Z(R) and φ(X)e
R[X] such that ah(X) =f(X)φ(X). Then since/(Z)^ Z(R[Z]), we have aφ(X) =
g(X)ψ(X). Put F(X) = ZM/(Z) + ̂ (Z), where n > deg ^. Then c(F) = c(/) + cfo)
and by (ii) R:Qc(F) = R. Since F(Z)ιA(Z) = α(Xw/z(Z) + φ(Z)), we have ιAWe

by Lemma 3.1. Therefore, h(X)ef(X)R[_X~] by noting a£ξZ(R). That

COROLLARY 3.3. PF/ί/i ί/iβ notation of Th. 3.2, /eί aeR-Z(R). Then
a:Rmf(X) = a if and only if R:Q(a, c(f)) = R. Moreover, assume that
R:Qc(f) = R. Then for each beR-{0}, a:Rmbf(X) = a if and only ifa:Rb = a.

PROPOSITION 3.4. Let I be a non-zero proper ideal of A[X~\. J/Gr(J)^2,
then gr (7)^2.

PROOF. Suppose that Jn,4 = 0. Then we have IK\XJΦK{X]. There-
fore, Gr(JX[X])^l. On the other hand, Gr(/)gGr(/X[X])gl by Ex. 10 of
Chap. 5 in [9], a contradiction. Thus, IΠA^O. Take aeIf]A-{0}. Since
Gr (7/(α)) ̂  1 by Th. 15 of Chap. 5 in [9], we have obviously gr (I/(a)) ̂  1. Thus,
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With these preparations, we study universality.

THEOREM 3.5. For AczB, the following statements are equivalent.

(1) AczB is G2-stable.

(2) AIX] czB[Z] is G2-stable.

(3) A\X] cz B\_X~] is R2-stable.

PROOF. (1) => (3). Let f(X), g(X)eA [X] - {0} and assume that

f(X)'Amg(X) =/(*)• Then by Th. 3.2, we have (i) f(X):κm g(X) =f(X) and

(ii) A:κ(c(f) + c(g))=A. Let L be the quotient field of B. By (i), we have

immediately f(X):Lmg(X)=f(X). Since Gr(c(/) + c(gf))^2 by (ii) and AczB

is G2-stable, Gr ((c(/) + c(g))B) ̂  2. Therefore, B :L (c(/) + c(g)) = B. Thus,

f(X)'-Bm 9(X)=f(X) by τ h 3.2. That is, A\X]cB\X\ is Λ2-stable.

(3)=>(2). Let / be a finitely generated ideal of A\X\ with Gr(/)^2. We

may assume that IΦA[X~\. Then by Prop. 3.4 we have gr (/)^2. Since A[X~] cz

B[X] is Λ2-stable, gr(/B)^2. Therefore, Gr(IB)^2. That is, A[X~]czB[X]

is G2-stable.

The implication (2)= >̂(1) follows easily from the definition.

If AlX^czBlX"] is i?2-stable, then obviously so is AczB. The converse is

false as is seen in §7. As for the converse, we consider the following condition.

We say that A satisfies the condition (*) if AP is a valuation ring for any P e Spec (4)

with gr (P) = 1. By Th. 2.2 in [14], if A is a GCD-domain, then A satsisfies (*).

Moreover, if A satisfies (*), A is integrally closed by Cor. 2.16 in [1].

THEOREM 3.6. Assume that A satisfies the condition (*). Then for AczB,

AczB is G2-stable if and only if AczB is R2-stable.

PROOF. Suppose that AczB is #2-stable. Let / be a finitely generated

ideal of A with Gr(/)^2. We may assume that IBφB. Then there exists Qe

Sρec(B) such that Gr(J£) = Gr(Q) by Th. 16 of Chap. 5 in [9]. Put Q Π A = P.

Then we have /<=P. Assume that gr(P) = l. By the assumption, AP is a valu-

ation ring. Therefore, IAP is a proper principal ideal of AP. On the other hand,

since A:KI = A9 AP:KIAP = AP. This is a contradiction. Thus, gr(P)^2.

Since AczB is ,R2-stable, gr(PB)^2. Therefore, Gr(/B) = Gr(β)^Gr(PJ5)^2.

That is, AczB is G2-stable.

COROLLARY 3.7. Let A be a GCD-domain. Then the following statements

are equivalent.

(1) AczB is LCM-stable.

(2) AczB is R2-stable.

(3) AczB is G2-stable.

(4) i [ I ] c ΰ [ I ] is LCM-stable.
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(5) /l[Z]czβ[X] is R2-stable.
(6) A[Xlιc:B[XΊ[ is G2-stable.

COROLLARY 3.8. Let A be locally a GCD-domain. Then AczB is LCM-
stable if and only if A[X]<=.B[X] is LCM-stable.

Hereafter, we shall fix A c B and let L be the quotient field of B. Assume
that A is integrally closed. With this assumption, we examine LCM-stableness
of >4[JSr]c:B[X].

LEMMA 3.9. Letf(X), g(X)eA[_X~]-{0}. Iff(X):κmg(X)=f(X), then we
have f(X) :Am g(X) = (A :κ (c(/) + o(g))f(X)A[X].

PROOF. Let xeA:κ(c(f) + c(g)). Then xf(X), xg(X)eA[X\. There-
fore, we have xf(X)ef(X):Amg(X). Thus, (A:κ(c{f) + c(g))f(X)AlX] c
f(X):Amg(X).

Conversely, let h(X)ef(X):Amg(X). Then there exists φ(X)eA[X~\ such
that h(X)g(X)=f(X)φ(X). Since f(X):κmg(X) =/(Z), there exist aeA-{0}
and φ(X) G AIX] such that ah(X) =f(X)φ(X). Then we have aφ(X) = g(X)φ(X).
Put F(X) =f(X)Xn + g(X\ where n>deg^. Then c(F) = c(/) + c(g) and
a(h(X)X + 0(Z)) = F(X)φ(X). Therefore, h(X)Xn + φ(X) e F(X)K\X\ Π
On the other hand, since A is integrally closed, we have F(X)K[X~\
{A:κc{F))F{X)A[_X~\ by Th. B in [15]. Thus, there exist jc fe^:κc(F) and
giX) e i4[X] such that /ι(X)XM + φ(X) = Σϊ=i XiF{X)gίX). Therefore, we have
φ(X) = aΣUi XfΰtX). Thus, h(X) = ΣU xJ(X)gt(X)e(A:κc(F))f(X)A[X].
That is, /(Z) : ^ m r̂(X) c (X : x (c(/) + c f e ) ) / ( i μ [ I ] . This completes the proof.

PROPOSITION 3.10. Assume that A [ I ] c 5 [ I ] is LCM-stable. Then for
each non-zero finitely generated ideal I of A, B:LI = (A:KI)B.

PROOF. Suppose that I —{a, aθ9 aί,..., an) is a non-zero finitely generated
ideal of A (in case / is principal, we set n = 0 and ao = a), and put f(X) =
Σ?=o«. -X'i β y Lemma 3.9, we have f(X)\Λma = {A\κl)f(X)A[X']. On the
other hand, generally {A:κI)f{X)BlX']c:{B:LI)f{X)BlX^f{X):Bma. Since

is LCM-stable, (A\κl)f(X)BlX] = (B:LΓ)f(X)B[X]. Therefore,

THEOREM 3.11. Assume that B is integrally closed and that L is algebraic
over K. Then the following statements are equivalent.

(1) Λ[X]<=J3[X] is LCM-stable.
(2) B:LI = (A:KI)B for any non-zero finitely generated ideal I of A.
(3) a:BI = (a:AI)B for any aeA — {0} and non-zero finitely generated

ideal I of A.
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PROOF. (1)=>(2). This follows from Prop. 3.10.
(2)=>(1).. Let/(X), g(X)eA[X]-{0}. Since K[X\ is a PID, there exist

d(X)sK\XT\ and fx(X), gi(X)sA[X\ such that f(X) = d(X)fί(X), g(X) =
d(X)gt(X) and MX) :κm βl(X) =ft(X). Then f(X) :Am g(X) =fί(X) :Λm gt(X).
Therefore, we may assume that f(X):κmg(X)=f(X). Then we have obviously
f(X):Lmg(X)=f(X). Thus, since B is integrally closed, by Lemma 3.9 and the
assumption we have

f(X):Bmg(X) = (B

Therefore, AlX]<zB\X] is LCM-stable.
(2)<s>(3). Since L is algebraic over K, L = B®AK and the assertion follows

easily.

§ 4. Simple extensions

In this section, we shall give a necessary and sufficient condition for a simple
extension over A, which is locally a GCD-domain, to be LCM-stable and discuss
a difference between LCM-stableness and flatness. Let / be a finitely generated
proper ideal of A. It is well-known that if gr(/)Ξ>2, then Gr(/)^2, or equi-
valently A:KI = A, and if A is a Noetherian domain, then the converse is true.
Moreover, the converse holds for a polynomial ring as is seen in Prop. 3.4. More
generally we can show that this is true for a wider class of domains, containing
Noetherian domains and Krull domains. We say that / has a primary decom-
position if / = Λ ; = I Qi for some primary ideals Qί9 Q2, , Qr-

LEMMA 4.1. Assume that each proper principal ideal of A has a primary
decomposition. Let I be a finitely generated proper ideal of A.
then we have

PROOF. Suppose that Gr(/)^2. In particular, IΦO. Let aeA~{0}.
Then we have a:AI = a. Let aA = Γ\r

i=1Qi be an irredundant primary decom-
position of a A. We put Pi = τad(Qi). Then Z(A/aA) = w;= 1 Pt. Assume that
IczZ(A/aA). There exists ί such that /cP,.. Since / is finitely generated, In aQt

for some n>0. Take be Πy^Q; —β f. Then b^aA and bInaaA. Since
a:AI — a9 we have a:AI

n = a. This is a contradiction. Therefore, I(£Z(A/aA),
by which we have easily

The following Lemma follows immediately from Ex. 10 of Chap. 5, Th. 5
of Chap. 6 in [9] and Th. 3.5 in [13].
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LEMMA 4.2. Let I be an ideal of A[X~\ generated by an A\X~\-sequence of
length n (n^O) and let a{X)eA[X~\ with a(X)^L Let Q be a minimal prime
ideal of I:Ama(X). Put QnA = P. Then Gr(Q) = Gτ(QA[X\) = n and if

then β =

Throughout the following Th. 4.3, Cor. 4.4 and Th. 4.5, let/(X) be a prime
element of A\X\ with deg/^1 and let B = A[X~\I(J(X)).

THEOREM 4.3. 4[Y]c:£[Y] is R2-stable if and only i/Gr(c(/))^3, where
Y is an indeterminate. In particular, if Gr(c(/))^3, then AcB is R2stable.

PROOF. Suppose that v4[Y]c£[Y] is i^-stable. We may assume that
c(/)φ A. Let a e c(/)- {0}. Since f(X) is a prime element of A[X~\, a:Λmf(Y)
= a. Also, since ,4[Y]c=£[Y] is jR2-stable, a:Bmf(Y) = a. Therefore, {/(X),
a,f(Y)} is an A\X, Y]-sequence in c(f)A[X, Y]. Thus, Gr(c(/))^3.

Conversely, suppose that Gr(c(/))^3. Let α(Y), fe(Y)e^4[Y]-{0} and as-
sume that a( Y) : A [ y ] b( Y) = a(Y). Since f(X) is a prime element of v4[Z], we have
eitherf(X):AίXJ1a(Y)=f(X) or f(X):AίXtY1b(Y)=f(X). Say f(X):AίX,na(Y) =

f(X). If (/(Z), a(Y), b(Y)) = A[X, Y], then (α(Y), 6(Ό)^C^] = ̂ [^] and
therefore, we have a(Y):Bm b{Y) = a(Y). So suppose that (f(X\ α(Y), b ( Ό ) ^
A[X, Y]. Assume that {/(Z), a(Y\ b(Y)} is not an A[X, Y]-sequence. Then
there exists h(X, Y)eA[X, Y] such that b(Y)h(X, Y)e(f(X), a(Y)) and h(X, Y)
<$(f(X), a(Y)). Let β be a minimal prime ideal of (f(X), a(Y)):AίX>Y1 h(X, Y)
and put Qn^L[Y]=P. Then Q=>(f(X), a(Y), b(Y)) and therefore, PIDO(Y),

b{Y)). Thus, Gr(P)^2. By Lemma 4.2, we have Gr(β) = 2 and β = PA[_X, Y].
Then since f(X)eβ, c ( / ) c P n l Therefore, Gr(β) = Gr(P)^Gr(c(/))^3.
This is a contradiction. Thus, {f(X\ a{Y\ b(Y)} is an A[_X, Y]-sequence. That
is, a(Y):Bm b(Y) = a(Y). This implies that A\Y~] c=^[Y] is ,R2-stable.

COROLLARY 4.4. Let A be a GCD-domain. Then AaB is LCM-stable if
andonlyίfGτ(c(f))^3.

THEOREM 4.5. Assume that each principal proper ideal of A has a primary
decomposition. Then the following statements are equivalent.

(1) AczB is R2-stable.
(2) A[X~]^B[X] isR2-stable.
(3) Gr(c(/))^3.

PROOF. We have only to prove (1)=J>(3). Suppose that AczB is l^-stable.
We may assume that c(f)ΦA. By Lemma 3.1, Gr(c(/));>2. Therefore, by
Lemma 4.1, there exist α, bec(f) such that {a, b} is an ^-sequence. Since
Ac Bis R2-stab\Q9 we have a:Bb = a. Thus, {f{X), α, b} is an ^4[X]-sequence in

Therefore, Gr (c(/)) ̂ 3 .
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LEMMA 4.6. Let I be a finitely generated ideal of A. Then we have

Gr (/)=inf {Gr (IAM) M e Max (A)}.

PROOF. Let A(Y) be a localization of A[Y] by a multiplicatively closed set
consisting of all polynomials /(Y)of A[Y] with c(f) = A, where Y is afinite set of
variables. By Cor. 1 of Prop. 2 in [5], we have Gr(J) = Gr(L4(Y)). Therefore,
inf{IAM}=mΐ{IAM(Y)}=inf{IA(Y)MA(Y)}9 MeMax(i) . Since there exists a
bijection between Max (/I) and Max(y4(7)), we may assume that Gr(/) = n and
{al9 a29...9 an} is an ^-sequence in /. Then Gr {Ij{au α2,..., αM)) = Gr(J)-n = 0
and inf {Gr (I AMl(al9 α2,..., αM))}=inf {Gr (I AM)}-n9 MeMax(v4). Therefore,
we may assume that Gr(J) = 0. Then since / is finitely generated, there exists
xeA-{0} such that xl = θ by Th. 8 of Chap. 5 in [9]. Take M e Max(,4) so
that x/ί Φ 0 in AM. Then we have Gr (IAM) = 0 by Th. 8 of Chap. 5 in [9]. This
completes the proof.

THEOREM 4.7. Let A be locally a GCD-domain and αeΩ-{0}. Let I be
the kernel of the canonical homomorphίsm of A[X~\ onto A[μ\. Then A<^A[μ\
is LCM-stable if and only ι/Gr(c(/))^3.

PROOF. Suppose that Gr (c(/)) ̂ > 3. Let M e Max (A). Since AM is a GCD-
domain, there exists fM(x)^AML^ such that IAM[X~\=fM(X)AM[X~]. There-
fore, we have c(L4M[X]) = c(/M). Thus, Gr (c(/M)) ̂  3. By Cor. 4.4, AM <=
AM[μ\ is LCM-stable. Therefore, AaA[μ] is LCM-stable by Prop. 1.6.

Conversely, suppose that ^4cẑ 4[α] is LCM-stable. Let M e Max (A).
Take f^X)eAM\X] so that IAM\X\=fM{X)AM\X\. Since AM^AM[a] is
LCM-stable by Cor. 1.5, we have Gr(c(MM[^])) = Gr(c(/M))^3 by Cor. 4.4.
That is, Gr(c(/MM)^3 for each MeMax(i) . Therefore, Gr(c(/))^3 by
Lemma 4.6.

Finally, we give an example of Ac: B which is not flat but LCM-stable.

Example 4.8. Let A = k[si t9 u] where k is a field and s, t and u are indeter-
minates. Let B = A[_X]l{sX2 + tX + u). Then AcB is LCM-stable but is not
flat.

§ 5. LCM-stableness of A <= A [α, β~\

Let α, βeΩ-{0}. Even if both AaA[oc] and AaA[β] are LCM-stable,
AaA[<x, β~] is not necessarily LCM-stable as is seen in Remark 1.10. So we shall
examine LCM-stableness of AaA[μ, β~] under the condition oLJβeK in §5 and
under the condition that X(α), K(β) are linearly disjoint over K in § 6. The fol-
lowing lemma follows easily from Prop. 1.2, Cor. 1.5 and Prop. 1.6.
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LEMMA 5.1. Let AcB be integral domains and au a2,..., aneA. Assume

that (au a29...,an)B = B. Then AaB is LCM-stable if and only if AczBai is

LCM-stable for every i with l ^ ί r g n .

Throughout this section, we assume that A is integrally closed and that

aoc = bβ for some a, b e A — {0} with a :A b = a.

LEMMA 5.2. If AaA[μ, β~] is LCM-stable, then there exists yeA[μ, β~\

such that oc = by, β = ay and A[μ, fi]=A\y~\.

PROPOSITION 5.3. Assume that both α and β are integral over A. Then

AcA[μ9 jS] is LCM-stable if and only if (a, b) = A.

PROOF. Suppose that (a, b) = A. Since aoc = bβ, we have Aa[μ, β~\ = Aa[β~\

and Ab[μ, β~\=Ab[μ~]. Since both AaAa\_β~\ and Ac=.Ab[μ~] are LCM-stable, so

is AaA[μ, β~] by Lemma 5.1.

Conversely, suppose that AczA[a, β~] is LCM-stable. By Lemma 5.2, we

can take yeA[μ, β~\ so that oc = bγ, β = ay and Ala, β~\—A[y\. Put y=/(α, β)e

A[μ, /?]. Since both α and β are integral over A, so is γ. Therefore, A\y] is a

free ^-module. Since y=/(α, β)=:f{by, ay), we have 1 e(α, b). Thus, {a, b) — A.

In order to generalize Prop. 5.3, we need a lemma.

LEMMA 5.4. Let /«(*)= Σϊ-o s.*' and fβ{X)=Σk

i=otiX
i be irreducible

polynomials of en and β over K with coefficients in A, respectively. Then we have

ί i eα f c " ί : A s f e and S je f t*"* :^ for 0 ^ f ^ f e - l .

PROOF. Put g(X) = ΣΪ=otib
k-iaiXi. Then since g(oc) = bkfβ(β) = O, fa(X)

devides g(X) in K[X~]. Since deg/α = deg#, there exist c, deA — {0} such that

cfΛ(X) = dg(X). Then we have cst = dφ^a1 for 0g i^ k. Therefore, s^b*-* =

ίfcsiα
fc"i for O ^ ΐ g / c - 1 . Since a:Ab = a, ak~i:Λb

k-i = ak-i for O g ί ^ f c - 1 .

Thus, for 1^/^/c —1, there exists xteA such that skti = ak~ixi and tksi = bk~ixi.

This completes the proof.

THEOREM 5.5. Lei α be integral over A. Then AaA[μ,β~\ is LCM-stable

if and only if AczAlβ'] is LCM-stable and (a, b) = A.

PROOF. Since Aa[μ, β~\ = Aa[β~\ and Ab[μ, β~]=Ab[μ], it suffices to prove the

'only if part by Lemma 5.1. Suppose that A<^A[OL, β~\ is LCM-stable. We

first show that (α, b) — A. Let 1, α,..., α*"1 be a free basis of A[μ\ over A. Since

ak-ιak-i = bk-iβk-i^ ak-i.Abk-i = ak-ι a n d AczA[μ,β'] is LCM-stable, there

exist /,08)ei4|j8](O^i^fc-l) such that βk~ι = ak~x Σki=ofi(β)^' Thus, we

have
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= Σ ί i J tiX
ieA[X'] be an irreducible polynomial of β over K. Since

A is integrally closed, the kernel of the canonical homomorphism of A[X~\ onto

A\β] equals (A:κc(fβ))fβ(X)AlX] by Th. B in [15]. By (#), there exist x f ε

i4 : κ c(/^) and gt(X) ε A[JΓ] such that

Therefore, l e ( α , 6) + Σ ϊ - i Φ ι / ^ ) P u t xih = Uk f° r l ^ i ^ r . Then ί i k e i .

Since α is integral over A, 1 e(α, ft)-f- Σ*=i ί ^ by Lemma 5.4. For each i with

lrgi^Ξr, v4ί/k[j8] is integral over Atik and y4ff)lcc:^4ίik[α, β~] is LCM-stable. There-

fore, we have (a, b)Atik = Atik by Prop. 5.3. Thus, ί i f cerad(α, ft) for each i.

That is, (α, ft) = 4 .

We now prove that AaAiβ'] is LCM-stable. Since Aa[μ, β\ = Aa[β\,

^α[j8] is LCM-stable by Cor. 1.5. Moreover, since Ablβlc:Ab[θL, ]S]=

and since α is integral over A, Ac Ab[β~\ is obviously LCM-stable. Thus,

is LCM-stable by Lemma 5.1.

REMARK 5.6. Let k be a field and 5, ί, u and b be indeterminates.

(1) Let α, βeΏ. Even if both AcA[aί] and Λc,4[α, β] are LCM-stable,

AcA[β~\ is not necessarily so. In fact, let A — k[s, t, w, ft] and take γeΩ which

satisfies sy2 + tγ + u = 0. Put a = 1 — sb, α = αy and /? = fty. Then we have A[y] =

Ala, β~\. Both AcA[oί] and ^ c ^ [ α , jS] are LCM-stable. But AcA[β~\ is not

LCM-stable.

(2) Let α, β e Ω. LCM-stableness of A c A{jx9 β'] does not necessarily imply

(a,b) = A. In fact, let A = k[s, t, ύ] and take γeΩ which satisfies s2u2y2 +

stuy + (l—su) = Q. Put α = uy and β = sγ. Then we have A[OL, β~\ = A[y], More-

over, i c A [ α ] , AczA\_β~] and AcA\_oc, β~] are all LCM-stable. But, obviously

(II,

§ 6. LCM-stableness oίAczA [α, £ ] (continued)

Throughout this section, let oc, βeΩ-{0} and assume that K(a), K(β) are

linearly disjoint over K.

PROPOSITION 6.1. If AcA\μ] is flat and if AcA\_β~\ is LCM-stable, then

A<zA[μ, /?] is LCM-stable. Moreover, if AczA[μ] is faithfully flat, then

AczA[oc, β~\ is LCM-stable if and only if so is

PROOF. Since AczA\oi] is flat and ^(α), K(β) are linearly disjoint over K,

we have A\μ, β~]= A[μ~]®AA[β~\. Therefore, AcA[μ, β~] is LCM-stable by

Prop. 1.2, (1).
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Suppose that i c i [ α ] is faithfully flat and AczA[_cc, β~] is LCM-stable.

Then A[β]c:A[oί, β] is faithfully flat and therefore, AczA[β~\ is LCM-stable by

Prop. 1.2, (2).

COROLLARY 6.2. Assume that A is integrally closed and α is integral over

A. Then A<^A[μ, β~\ is LCM-stable if and only if so is AcA[β].

LEMMA 6.3. Assume that (ΣUo ai^i) I S the kernel of the canonical homo-

morphism of A[X~] onto A[μ]. Then AaA[μ] is faithfully flat if and only if

(al9a29...,aJ=A.

PROOF. Let M e Max (A). Put f(X) = Σϊ=o ^X1 and A = A/M. We denote

by f(X) the reduction of f(X) modulo M. Then we have A[a\lMA[μ\ =

A\_X~\j(J(X)). Therefore, this lemma follows immediately from Cor. 2.20 in [10].

THEOREM 6.4. In addition to the assumption of Lemma 6.3, we assume that

A<^A[μ] is flat. Then AczA[μ, β~\ is LCMstable if and only if AczAalβ'] is

LCM-stable for every i, l^z^fc.

PROOF. Since A<^A[ot] is flat, (aQ9 α l v . . , ak) = A by Cor. 2.20 in [10].

Therefore, we have (α l 5 α2> > ak)A[ac]=A[ai]. By Lemma 5.1, AaA^oc, β~\ is

LCM-stable if and only if A<=Aaj[oc9 β~\ is LCM-stable for every ί. Fix i with

l ^ ϊ ^ / c . By Prop. 1.2 and Cor. 1.5, AaAai\μ, β~] is LCM-stable if and only if

Aai<=zAai[(x, β~\ is LCM-stable. Moreover, since AaicAai[μ] is faithfully flat by

Lemma 6.3, AatczAat[pL9 β~\ is LCM-stable if and only if AaiaAai\β\ is LCM-

stable by Prop. 6.1. Also, Aai<=Aat[β] is LCM-stable if and only if A<=Aai[β]

is LCM-stable. Thus, this theorem holds.

REMARK 6.5. In Th. 6.4, A<^.A[β~\ is not necessarily LCM-stable and

therefore, the converse of the first half of Prop. 6.1 is false. In fact, let A =

fc[5, ί] where fc is a field and s9 t are indeterminates. Take α, β e Ω so that

sα2 + ία + l = 0 and sβ + t = O, respectively. Then AaA[μ] is flat, but AczAlβ']

is not LCM-stable by Cor. 2.8. Since K(β) = K, X(α), K(β) are obviously linearly

disjoint over K. On the other hand, i c i [ α , jβ] is LCM-stable by Th. 6.4.

In what follows, let Y be an indeterminate and we denote by Ka (resp. Kβ)

the kernel of the canonical homomorphism of A[X~\ (resp. ^4[Y]) onto A[μ\

(resp. ;![/?]). Moreover, we denote by Ka)β the kerenel of the canonical homo-

morphism of A\_X, Y] onto A[μ, β~\. We now examine Katβ. In the following

Prop. 6.6 and Cor. 6.7, we assume that Ka = (fx(X)) and Kβ = (fβ(Y)), where

fa(X)Jβ(X)eAlXl

PROPOSITION 6.6. KΛiβ={fa{X)Jβ{Y)) if and only if Gr(c
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PROOF. Suppose that Katβ=(fa(X),fβ(Y)). We may assume that c(/α) +
c(fβ)ΦA. Let αec(/α)-{0}. Then {α,/α(Z)} is an ,4[X]-sequence since fΛ(X)
is a prime element of A\X\. Let f(X9 Y) e (a9 fa(X)):AίXfYifβ(Y) Then we can
take#(X, Y), h(X, Y)eA[X9 Y] so that/(X, Y)fβ(Y) = ag(X9 Y)+fa(X)h(X9 Y).
We have g(X, Y)eKatβ. By the assumption, there exist φa(X, Y), φβ(X, Y)e
A[X, Y] such that g{X9 Y)=fa(X)φa(X, Y)+fβ(Y)φβ(X, Y). Therefore, fΛ(X)
(h(X, Y) + aφa(X9 Y)) =fβ(Y)(/(X, Y ) - ^ ( X , Y)). Since /α(X) : W ] / / 7 ) =
fa(X), f(X, Y)-aφβ(X, Y)efa(X)A\_X9 Y], and therefore f(X, Y)e(a9 fa(X)).
Thus, (a9UX)):AίXiY,fβ(Y) = (a,UX)) That is, {a9 fa(X)9 fβ(Y)} is an A[_X9 Y]-
sequence in c(/α) 4- c(fβ)9 which shows that Gr (c(/α) + c(/^)) ̂  3.

Conversely, suppose that Gr(c(/α)+c(/^))^3. Let fl6(c(/α) + c(/^))-{0}.
Assume that (fΛ(X)9 fβ(Y)):AίXiY} a Φ(fa(X), fβ(Y)). Then we can take h(X9 Y) e
AίX9 Y] so that ah(X9 Y)e(/α(Z), fβ(Y)) and h(X9 Y)έξ(fa(X)9 fβ(Y)). Let Q
be a minimal prime ideal of (fa(X)9 fβ(Y)) :AίX,Y} h(X, Y). Then a9fa(X)9fβ(Y) e Q.
Put β n A[X] =P. Since {/α(X), //Y)} is an A[X, Y]-sequence and α, fa(X) e P,
we have Gr(Q) = Gr((λ4[X, Y]β) = 2 and β = P^[Z, Y] by Lemma 4.2. Since
//Y)eβ, c φ c g n i . On the other hand, {α,//Y)} is an ^[X]-sequence.
Thus, Gr(β n A) = G r ( P n i ) ^ 2 . Since Gr(P^[X]P) = Gr(QA[X9 Y]β) = 2, P =

by Th. 3.5 in [13]. That is, Q = (Qf)A)A[X9 Y]. Thus, c(/α) +
i . By the assumption, we have Gr(β) = Gr(β Π ^l)^
This is a contradiction. Therefore, ( / α ( I ) , / / y ) ^ ]

Let S be the multiplicatively closed set of A generated by the leading
coefficients of fΛ(X) and fβ(Y). Since K(a)9 K(β) are linearly disjoint over K9

we have KΛtβAsίX9 Y] = (/α(Z),//Y)Ms[Z, Y]. Therefore, X
by the relation obtained above.

COROLLARY 6.7. //^.c^[α] is G2-stable9 then we have Kafβ = (fΛ(X)9fβ(Y)).

PROOF. Let αec(/α)-{0}. Since fβ(Y):Aίna=fβ(Y) and since
^i[α][Y] is £2-stable bY Th. 3.5, we have fβlY):ΛiΛ9Y1a=fp(Y). Therefore,
(UX)Jβ(Y)):AίXtY1a=(UX)Jβ(Y)) Thus, Gr(c(/α) + c(//ϊ))^3, and Ka>β =

by Prop. 6.6.

COROLLARY 6.8. Lei A be locally a GCD-domaίn. If AaA[μ] is LCM-

stable, then Katβ = (Ka9 Kβ)AlX9 Y].

PROOF. Let Me Max(4). Since AM is a GCD-domain, both KaAM[X~]
and K^ M [Y] are principal and AM^AM\oC\ is G2-stable by Cor. 1.5 and Cor.
3.7. Therefore, we have Ka>βAMlX9 Y] =(Ka9 Kβ)AMlX, Y] by Cor. 6.7. Thus,

9 Y].

Let al9 al9.,.9 aneA. Hereafter, we say that {aί9 al9...9 an} is an A-sequence

a2,..., an)=A.
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PROPOSITION 6.9. Let A be locally a GCD-domain. If both A c i [ α ] and
AaA[oc, β] are LCM-stable, then we have Gr(c(/α) + c(/^))^4.

PROOF. By virtue of Lemma 4.6, we may assume that A is a local domain.
Then A is a GCD-domain by the assumption. Therefore, both Ka and Kβ are
principal. Put Ka = (fa(X)) and Kβ = (fβ(Y)), where fa{X)Jβ(X)eA\_X]. More-
over, A czAloc] is G2-stable by Cor. 3.7. Let Z be an indeterminate. We can take
a positive integer n so that c(/α(Z)+//Z)Z") = c(/α) + c(//ϊ). Put F(Z)=fa(Z) +
fβ(Z)Zn. Since/α(Z) is a prime element of A\Z\ we have A:xc(F) = ̂ . Let
αec(/α)-{0}. Then a:AmF(Z) = a by Lemma 3.1. Since A[Z]c^[α, β~] [Z]
is jR2-stable by Th. 3.5, «M[α,i3,z]̂ 7(̂ ) = ί ϊ Therefore, we have (/α(X),
Λ ( n «)^[x,y,z]n2:) = ( / α W , Λ ( n a) by Cor. 6.7. On the other hand, it is
easily shown by Cor. 6.7 that {fΛ(X),fβ(Y), a} is an A[X, 7>sequence. Thus,
{fa(X)Jβ(Yl a, F(Z)} is an A[X, 7, Z]-sequence in (c(/α) + c(fβ))A [X, Y,Z\
Thus, Gr (c(/α) + c(fβ)) ^ 4. This implies that Gr (c(Kα) + c(Kβ)) ̂  4.

THEOREM 6.10. Let A be locally a GCD-domain. Assume that both
AczAloc] and A^Aiβ~\ are LCM-stable. Then AcAla, β] is LCM-stable if
and only if Gr

PROOF. By virtue of Prop. 6.9, it is sufficient to prove the 'if part. By
Prop. 1.6 and Ex. 10 of Chap. 5 in [9], we may assume that A is a local domain.
Then A is a GCD-domain. Therefore, it is sufficient to show that AaA[cc, β~\
is #2-stable. Moreover, we can put Ka = (fa(X)) and Kβ = (fβ(Y)), where fa(X),
fβ(X) E A[X~]. Suppose that Gr (c(/α) + c(fβ)) ^4. Let a, be A- {0} and assume
that a:Ab = a. Since Ac Ala] is G2-stable by Cor. 3.7, it is easily shown by Cor.
6.7 that {fΛ(X\fβ(Y\ a} is an A[X, Y]-sequence. Assume that {fa(X)Jβ(Y\
a, b} is not an A\_X, Y]-sequence. Then there exists h(X)eA[X, 7] such that
bh(X9 Y)e(fa(X)Jβ(Y)9 a) and h(X, Y)^(fa(X)Jβ(Y)9 a). Let β be a minimal
prime ideal of (UX)Jβ(Y), a):AίXJ}h(X, 7). Then we have UX)Jβ(Y), a,
beQ. Put Q[\A[X] = P and Q()A = P0. Since AcA[μ\ is LCM-stable,
{fa(X), a, b} is an ,4[X]-sequence in P. Thus, Gr(P)^3. Therefore, Gr(β) =
Gr(QAtX, 7]Q) = 3 and Q = PAIX, 7] by Lemma 4.2. Hence, Gr(PΛ[Jf]p) =
Gr (QAIX, 7]Q) = 3 and c(fβ)czP0. Since AczAlβ] is LCM-stable, Gr(P 0 )^
Gr(c(/^))^3 by Th. 4.7. Therefore, P = P0,4[X] by Th. 3.5 in [13]. Thus,
Q = P0A[_X, 7]. Then we have c(/α), c(fβ)aP0. By the assumption, Gr(β) =
Gr(P0)^Gr(c(/α) + c(//3))^4. This is a contradiction. That is, (fa(X),
fβ(Y), a):AίXJ1b = (UX)Jβ(Y), a). By Cor. 6.7, we have a:Aίa,βlb = a. Thus,
i c i [ α , β~] is ^2-stable. This completes the proof.

REMARK 6.11. In Th. 6.10, the condition that AczAlβ'] is LCM-stable can
not be omitted. In fact, let A = Q[s, ί, w, υ], where s, ί, M, V are indeterminates
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and take α, βeΩ so that sα2 + ία-hu = 0 and vβ2 + tβ + t = 0 respectively. Then

AaA[oi] is LCM-stable, but A<^A\_β~\ is not LCM-stable. By prop. 6.6, we see

that the kernel of the canonical homomorphism of A[_X, Y] onto A[μ, β~] is equal

to (sX2 + tX + u, vY2 + tY+t), and therefore it is easily shown that A<=.A[μ, /?] is

not LCM-stable.

§ 7. Examples

In §4 we have seen that, if G r ( / ) ^ 2 , then gr(/)^2 under some conditions

on the ideal /. Tt seems plausible to the author that ' G r ( / ) ^ 2 ' does not neces-

sarily imply ' g r (/)^2 ' ; however such an example can be found nowhere in the

literature. So, in this section we give an example and by making use of it, we

show that J R 2 - S t a t>^ e n e s s does not necessarily imply G2-stableness.

Let / be a non-zero proper ideal of A. We first construct a ring B so that

gτ(IB) = l. For the ideal /, we consider a set of indeterminates {Xλμ}χφSl.

Let R = A[_{Xλμ}λtμeI] and J=(XλμXaβ\λ, μ9 α, βeI)R. Put Iλμ = (λ9 μ) for any

λ, μel. We denote by B a subdomain A + Σ hμXxμ + J (^ μeI) o f R- L e t

fe B. Then there exist uniquely f0 e A, fλμ e Iλμ (A, μel) and f1 e J such that

/ = / o + Σ fλμXλμ +/i (^J f1 e )̂> where fλμ = 0 for almost all A, μ e I. We say that

/ = / o + Σ fλμXλμ +Λ (̂ > μ G ̂ ) i s t n e decomposition of /.

LEMMA 7.1. Let feB and fo + ΣfλμXλμ+fi (λ, μsl) be the decomposition

off. Then we have

(1) for λ,μel, Xλμfe B if and only if fΌ e Iλμ,

(2) ίfXλμfeB,thenXλμf^fB.

COROLLARY 7.2. gr (IB) = 1.

PROOF. Let fgelB and let f0 + Σ Λ ^ + / i ^ o + Σ 9xμXχμ + 91 be the

decompositions of/, # respectively. Since/, gelB, we have/0, goel. There-

fore, Xfogofef:Bg and Xfogof<ξfB by Lemma 7.1. Thus, f:Bg^f This

implies that gr(/B)= 1.

Next, we consider the following condition (**) to make Gr(/£)^2.

(**) (α, β):ΛI = (<x9 β) for any 0L9βeI.

For example, let A = /c[s, t, u] where fe is a field and s, ί, u are all indeterminates.

Put I — (s, t, u). Then / satisfies the condition (**).

PROPOSITION 7.3. Assume that I satisfies the condition (**). Then we have

λ'.Bl^λfor each λel. In particular, if I is finitely generated, then

PROOF. Let λel. We assume that λ^O. Let feλ:BI and let / 0
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aβ+fi be the decomposition off. Then for each μel, there exists gμeB
such that μf=λgμ. Let #g + Σ dZβXaβ+dϊ be the decomposition of gμ for each
μel. Then the following (i), (ii) and (iϋ) hold for each μel: (i) μfo = λg^ (ii)
μfaβ = λgίβ for any α, β e /, (iii) μf± = λgμ

v By (i) and the condition (**), f0 e λ :A I
= λ. Therefore, we can take h0 eA SO that fo = λho. Next, by (iii) and the con-
dition (**), fx eλ:RI = (λ:AI)R = λR. Therefore, we can take hίeR so that
fί=λhί. Then since fx e J, we have ht e J. Moreover, by (ii) and the condition
(**)>faβeλ:AI = λ for any α, βel. Therefore, we can take haβeA so that/α/ϊ =
λft^ for any a, βel. Put fc = fto + Σ KβXafi + h1 (oc,βel). Then we have
/z e R and/= Λ,/ί. Since μh=#μ, μ/zα/ϊ = gμ

aβ ε 7αjϊ for any μ, a, βe I. Thus, we have
/*α/?e(α, β):AI = (α, β) by the condition (**). That is, heB. Therefore, feλB.
This implies that λ:BI = λ.

LEMMA 7.4. Let Λ[{Xλ}λeΛ'] be a polynomial ring in variables {Xλ}λ(=A

over A. Let feAl{Xλ}λeΛ] with /(0) = l. Then we have a:Aί{Xλ)λeΛ}f=a for
each aeA.

Here, let A = k[s, ί, w](S)f>M), where A; is a field and 5, ί, u are all indeterminates.
Put M = (s, U u)A and let R = Al{Xaβ}0LtβeM'], where {XΛβ}atβeM is a set of variables.
Moreover, put Mα/? = (α, β) for any cc9 βeM and put J=(Xα i 8Zλ μ |α, j?, A, μeM)JR.
Let B = i + Σ M Λ + i(α, jSeM) and T=A + Σ MXaβ + J (α, j^eM, α#0 or
jS7^0). Then we have i c β c T c i ? ,

PROPOSITION 7.5. With the above notation, we have Gr(MT) = l. In
particular, BczTis not G2-stable.

PROOF. Let a, α, βeM-{0}. Then we have aXaβeT. Since m(aXaβ) =
a(mXaβ) for each meM, aXaβea:τM. On the other hand, since Xaβ^T,
aXaβ<ξaT. Therefore, a\ΎMφa. Thus, Gr(MT) = l. Furthermore, we have
Gr(MB)^2 by Prop. 7.3. That is, 5c: Tis not G2-stable.

PROPOSITION 7.6. JFίί/i the notation of Prop. 7.5, BczTis R2-stable.

PROOF. Let f,geB and assume that f:B9=f' Let fo + ΣfaβXaβ+fi>
#o + Σ 9aβX<xβ + 9ι (α> βeM) be the decompositions of/, # respectively. By the
proof of Cor. 7.2, it is easy to see that either fo^M or go^M. Say fo^M.
Since 4̂ is a local domain, we may assume that/ 0 = L Let hef:τg and take
φeT so that hg=fφ. Put /i = fto + £ haβX!Xβ + hί (α, βeM, α#0 or jS^O) and
Φ = Φo + ΣΦ*βXocβ + Φi (α, jSeM, α^O or )8#0), where ft0, φoeA, haβ, φaβeM
for any oc, βeM and ftl9 φx e J. If haβ = φaβ = 0 for any α, βeM, then /z, φ e β .
Therefore, hef:Bg=f. That is, hefBafT. Now, suppose that there exist
a, βeM such that haβΦ0 and φaβφ0. Then we can take αe πMα/? — {0}, the
interesection ranging over all OL, βeM with hΛβΦ0 and φaβΦθ. Then we have
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ah, aφeB. Since/:Bg —f and g(ah)=f(aφ), there exists ψeB such that ah =
fφ and aφ = gφ. Moreover, there exists ξeR such that h=fξ and φ — aξ by
Lemma 7.4. Put ξ = ξo+Ydξ0LβXaβ^-ξ1{^ βeM), where ξθ9 ξaβeΛ for any
oc, βeM and ξ^eJ. Then we have haβ = ξaβ + ξof for any α, βeM. (In parti-
cular, £oo = 0) Therefore, ξaβeM for any a, βeM. Thus, ξeT. That is,
ft =/£ e/τ. This implies that f:τ9=f Thus, £ cz T is JR2-stable.
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