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§ 1. Introduction

Let p b e a given prime ̂ 5 and BP the Brown-Peterson spectrum at p; and

consider the Hopf algebroid (cf. [2], [12])

(A, Γ) = (BP*, BP*BP) = (Z(p)lvu ϋ 2 , . . . ] , BP*[tl9 t2,•••]),

and the Γ-comodules A and A/(p). Then, for the sphere spectrum S localized

at p and the Moore spectrum M mod p, we have the Adams-Novikov spectral

sequence (cf. [3], [12]):

(1.1) E2 = Ext? (A, A) (resp. Ext? (A, 4/(p)))=> π,,S (resp. π*M).

This is investigated by several authors to study the structure of the stable homotopy

ring π*S of spheres ([3], [6], [7]).

Now, for the Γ-comodules N{ and M{ — viljN{ such that N^ = AI(p) and

N{+ί is the cokernel of the localization map N{-+M{, we have the chromatic

spectral sequence (cf. [3]):

(1.2) E2 = Ext* (A, M*)=^ Ext? (A, A/(p)).

In this paper, we are concerned with Extf(A, M\) for *Ξ^2 by continuing

the studies in [3] and [11] for * = 0, 1 to obtain the following

THEOREM A. The Fp[v^-module Ext? (A, M\) is given by Theorem 4.4.

Here, we note the following: Consider the spectrum N which is the cofiber

of the localization map M-*a~ιM for the Adams map αe[M, M]*. Then, by

RaveneΓs localization functor L2 (see [10]), we have the spectrum L2N with

BPΛL2N = N AV2

1BP and the Adams-Novikov spectral sequence:

(1.3) E2 = Ext? (A, M\)=*π*(L2N).

Thus, Theorem A implies immediately the following

COROLLARY. The spectral sequence (1.3) collapses, and π*(L2N) is an

Fp[μ\-module isomorphic to Ext? (A, M\) in Theorem 4.4 by sending α to υv
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As an application, we are concerned with the β-elements (see (2.1.7))

(1.4) βtp/j for (j, t)eB = {(j9 i)\l£j£p, ί^l, ( , t)Φ(p9 1)},
βs for s ^ 1 satisfying βtp = βtp/1, and βup2/pa for w ^ 2

in the p-component π*S of the stable homotopy ring of spheres, given by Toda

[13] and Oka [4-6]. On the products of these elements in π*S, [7] says that

(1.5) βsβtp/j = O unless a)j + l=pjt and p|s + l, b) j =

and we prove in this paper the following

THEOREM B. (i) βsβtp/p {resp. βsβtp2/p>2) ( s ^ 1, ί^2) is non-trivial in π*S if

p)(ts{s-\% or s = r p + l and pJft(r+t)(r + t+ϊ) (resp. pj(tr(r+l)).

(ii) βsp/iβtp/j ((ί, s), (j9 ί)e Λ) is 0 i/ i + j ^ p and s + ί^3, and is not 0 i/

p \ s + t, p 2 ) ( t { s + t + p ) and p + 3£i+j<2p.

Here, we note that (i) for pj(ts{s-ΐ) is proved in [7]. Furthermore, βsβtp/p

in the £2-term of (1.1) is 0 in case a), or if p\s in case b) of (1.5), and its pre-image

in π*M is not 0 if p\s — 1 in case b) (see [7] and [11]).

The triviality in Theorem B is in Theorem 2.2, which is an immediate conse-

quence of the known results in [14] and [7].

Theorem 4.4 is proved by using the change of rings theorem [2]

Ext? (A, M\) ^ Ext| (B, M\®AE)

for (B, Σ) = (Z(p)[vu υ29 i^ 1 ], B[tl9 ί2, ] ® ^ )

In § 3, we study the cobar complex Ω$B and prove the key lemma (Proposition 3.7)

which assures the existence of the nice elements Gn e ΩjB. Then, we can determine

Extf (B, M{®ΛB) in Theorem 4.4 by using the results for * ^ 1 obtained in [3]

and [11] and by using the exact sequence associated to the short exact sequence

The non-triviality in Theorem B is proved in Theorem 5.5 by expressing the

β-elements in Ωf A and by studying the images of their products under

The author would like to thank Professor M. Sugawara for his constant

encouragement and helpful suggestions.

§ 2. Triviality of some products of the ^-elements

In this paper, we assume that p is a primed5.

Let S be the sphere spectrum localized at p, and recall ([13], [4]) the Moore
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spectrum M modp and the spectra X(r) ( r ^ l ) , defined by the cofiber sequences

(2.1.1) S-^S-^M-^ΣS

and Σr«M-^M-±-+X(r)^Σ'«+ίM (q = 2p-2)

for the map p of degree p and the Adams map α: ΣqM-+M, and the maps

(2.1.2) β:

R(r): Σ(P2+P)« X{r) > X(r) and B: X(r+1) > X(r)

for 0 ^ r < p (X(0) = *, the point spectrum), which are related by

(2.1.3) Λ(l) = ̂ , ir = Bir+ί9

πrB = α π r + 1 and BR(r) = R(r-1)B (l<>r<p).

Then, the j8-elements in the homotopy ring [M, M ] + are defined by

(2.1.4) βis) = π.βH, and β(spJr) = πrR(r)sir for s ̂  1 and 1 ̂  r < p ,

(cf. [7]), which satisfy the following by (2.1.3) and α rπ r = 0:

(2.1.5) β(sp/ί) = βiap)9 β(sp/r) = α * - 1 - ^ , ^ - ! ) , α % p / r ) = 0.

Furthermore, we know the following ([14], [7]):

(2.1.6) In [M, M]*, α 2 ί = 2α5α - δoc2 for 5 = in, and

j8(ίp/r) = β{tp/P)<xp~r for some )5 ( ί p / p ) if ί ̂  2 and 1 ̂  r < p.

(2.1.7) In π*S, we have the β-elements βs = πβ(s)ί ( s ^ l ) and βsp/r = 7tβisp/r)i

and l ^ r < p , o r s ^ 2 and r = p), satisfying

β s p / ί = β s p a n d β s p β t p / p - ί = O f o r 5, ί ^ l .

THEOREM 2.2. For s, ί ^ l ^nd l ^ r , u^pwith s ^ 2 ifr=pαnd t^2 ifu=p9

βSp/rβtP/u = 0 m π*S ι/ r + M ̂  p and s + ί ̂  3 .

PROOF. Assume that r + u^p and s + ί ^ 3 . Then, we may assume s ^

since π*S is commutative. (2.1.6) implies αw5 = nα<5α11"1 —(n —l)<5αn in [M, M]

for n ^ l , and so βsp/rβtP/u i s equal to

This is 0 if p-l-r^u and -rβsp,p.xβtp if p-r = u by (2.1.5), and the latter is

also 0 by (2.1.7). q.e.d.
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§ 3. Key lemma on the cobar complex Ωf 2?

Let BP be the Brown-Peterson ring spectrum at p. Then

(3.1.1) π*BP=BP* = Z(p)lυ1,Ό29 q and BP*BP = BP*ltu ί2, . ] with

deg» l l=degί l l=2(p»-l) (cf. [8], [1]), and

(3.1.2) (A, Γ) = (BP*, BP*BP) is the Hopf algebroid (whose left unit ηL is

considered to be the inclusion AczΓ), with right unit ηR (denoted simply by η

in this paper): A^Γ and diagonal A: Γ-*Γ®AΓ satisfying (cf. [11; (2.3.4-5)])

(3.1.3) ηυ± = vt + ptl9 ηυ2 = v2 + vxt\ + pt2 - (p + l)vp

1tί mod(p 2 ) ,

Δt1 = ψtl9 At2 = φt2 + tί®tp

ί + υtT,

At3 = φt3 + g + v2T
p mod(p, v±)9

where ^x = x®l + l®x (xeΓ) and T, geΓ®AΓ are given by

(3.1.4) T= {ΦW-ΔtDIp, g = t1®tp

2 + t2® t[V

(w(w) denotes upn in this paper).

For any Hopf algebroid (A, Γ) and a Γ-comodule M, we consider the

homology

(3.2.1) (cf. [2]). Ext? (A, M) of the cobar complex ΩfM with Ω°ΓM = M, Ωn

ΓM=

M®AΓ®A~ ®AΓ (n copies of Γ) and differential dn: Ωn

ΓM-+ΩγιM given by

= ηMm ® x

for meM, x f e Γ and x = x 1 ® ®xM, where ηM: M->M®AΓ is the coaction.

(3.2.2) Especially, for the Γ-comodule A with ηA = η: A-+A®AΓ = Γ, dou =

ηu-u (μeA = Ω°ΓA)\ dίx = ψx-Ax (xeΓ = Ω1

ΓA).

Hereafter let (A, Γ) be (BP*, BP*BP) in (3.1.2). Recall (see [3; §3])

(3.3.1) the Γ-comodules N{ and Mj (i, j ^ O ) with coactions η induced from η

for A, which are defined inductively by iV? = ̂ 4/(t;0, 5 ̂ _ i ) (vo = p)9 M3

i=vj^jN{

and the short exact sequence 0^iV/-^->M/->J/V/+1->0, such that

(3.3.2) 0 >M{ϊ}^Mi-^-+Mί >0 is exact.

(3.3.3) Here, by definition, we denote any element of M/ by a linear combination
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of fractions xjy of monomials

x = ΓL Kn (finite product) e vj^A (sw^0 for n Φ i +j9 si+j e Z)

and y = Πi^n<n-jVr

n

n (rw>0), and x/yeN{ in case x e i , i.e., si+J^0. We note

that x/yφO in M/ if and only if sπ = 0 for n<i and s π <r π for i^

To study Ext? (A, Mj) (i +7 = 2), we use the change of rings theorem. Put

(3.4.1) B = Zip)\υu v29 i J 1 ] and Σ = B ®AΓ ®AB = B[tu ί2, ](g)A£,

where vn ( n ^ 3 ) act trivially on B. Then, [2; §3] says the following:

(3.4.2) (B, Σ) = (E(2)*, £(2)J|eE(2)) is the Hopf algebroid so that the natural

map (A, Γ)^(B, Σ) sending vn (n^3) to 0 is a map of Hopf algebroids, i.e., the

structure maps of (J5, Σ) satisfy (3.1.3) and η(v21)ηv2 = l in Σ.

(3.4.3) For a Γ-comodule M, we have the induced I-comodule M®AB

and the natural map induces Ext? {A, M)-^>Extf (B, M®AB), which is isomorphic

if M is t;2-local (i.e. v2 acts bijectively on M); and we identify as

(3.4.4) H*M = Ext? (A, M) = Extf (B, M®AB) for M = M{ (i+j = 2).

Now, we prepare some results on the cobar complex Ωf B, by considering the

elements T, g e Γ ® κ Γ in (3.1.4) and F, τ e Γ, ζ, σ e Σ and # ε € I®B2: given by

(3.5.1) F

= - ϋ j- i ίξmodίp, ϋO, τ = ί{+ p - ί2;

C = ̂ ϊ 1 ^ ~ ^2 P τ p , σ = 2tί- v,Cp; g0 = i ; ^ , βft = © ϊ 1 ^ -

Here / is the division, and ζ e υ^Γ in [11 (2.5.3)] is the above ζ in Σ.

(3.5.2) [11; (3.2.1-5)] The following relations hold in Σ for n ^ l :

( ) !f5 s c | K - v'tl^modip, v{2)),

H\ mod (p, ϋ?), ϋ2

M)ίπ = v2tί
2) + ί;x^+1 mod (p,

(1.) = ζ(n-i) m o d (p^ ϋ^-D), ϋ22) τ = vp

2 Γ<2> mod (/?, t

(3.5.3) [11; (3.3.1-2), (3.4.2-8)] There are elements ξ2, ξ 4 amd Wi, Z s

(seZ) in Σ, with υγWs = Zs= -v^f^Vmodip, t^" 1 ) , such that the differential

d1: Ω\B = Σ-+ΩIB = Σ®BΣ satisfies

= 2v2

pt[2)® V - v1υ
p

2-^g1 and dxξ4 = v2

2P V®σ - υίv2

pg1 mod (p, υ\) ,

dx Ws = vl-1 W'smod (p, vp+2) where W's = υγg\ - (s- lMv'^

l)vp+2vs

2

p-igil2mod (p,
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(3.5.4) [3; Prop. 3.18 c)] ^(C^sOmodfo vin)) i n ΩΣB f o Γ n^°

For d2: ΩjB = Σ®BΣ^>ΩjB = Σ®BΣ®BΣ, we see the following by (3.2.1-2),
(3.1.3-4) and definition:

(3.5.5) d2g0 = - v^T® t[2) mod (p, υ\),

(3.5.6) [9; Th. 3.2] HιM^ is 0 if ί^5, and is the Fp[v29 t^ϋ-vector space

with basis represented by the following cycles in ΩΣ(M^®ΛB) = ΩΣBI(p, υx)

for i

1 (i=0); h0 = tlf ht = v~2H\ and ζ (i = l);

gε and hε ® ζ for ε = 0, 1 (i = 2);

βε = gε ® ζ for ε = 0, 1 and ρ = tί®g1 (i = 3); p ® C (i = 4),

where pp is homologous to p.

We note that the above elements are all homogeneous, and

(3.5.7) |»J = |ίπ| = e'(n) = (p--l)/(p-l), \T\ = p,

\g\-l = \V\ + l=p* + p,\τ\=p+l = \v2\, \ζ\ = \p\ = 0,

\σ\ = 1 = K|, |Λ,| = | Λ | = |0.| = (-1)% |£ 2 | = p> - 1,

1 = l^ίl + P = IZ.I = s(i

(3.5.8) Here, |x| = m means that x is a homogeneous element of degree mq for

q = 2p-2.

LEMMA 3.6. IfGe Ω\B and positive integers n and a satisfy

(3.6.1) \G\ = - ( p + i y ( n ) + fl and d2G = vlυ2

e'^pmoά{p, v\+a),

then there is FeΩ%B with |F| = | G | - α - l and

(3.6.2) d2(G-v\+aF) = υlυ^^ip + Ό^φ + kθ^} mod(p, v\+a)

for some ke Z. Here,

(3.6.3) φ = υ-2\t2-τ)®g1eΩlBi and \φ\ = - 1.

PROOF. By assumption, there is α e ΩjB (|α| = \G\ — a — 1) with

d2G = υ\vlp + v\+a(x and so
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On the other hand, (3.2.1-2), (3.1.3-4) and (3.5.5) imply that

d3(υe

2p) = t^f-K'i®*!-*!®*?) ® 0! ΞΞ - Vld3(ve

2(t))mod(p, v\).

Thus v{+ad3oi = d3(v{+a(x)=-d3(vp2

1p) = v\+ad3(v&)mod(p, vl+a), which means
that oL — vlφ is a cycle in the range of the projection Ωf£-*Ωf£/(p, vί) =
Ω3

Σ(M^®ΛB). Therefore, by (3.5.6) for H2M°2 and \<x-υe

2φ\=(p + l)e-l = bfβj,
we have

α - vlφ = kvξθί + d2Fmod(p, vx) for some ke Z and FeΩjB.

These show the lemma. q. e. d.

By this lemma, we can prove the following key lemma, where

(3.6.4) ε0 = 1 = a09 εn = min {n, 2} and an = pn + pn~ι - 1 ( n ^ l ) .

PROPOSITION 3.7. There are Gn e Q\B for n ̂  0 such that

(3.7.1) |Gol = 1, IGJ = - (p + i y ( n - l ) - l (n^l),

Go = 0o and Gπ Ξ v2

e'^-^gi mod(p, ΌX) ( n ^ l ) ,

PROOF. Put Go = 0o + ̂ i^ 2 " p ί3®ί ( i 2 ) -^i^i^ίi . Then (3.7.1) holds for
n = 0 by (3.2.1-2), (3.1.3-4) and (3.5.1-7).

For n = l, consider σ/ = 2ί1-ι;1C(2 )6 2; and y= -Z_γ

Then

σ' Ξ σmod(p, ι?}+p) and γ = v\υ2Pg1moά{p, v\) by (2.5.2-3),

d^σ' = 0 and d2y = - υ^υl^tψ ® σ ® σ = - v\v2

pd2y' mod(p, t;?+p)

for y' = ι;Γ3ι>2P'i2)®σ2/2 by (3.5.3-4). Therefore, we have the element

Gx = vp

2yjv\ + y' = gt mod(^, vj in ΩjB with |GJ = - 1

and ^ 2 ( ^ 0 = ̂ 5 ® ? + ̂ ® ^ + ̂ ^ / ) ^ ^ ^ ® ^ ^ ! =vp

ί

+2v2

1t1(S)gί (by
(3.5.2)) = v\+2v2

lpmod(p, ϋ?+p), which implies d2Gί=vp

ίυ2

1p mod(p, v\+p)
(e'(l) = 1) as desired, since i^: Ω%BI(p)-+Ω%Bj(p) is monomorphic.

Now, assume inductively that Gn (n^ l ) satisfies (3.7.1). Then, for a = an,
e= —e'(ή) and/=(pH- ϊ)e, \Gn\ =f+a and we can apply Lemma 3.6 to obtain

(3.7.2) d2(Gn - υ\+°F) = εnv^2{p + ̂ ( 0 + fcβj} mod (p, t;2+«)

for some fc e Z and F e β | β with |F| =/— 1. We consider the element

7 = {W'ei-(Gn-v\+°Fy}lεn + kυ^We® ζp (e1== -e'(n-l)=
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by (3.5.3). Then (3.7.1-2), (3.5.3-4) and (3.5.7) show that |y| = / + 1 ,

y = vlv^g1/2mod(p9 v\) and d2y = — v^pv^p(p + v^)pmod(p9 v\+a')

(a' = ap+p — l = an+ί), since — (eί — l)/επ = l mod p. Consider the elements

/ = vl+e'g\ - 3v1tί ® We9E with | £ | = 0 and d2E = p - ρpmod(p, vj,

Gn+1 = 2yjv\ + 2υϊ-p-2(γ'-2vl+Pυe

2E) = v\gγ mod(p, v,)

(e' = ep-l=-ef(n +1)), where E exists by (3.5.6). Then

d2y
f =Ξ ve

2P+PdQ(v\-p) (g) gi + vl+e'dM) + 31?^! ® ̂ P F e mod (p, v[2))

by (3.5.2-4) and doiυi-η^Ό^tl-φj^-Ό^Ό^^ + Ό^t^modipy υ\*).

These imply d2Gn+ί=2va

ί

f ve

2 p mod (p9 v{+a) in (3.7.1), and |GΛ + 1 | = / - 1 is

clear. Thus, the proposition is proved by induction on n. q. e. d.

§ 4. Determination of H* M\

In this section, we study H*M{ in (3.4.4) by using the exact sequence

(4.1.1) >H

{fn — Qlvi)*) for n ^ l associated to the short exact sequence in (3.3.2) for

Hereafter, for M\ ( i + j = 2), we use the following notations:

(4.1.2) An element (x/y)®γ in the cobar complex Ω%(Mj

i®AE) =

for x/yeMf (see (3.3.3)) and yeΩ^B is denoted by x®y/y, and if it is a cycle,

then its homology class in H*M{ is denoted by the same letter;

(4.1.3) Fp{(Xj} denotes the JFp-submodule of H*M{ generated by {α/|./^l} with
v i α j + i = α 7 s u c h that the /^[tfj-submodule Fp{θLj} is isomorphic to Fp[υl9 t ϊ 1 ] /

FpLvi]', and /Γ

p[t;1]<α> denotes the cyclic /^OJ-submodule of H*M{ generated

by a = OL'lv\ such that it is isomorphic to Fp[v{\j{vn

i).

(4.1.4) [11; Lemma 3.9] In (4.1.1), assume that a submodule K=>\mfn of

HnM\ is the direct sum of Fp{ocλJ} (λeΛ) and /Γ

p[ι?1]<fc/i> ( μ e M ) such that

{δnkμ\μ e M} is linearly independent. Then K = HnM\.

H°M\ and HXM\ are given as ̂ [ i J-modules by

(4.1.5) [3; §5] #°M} is the direct sum of Fp{l/v{} and
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<xsjvϊn> for n ^ 0 and s e Z - pZ, (see (3.6.4) for an),

where xπ6DjU, |X»I=P"CP+1) and xn = v2

n) in M^ = v2

lAI(v09 u j .

Furthermore, 30(l/i;{) = 0 and

δotelvΰ = «$*i> ίo(*S/t1") = Vt?J(" f)fc0 for n ^ 1 (ho = *i, Ί i ^ ϊ 1 * ? )

in H1MS (see (3.5.6)), where εlι = min {n, 2} and c(n, s) = spa — pn~1.

(4.1.6) [11; §3] Jtf^} is the direct sum of Fp{holv{}, Fp{ζ^lv{} and

for meΛ0 = {sp"|n^0, s e Z with pXs(s+ΐ) or

r tepZ and

for n ^ 0, s e Z - pZ.

Here, A(m) = 2 + ε(s)pn(p2 -,ϊ) + (p + l)ef(n) for m = sJp", ε(s) = 0 if p2jfs + l and
ε(s) = 1 if p2\s +1 and the generators satisfy ym e Σ, \ym\ = m{p +1) +1, and

ym = vyho, vt

2V= - υγvhγ and xs

πC<w+1) = vs

2

pnζ

in Ω1

Σ(M0

2®AB) = ΣI(v0,vί).

Furthermore, in H2M°2 (see (3.5.6)), δί(holv{) = δί(ζ^lv{) = 0 and

δι(ymlvi(m)) = - smv2(m)9ί where sm ψ Omodp and

e(m) = m - ε(s)pn(p-ϊ) - e'(n) = m - (,4(m) - 2)/(p +1) for m = spneΛ0,

for ίepZ,

C if « = 0,
for ^ e Z - ^ Z .

C if π ^ 1,

LEMMA 4.2. I m / ^ C o k e r ^ in (4.1.1) is the Fp-υector space spanned by

Viβo/vi and v^n'sP^gi/vi for s + 1 e Z - pZ and n ^ 0,

vt

2hί ® ζ/vi for tepZ, h0 ® ζ/υu and v^h0 ® ζ/υ1 for meΛ0,

where e(n, r) = rpn — ef(n).

PROOF. Each ee Z is written as e = e(n9 r) with n^O and pj(r+l. Then,
by the definitions of Λo and e(m), we see that eφβ(m) for any m e Λo if and only
if p\r and p ^ r + p. Also, mΦc(n, s) = (sp — l)pn~1 for any n ^ l and s e Z - p Z
if and only if m e Λo. Therefore we see the lemma by (3.5.6) and (4.1.6). q. e. d.
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Proposition 3.7 and (4.1.4-5) imply the following

PROPOSITION 4.3. (i) H2M{ contains the elements represented by the

cycles

(4.3.1) a) ^ ® C

b) xs

nGJv{ (nϊ:O,

c) v2V®tflv{ (tepZ,l£j<p), and d)

and δ2- H2M{—>H3M2 in (4.1.1) maps these elements to

a ) ~ smv2(m)θi when j = A(m), b) (s + l)εnv%(n>s)p when j = an,

c) vt

2~
ίθ0 when j = p—l, respectively, and 0 otherwise.

(ii) H3M{ contains the elements represented by the cycles

(4.3.2) x*nGn ® C(n+1VΪ (n^O, seZ, l ^ ^ α n ) ,

and δ3: H3M\-^H4M^ maps these elements to

(s + l)ent;|(n»5)p ® ζ when j = an, and 0 otherwise.

(4.3.3) For z in a)-d) of (4.3.1), \z\ is given by

a) m(jp + l) + l -j,

b) e(n- l , sp)(p+l)- 1-j (n^l ) , s(p + l) (n = 0 and soj = l),

c ) O + P)(P+1) — 1 — j\ α n ^ d) 1—Λ respectively.

PROOF. Let αeΩJB. Then, we see the following:

(4.3.4) dn(φϊ) = dB(α)/t?ί in Ω|(M}® A β) = M} ® A Ω | B for α ^ 1.

(4.3.5) φleHnM\ if and only if dπα = i f0mod(p, v\+a) for some
βeΩn

Σ

+1B, and then δ^φ^f^dMvl^^β in if«+1M§.

(4.3.6) If α/t?f e HΠM} and α'/t?? 6 JϊmM} for α ̂  1, then α®α'/ι?ί ε H n + m M}

and

<5n+m(a®a'/t;?) = ^(a/rf) ® a' + (-l)»a ® δjμ'lϋf) in H^^MQ

2.

In fact, (4.3.4) is valid since the canonical map B-*BI(v0, vf)-^M\®AB

is a map of Σ-comodules by [3; Lemma 3.7]; and (4.3.4) shows (4.3.5-6) by

definition.

Therefore, we see (i) by (3.5.2-4), (4.1.5-6), Proposition 3.7 and definition,

and (ii) by (i) and (3.5.2-4). q. e. d.
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Now, we can prove the main result in this section:

THEOREM 4.4. H*M\ = Extf(A, M}) = Extf (B, M\®AB) in (3.4.4) is given

as Fp[v ̂ -modules by (4.1.5-6) for *:gl and the following for * ^ 2 :

( i ) H2M\ is the direct sum of Fp{hQ®ζ^lv{}

Fp\vΔ <ym® C ( π + 3 )K ( m )> for m = spneΛ0,

fpίυj<xs

nGnlvl»y for s + leZ - pZ and n ^ 0 and

Όl-iy for tepZ.

(ii) H3M{ is the direct sum of Fp[t>J<x;GΛ®C<"+1>/t?ί»>/or s + leZ-pZ

and n^O.

(iii) HnM\ = 0forn^4.

PROOF. The direct sum K in (i) satisfies the assumption in (4.1.4) by

Lemma 4.2, (4.1.5-6), (3.7.1) and Proposition 4.3. Thus (4.1.4) implies (i).

In the same way as Lemma 4.2, (i) and Proposition 4.3 show that

(4.4.1) Im/ 3 = Coker <52 in (4.1.1) is the /^-vector space spanned by

vs

2θ0lvί and v^n's^θίlvί for s + 1 e Z - pZ and n ^ 0.

Thus (4.1.4) implies (ii) in the same way as (i). Also, we see (iii) since Im/π = 0 by

(ii) and Proposition 4.3 for n = A and by (3.5.6) for n^.5. q.e.d.

In the rest of this section, we consider the short exact sequence

(4.5.1) 0 > M{ -L+ Ml - 1 % Ml > 0, f'x = φQ (vo=p),

in (3.3.2) and the associated exact sequence

(4.5.2) > HnM{ -A> HnMl - ^ > HnMl -**-+ Hn+ίM{ •....

Here, we notice the following (4.5.3-5) for any element

α = α'/φ>{ e Ωn

Σ(Ml®AB) = Ml®AΩ
n

ΣB with α' e Ωn

ΣB:

(4.5.3) dn(x = dM-^'WoVΪ in Ωγ\Ml®AB) for p^k^j.

(4.5.4) oceHnMl if and only if dH(υ\''Jat) = Όi

0βmod(Όi

0

+1

9 v\) for some k
with ^Ife^j and βεΩn

Σ

+1B, and then δ/

n0L = β/vk

1 eHn+lM\.

(4.5.5) If α e HnMl and / = mp1'1, then i?I

1α = α'/i?^- 1 e HnMl and

δ'n(υ[(x) = υ[δ'n(x + mtγ ® 0Lfjυ{-ι+ι in Hn+1M{.
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In fact, let p^^k. Then ηυ\ = v\ mod (t?J) by (3.1.3), and so the canonical

map B->BI(v})9 v\)^Mfi<g)AB (y = vl

ov
1[) is a map of I-comodules by [3;

Lemma 3.7]. Thus, we have (4.5.3), which implies (4.5.4-5) by definition and

by noticing do(vι

ί)lvi

o

+1v{ = mt1lvov{~ι+ί for i = mjpl~1.

LEMMA 4.6. There are elements ζ' ev^Σ and ξ'eΣ with |C' |=0, \ξ'\ = -p2,

and d£ = υ[2)ξ'moά{υl).

PROOF. We have ocn = ζ(n)lvov[n) e i ^ M g for any n^O by (3.5.4), and

δ[oc3 = i7f5;αn in # 2 M{ for c = pn - p3 by (4.5.5), since α 3 = v{ocn by (3.5.2).

Therefore, Theorem 4.4 (i) shows that δ[(x3 = ah0®ζ^lvi+p3 for some aeFp9

since | α 3 | = -jp 3 = |Λ0®C(4)/»i+l>Ί. Here

ah0 ® C(4)/^i = v{3)δ[a3 = δ/

1(i;(

1

3)α3) = 0, and so a = 0,

which shows <5iα3 = 0. Hence, by definition of δ'u we have

( ) in Ω2

Σ(Ml®AB) for some

Thus, v[3)ω is a cycle in HίM{ of degree 0 and so v[3)ω = a'h0/vi for some a' e Fp

by (4.1.6).

Put oc = ζi3)lv^v[3)-ωlvo and α' = < α (c' = p3-p2). Then, |αΊ = -i? 2 ,

<$;<*' = t f'^iα and i ^ ^ i α ' = <5;(ί;(i3)α) = δ'ά-a'ho/vovj = a'h0 ® /io/ι?f = 0

by (4.5.5), since d1(Λ§/2ι;?)= -ho®ho/vl by (3.2.2) and (3.5.6). On the other

hand, we see an element zeH2M{ with \z\ = —p2 is a linear combination of

y-Jυ?-*, yx-plvl, G2/vp

ί

2-p-2 and / i o ®C ( 3 ) M + p 2 by Theorem 4.4 (i) together

with (4.3.3). Therefore, ^'^' = 0, and so by (4.5.4), we have

dM^-VoV^ω) = v[2)ξ' + υ2

0dγω' mod (ι?g) for some ξ 'ei; and ω'ev^Σ,

where ω e i J" 1 ! is an element mapped to ω under the canonical map t^ 1 ! 1 -*

ί2KM}®AΓ) = 2;/(t;o, vf). Then, ζ ^ ^ ^ - i oi i ^ ω - i gω' stisfies the conditions

of the lemma. q. e. d.

LEMMA 4.7. For m = spn e Z with n ^ 0 and p)(s, let

zm =

PROOF. d i Z ^ O for n ^ 0 by [3; Th. 4.2 b)J; and (3.1.3), (3.2.2) and (3.5^)

imply that
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, v^"*2 for m = spn,

dfaτ) = v2t1 ®ζ-t\®t\-2τ®t1- v2g0 mod (t?0, υ±).

Therefore, we see the lemma, since

d ^ = 2do(υf) ®z'n- sv2

n~ίd1(tίτlvovί) for m = spn. q.e.d.

LEMMA 4.8. vs

2

pg0®ζlv1 = xs

0

pG0®ζplυ1 with j φ ( s + l ) in H3M\ (see

Theorem 4.4 (ii)) does not belong to lm(δ2f2) in (4.5.2).

PROOF. v2

pg0®ζlvί<£vίH
3M\ by Theorem 4.4 (ii) and the elements in

(4.3.1) form an Fp-basis of H2M{ by Theorem 4.4 (i). Therefore, we see the

lemma by the following:

(4.8.1) The <5i/2-images of ym®ζ(n+3)lv{ for j^A(m)-2, xs

nGJυ{ for n ^ l

and j^an — 2, and /ι o®C ( J )M a r e a ^ contained in vίH
3M\;

(4.8.2) δ2f'2(xs

oGo/vί) = 0 i f p \ s a n d p2Xs\ a n d

(4.8.3) the degrees of the other elements in (4.3.1) is not equal to that

sp(p+l)q ofυs

2

pg0®ζlvί.

We see immediately (4.8.1) by (4.5.5) and (4.8.3) by (4.3.3). By Lemma 4.6-7,

f2(xsoGolvί) = vs

2tί®ζ'lvoυί if p\s and p2Xs. Then, by (3.1.3), Lemma 4.6 and

definition, we have (4.8.2). q. e. d.

Now, we have the following proposition, which implies the non-triviality in §5:

PROPOSITION 4.9. v^t1®C/vovi^0 in H2Ml for m = spn with n=0, 1 and

PROOF. By Lemmas 4.6-7, we have

am = 2ϋζtx ® ζlυoυ1 = voa'm for a'm = t;gzm ® ζr in R2M%\ and

δ2am = mv^g0 ® C/î  for p)(m and

δ2a'm = sυ%g0 ® ζ/vί for m = sp with pjfs,

since υΊξt1®ζ®ζjvι=O. Assume that p)(s(s+\). Then, the first equality shows

amΦO for m = s by Theorem 4.4 (ii); and the second one shows δ'2a'm£Im(δ2f2)

for m = sp by Lemma 4.8, which implies a'm£Imf2 and am = voa'mφ0, as desired.

q. e. d.

§ 5. Non-triviality of the products of ^-elements

Consider the boundary and induced homomorphisms
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(5.1.1) HnNl -!U Hn+1Nh -*U Hn+2A and λ*: H»N% > HnMl

associated to the short exact sequences in (3.3.1). Then, we have the ^-elements

(5.1.2) (cf. [3 ; p. 483]) βs = δfδ(vs

2lvoυί) and βsp/i = δ'δ(vs

2

Plv0v\) in H2Λ for

5^1 and l^i^p, where βsp/ί = βsp and

(5.1.3) these elements except for βp/p converge in the Adams-Novikov

spectral sequence (1.1) to the ̂ -elements in π*S with same notation given in (2.1.7).

LEMMA 5.2 (cf. [7; Lemma 4.4]). /?βp/ί = s£ s_ l f,mod(f?0, i??*""1"1) in the
cobar complex Ω\A, where

(5.2.1) Bsi = υ^-H^-^ivlt^t^ -sυ\V®t[2) +

PROOF. By the definition of δ and (3.1.1-3), we see that

δ{vflυov\) = doivjhflvo) = (™ΓV/"M2) W ' ^

for some XeΓ. Furthermore, in Ω}M% = Ω}VQ XA,

d^Hl'-iX) = vo HdoW'-O ® X + υl'-^X}

= - iv\P-i-H1 ® X + v0Y + ^ - f Z

for some Ye Ω2

ΓA and Z e Ω2

ΓM%. Thus we see the lemma by definition and

(5.2.2) d 1(ι^- | !4M 2 )) = M..ιmod(ι;8,ι ;p- ί -i) (s^O),

which is proved directly from (3.1.1-3) and (3.2.2). q. e. d.

LEMMA 5.3. Let s and t be positive integers. Then,

βsβtp/p = tδ'δb and λ*b = - vp'p-% ® ζ/vovί

for b = v\Bt- 1Jvov1 = υγtP-PTηυov1 e H2Nl

PROOF. (3.1.1-4) and Lemma 4.7 show that

in Ω2{M2®AB)

for m = spn with pjfs. Therefore, we see the lemma by Lemma 5.2 and defi-

nition, q. e. d.

LEMMA 5.4. Let s, ί^ l and l ^ ϊ , j^p satisfy p\u = s + t and 3^k = i+j —

p<p. Then, c — vs

2

pBt^1Jv0υ\eH2Nl satisfies

βspββtp/j = tδ'δc and λ+c = sv^'Pt[2) ® ζplvQv\ + YK^ί"4 for some YeΩ2

ΣB.

PROOF. By Lemma 5.2 and (5.1.2), c satisfies the first equality and
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c = Bu_Uklυoυ\ + ivu

2

p~pt1 ® ί (

1

2 ) /ϋ 0 »ϊ + 1 + svu

2

p~2p v® ^

The first term is 0 because dί(υp

ί-
kv^-pt[2)/v^vp) = Bu_lfklvov{ by (5.2.2).

Consider the following elements in Ω\{Ml® AB)\

(5.4.1) χk>ι = v2

pt[2)lv2

0v\ -

ωk>u = χktU-, - (kl2)Zjυov\+P -

Then, (3.1.1-3), (3.5.1-3) and direct calculations show that
vov\+1 and so the second term in (*) is 0 since k<p. Furthermore, we see that

(5.4.2)

for some Xγ and X2

 e ^ i ^ These together with (*) show that

[) Cplvov\ + X3/ι;oϋ!"3 f o r s o m e X3

Since A#c and the first term are in H2M%, so is the second term, which shows
X3/ι;ot;1e//2Mg by (4.5.5). Then XφxeH2M\ and l^/^l = - 3 m o d p + l ,
since \c\ = \Bt_ x J — i = 1 — k mod p +1 by definition. On the other hand, there is
no nonzero element z in H2M\ with vtz = 0 and |z| = — 3modp+l by
Theorem 4.4 (i). Therefore X3/v1=0 and there is an element YeΩj B such that

q.e.d.

By using these results together with Proposition 4.9, we can prove the
following non-triviality theorem:

THEOREM 5.5. On the products of the β-elements in π*S given in (1.4).

(i) βrβtp/P Φ 0 Φ βrβtp2/Pt2 if VXtr(r-\\ for r ^ 1, t ^ 2;

βsP+iβtp!P ΦO if ptKs + t)(s + t + ϊ) and

βsp+iβtp2/p,2 ΦO if pJ(ts{s+\)9 for 5^0, t^ 2;

(ϋ) βspiiβtpu ΦO if pJίt, p\s + t, p2Xs + t + p and

for s, ί^l and l^ij^p with (i, s)#(p, 1)^0', 0

PROOF. By (5.1.3) and the sparseness of the spectral sequence (1.1), it is
sufficient to show the non-triviality in its E 2 " t e r m H*A.

Consider the homomorphisms (5.1.1) for n = 2, where δ and δ' are isomorphic
because HnMJ

o = 0 for 7 = 0, 1 and n ^ j + 1 by [3; Th. 3.16, 4.2]. Then (i) is seen
by Lemma 5.3, Proposition 4.9 and the equality βrβtp2/p,2 = βr+t(p2-P)βtp/P in H*A
[7; Prop. 6.1].
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Now, let /, j, s and t satisfy the assumption in (ii), and put k = ί+j — p and

u = s + t. Then, by Lemmas 5.4,4.6, (5.4.1-2), Proposition 3.7 and (4.1.5), we have

ζp/vov\ = svoωk)U ® ζ\

δ'2λ*c = (ksl4)x$/PG2 ® Clv\-2 + Xjv\-* for some XeΩjB,

because v2*P-Ptψ)®ζp®ζplv\ = 0. Thus δ^λ+cφO in H3M{ by Theorem 4.4 (ii),

which shows (ii) since δ and δ' are isomorphic. q. e. d.

REMARK. The non-triviality of the other products of the jS-elements in the

£2-term stated in [7; Th. 5.6 (ii)] can be seen by [7; Lemma 4.4] and Propo-

sition 4.9 immediately.
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