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§1. Introduction

Let S be the sphere spectrum and M the Moore spectrum modulo a prime
p=S5 given by the cofiber sequence S-2,S- L, M-=,¥S; and consider the stable
homotopy rings =, S and [M, M],. Then, for s=1 and 1=2, the f-elements

(1.1) ﬁ(s), ﬂ(tp/p) in [M, M]* and Bs = nﬂ(s)i,
ﬁtp/p = 7tﬁ(tplp)i’ ﬂtpz/p,Z in 7,S

are given by Smith [13] (see also [14], [16]) and Oka [7], [8].

Consider the Brown-Peterson spectrum BP at p, the Hopf algebroid
(A4, I')=(BPy, BPyBP)=(Z,[v,, v,,-], BP4[t,, t,,---]) and the Adams-Novikov
spectral sequence:

E, = H*A' = Ext¥ (4, A") = n,M (resp. 7,S) for A’ = A/(p) (resp. A).
Then, Miller-Ravenel-Wilson [4] proved the following:
(1.2) There are the f-elements
B; in H'A/(p) (resp. Bs, Bip/ps Bipzp,2 in H2A) (see (2.4.6))
which converge to B,)i in 7, M (resp. the ones in n,S with the same notation).
The main purpose of this paper is to prove the following

THEOREM A. In the E,-term H3A/(p), BiBip2/p,2=Bs+1pp—1)Bipsp holds, and
B:B:p),=0 if and only if p|st.

CoroLLARY B. In  [M, M],, Bu(Bip2ip2A1M)s  BsBippAly) and
Bs)9Btp/p) are all non-trivial if pyst. Here d=in is the generator of [M, M]_,.

Corollary B is a consequence of Theorem A and is proved in Corollary 4.2.
The equality and the triviality in Theorem A are in Theorem 2.7 which is valid
for p=3 and can be proved easily by [4] and [9], and the non-triviality is in
Theorem 4.1. We note that Theorems 2.7, 4.1 and Corollary 4.2 contain the
(non-) triviality of some other compositions.
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To show the non-triviality in Theorem 4.1, §3 is devoted to the study of
H'M1 in the E,-term of the chromatic spectral sequence [4] converging to
H*A/(p), and forms the main part of this paper. By the change of rings theorem
[3], we note that

H'M? = Ext} (B, M!® ,B)
for (B’ 2) = (Z(p)[vl, U3, vil]a B[th t2"“]®AB)'
Then, by using some results in [4] and [13], some calculations give us suitable
elements in X which satisfy good relations in the cobar complex Q%B (Lemma 3.4),

and we can find generators of H!M1 given in Proposition 3.8 and Theorem 3.10.

Theorem 4.1 is proved by these results.
The authors would like to thank Professor M. Sugawara and the late Professor

S. Oka for their useful suggestions.

§2. Triviality in the E,-term

Let p be an odd prime and BP the Brown-Peterson ring spectrum at p.
Then, the following are due to Quillen [10] and Hazewinkel [2] (cf. also [1],

[4D):
(2.1) BPy = nyBP = Z,,[v, v5,-] €« HyBP = Z,,[m;, m,,---],
BP,BP = BP,[t,, t,,--], degv, = degm, = degt, = 2(p"—1), and
(2.1.1) v, = pm, — Y= mpl?; (u® denotes uP' in this paper),
where BP, — H,BP by the Hurewicz map. Furthermore,

(2.1.2) (BP,, BP,BP) = (A, I') (this abbreviation is used hereafter)

is a Hopf algebroid (cf. [3]), whose left unit #;, is the inclusion, and right unit
ng (denoted simply by 5): A—TI and diagonal 4: '-I'® ,I" are given respectively
by

(2.1.3) nm, = Xiomity, Xiomdt; = iy jik-n mitﬁ‘) ® 1+,

where mg=t,=1 and v,=p.
For a I'-comodule M with coaction #,,: M—>M® ,I', we study the homology

(2.2) (cf. [3]) H*M=Ext¥ (A, M) of the cobar complex QfM=(Q%+M, d,:
QsM - Q51 M) given by G3M=M® T ® 4---® 4 (s factors of I') and

ds(m®x) = nym ® X
+ Zi=(-D)'m®x, @ @4%, @@ x, — (—1)m@x® 1
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formeM, x;eI' and x=x,®---®x,.
In particular, consider the case M =4 with n,=n: A>A® L =I. Then:

(2.3) In the cobar complex Q}A, QPA=A, QLA=T, QtA=I'® I and
d;: Q3 A—- Q514 for s=0, 1 are given by

23.1) dou=nu—u (ueA) and
dix=yYx—4x, Yyx=x®1+1®x (xel).
Therefore, for any u, ve A and x, y e I', we have the equalities
(2.3.2) do(uv) = dounv + udgv; d(xy) = d x4y + Yxd,y
—X®y-y®x
diuy)=dou ® y + ud,y, d;(xnv) =d;x4dnv — x @ dyv.
Thus, by (2.1.1-3) and [11; Th. 7-8] for nv; and A4t;, and by considering
(2.3.3) the invariant ideal J(n) = (p, v}) of A4,
direct calculations give us the following
(2.3.4) dov, =nvy — vy = pty; dov, = qU, — v, = vt — vit, mod (p),
do(03) = (0 + 0P — v mod (pI*1, v(F+Y)
if n=spt and pils (i,j=0),
do(v3) = 0,182 + 0,18 — t,nv8 + v3Vmod J(p?),
where V= {0512 — {1 + v5 — (v, 15 — v%t, +v,)}/pv,
(2.3.5) dit; =yt, — At; =0, d,(t{) = pT¢~D mod (p?) for i=1;
dity=—t; @t — v, T, dit=—-t®¢t, +v,T
for ©=8* —1t,;
dity=—g—0v,TPmodJ(1) for g=t @t + 1, ®t{?,

where T=d,(#})/p={y(t)) - (¥1,)"}/p.
We now consider the elements x; € v;14 given by

(2.4.1) xo=v;, Xx; =0 —v{P(v3lv5)07D — vEH-1x; (i21),
X,=0, X, =vit2 4 vfv§2Pu,, X; = X0, + 20§i-1"Ppiter (i23),
where ag=1, a;=p'+pi~'—1 and ¢;=p'—pi~1 (i=1). Then:

(2.4.2) x;is equal (resp. congruent mod (p)) to x; in [4; (2.4)] for i=0, 1
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(resp. i=2), and [4; Prop. 5.4, b)] says that in the cobar complex Q¥v;14,
doxo = vt mod J(2), dyx; = g2ivsit; mod J(1+a;)
for i=1 (g=min{i, 2}).
Therefore, by considering the inclusion 4/J cv;tA4/J for J=(p?, v}) or J(j).

(2.4.3) x5 =v3e HY(A/(p%, v})) for s=1 and n=sp?; and
(2.4.4) x5 lies in A/J(j) and x§ e H°(A/J(j)) for (i, s, j) € I, where
245 I={3G,s,j)eZ?i=20,s=21 and 1<j<a,;, with j<p' if s=1}.

In case of (2.4.4), we note that xj=x%,, if s=s'p. Thus, by using the boundary
homomorphism §, (resp. 8’ ;) associated to the exact sequence

0— AL 44— 0
(resp. 0 — A/(p¥) 1> 4/(p*) —> A/(p*, v]) — 0),
the B-elements in (1.2) can be defined (see [4; pp. 477-9]) by
(2.4.6)  Bujp,2 = 020, 2(x8) = 6,0, ,(v3)e H*A for n =sp?>0;
Bn,i = 95,1(x)e H'(A/(p)), Bn/j = 61B,;;€ H*A

for n=sp* with (i, s, j)eI. We abbreviate 8,,; to f, and B, to f,, which can
be defined for any n>1.

LEMMA 2.5. In Q% A, the following hold mod J(1) for s=1:
2.5.1) Bupr=sv3PT? if n=sp* and k=1,2 (Bnp1=Buwp-
@52 B, =B, = (3) 42 QL@8+4,@17) + oy T.
(2.5.3) Byj=—sv59t, @ if n=sp',j=a;(s,i22),
where c(i, s) = sp' — p'~1,

{ = 03P~ Y (v5t, —v,7° —058]) (=(, in [4; p. 485] mod (p)) e vz
ProoF. By (2.4.1), we see that
(2.54) xs =0} in A/(p', ¥}) for i =1,2,s =21 and n = sp'.

Therefore, the definition (2.4.6) and (2.3.2-5) imply directly (2.5.1). (2.5.2-3) are
given in [9; Lemma 4.4 and the notice in §6]*). q.e.d.

*) We must replace the expression of 8,;, in [9; Lemma 4.4(ii)] by the one in (2.5.1). We
note that the results in [9] are valid by this replacement.
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LEMMA 2.6. In the cobar complex Q¥v3;'A, the following hold for se Z:
(2.6.1) d;(x3¢P) = sv,v57 1 ® (P mod J(2); and for i = 1,

d (x50 D) = gsv3i059t, @ (G mod J(1+a;) (¢;=min {i, 2}).
(2.6.2) dy(t;nvs—sv tqust) = v3B, mod J(3).
(2.6.3) d,(v,v¥V) = BoPT? + sol*Po¥ Pt ® Vmod J(2p).
ProOOF. (2.6.1) is certified directly from (2.3.2), (2.4.2) and
(2.6.4) ([4; Prop. 3.18,¢)]) d,{=0mod J(1) in Qfv3'4;

and so is (2.6.2) by (2.3.2-5). (2.6.3) is shown by calculating d,(pv,v$?V) using
(2.3.2-5) in the range of the monomorphism p: Q¥v;1A/J(2p)— Q¥v31A/(p?, v3P).
q.e.d.

THEOREM 2.7. The Yoneda product p,pB, ;. H3(A/(p))=Ext} (4, A/(p))
of the B-elements given in (2.4.6) satisfies the following:

(2.7.1) [ Bss2/p,2 = Bmtspo-1)Bspsp for s 21 and m 2 1.

(2.7.2) BuBspip =0 = BnBn if pIms for s=1 and m = 1.

(2.7.3) In case n = sp', j = a; (i, s=2) and m = 1,

BuBnj =0 if m = c(e, u) — (i, s) for some e = 1 and u = 2 with pfu.

ProoOF. (2.5.1) shows v%B,,,=v3*"""B,,, in H?(A/J(1)), whose image
under d; ; is (2.7.1).

BrBri=01,1(V3Br;) =04+ 1,1(v5v3B,,;) by the definition of 6. When n=sp,
v B, =svvg3*t"PT? in H>(A/J(p+1)) by (2.5.1), which is 0 if p|s or p|m by
(2.6.3). By (2.5.2), v38,=0 in H2(A/J(1)) if p|n, and v?vPB,=v2pB,,, mod J(3)
if p|m, which is 0 in H2(A4/J(3)) by (2.6.2). In the last case, (2.5.3) and (2.6.1)
show that

0{v3B,; = — svfvgtetDt, @ { = — sv{osleVt @ [(FD =0

in H%(A/J(j+1)), because {(¢*D is homologous to { in Qlv;'A4/J(1) by [4;
Lemma 3.19]. q.e.d.

By considering the d,-image of the elements in (2.7.1-3), we see the following

CoROLLARY 2.8 (cf. [9; Prop. 6.1]). For the product PB,B, ;€ H*A=
Ext} (A, A), Theorem 2.7 holds by replacing B,, with B,,.
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§3. H'M!=Ext}(4, M})

Hereafter, assume that p is a prime=5. For the Hopf algebroid (4, I')=
(BP,, BP,BP) in (2.1.2), we recall the I'-comodules N§{ and M} given in [4; §3],
defined inductively by

(3.1.1) N¢ = A/(p), M§ = v;}; N5 and the exact sequence
0— Nj§ —»M‘ — N§tt—0.
In this section, we compute H'M1=Ext} (4, M}) by using the following (3.1.2-6):

(3.1.2) [4; (3.10)] For M$=uv3'A/(p, v), 0 — M3 L2 M1 20, M1, 0
is exact.

(3.1.3) [3; §31 We can identify H*M =Ext}¥ (4, M) as
H*M = Extf (4, M) = Ext} (B, M® ,B) for M =M% or M}
by the isomorphism induced from the natural map, where

(3.1.4) (B, X) is the Hopf algebroid with B=Z ,[v,, v,, v3!] acting v, (n=3)
trivially and 2=B® ,T ® ,B=B[t,, t,,"--]1® 4B such that the natural map (4, I')—
(B, 2) sending v, (n=3) to 0 is a map of Hopf algebroids. Thus, the relations in
§2 for (A4, I') are reduced to those for (B, Z) by putting v,=0 for n=3 and
nlvzHnv,=11in 2.

(3.1.5) [13; Th. 3.2] H"M}Y is spanned as the F,[v,, v;!]-vector space by
hog =ty, h;y = v3't} and { in (2.5.3) for n = 1, and
hl =t L, hl{=v'®( go=1v2"9 (gin(2.3.5) and
g, = v3g5 for n=2.

(3.1.6) [4; p. 500] The image of 1/v,: H'M9—-H'M} induced by 1/v, in
(3.1.2) is spanned by hy/v,, v5¥h,[v, for se Z, v§{/v, for se Z and

vPhofv, for m = sp', i 2 0, se Z with p ¥ s(s+1) or p?|s + 1.
LemMMA 3.2. The following relations hold in X for n=1 and i=0:
(3.2.1) (v,— VBt )P + v,15 + vV2V — v5t; = 0mod J(p2) for Vin (2.3.4).
(3.2.2) v,t® + v, 2, — v{Mt, = 0mod J(2).

(3.2.3) vgi+n)t£i) Evgi)tng) and v(2i+2)1(i)Ev(2i)T(i+2) mod J(p') for 1 in
(2.3.5).
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(3.2.4) O = (—vzlt+037)D = [+ mod J(p) for { in (2.5.3).
(3.2.5) v§*ITW = pG+ DT +2mod J(p') for T in (2.3.5).

PrOOF. Since v;=0 in B, (3.2.1) follows from (2.3.4). (3.2.2) holds for
n=1 by (3.2.1) and is proved by induction on n as follows. Note that
m,=p"m,€ A and

(3.2.6) m) =v, and m), = pm,_,v%"~2 mod (p", v{"~V) in B (n=2),
by (2.1.1). Then, by (2.1.3), we see the following in £ mod (p**2, v}):
(vt + 02,(2)) + X, prtitim v(:)t(z+2) Zn+2 n+2=jm’ t(1+)2 -
=My, = n(pmos) = (", + Tiey P m 2 ) nodn.
Here, by (2.3.4) for dy(vi")=nv$" —v{® and the inductive hypothesis, we have

tao§” = v, mod J(p), th ol = o§Veh_; = 03P, mod (p?, v,)
and t(z_) m,(n) = v(n)t(L) = v(t)t(t+2) mod (pi, v8) (= (p, v?)) for 1<i<n.

Therefore, we see mjviPti+2 =mjtD qo{m mod (pi+1, v?) (1<i<n) by (3.2.6),
which shows (3.2.2) since p"*1: X/J(2)—Z/(p"*2, v?) is monomorphic.
(3.2.2) implies (3.2.3-5) directly by definition. q.e.d.

We now define the elements Y,, W,, Z, (s€ Z) and X in X as follows:
(3.3.1) Y, =sv5 it + (s—Dovsl?/2 + (2) 0,05 28(t +v,0P) + sv, 051,

Ws = v 715 — 0,0 P{E —(s— D] 718,/2}, Z = v, W, + of 710 P(0§8,— 8s),
where I; = v;7t3, &, = V' + 05721, V' = (V+ 05~ 1t8)/v,,

€, = v3'tP 2~ v03'1]) + 5717, &y = 03712 (0212 +0,18) — v, 1PP;
(3.3.2) X = (t;—vi)n — 0,05 P10 + viv3"1} + v2(La+037Es),
where 1o = v3” — v§0327t), & =03 (V+0i711P)) = — 031 + v,037¢),

Ny = v}7P + 0,072 — vivzPe + Vi 232V, 0 = 2t; — v, (7,

Ca = 022782+ v,03'1]), &5 = — (2P)2 + (v2Pe5)P*! + v 3 2PTP VL
Here, 1, and 5, satisfy the following by (2.3.4) for nv,, (3.2.1-2) and (2.3.2):
(3.3.3) n,=nv5?, d(xn,) = d x4y, — x ® (n,—v5P) mod J(2p) (¢=0, 1).

LemMMA 3.4. In the cobar complex Q¥B, we have the following:
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(3.4.1) dl s = - Svi ltp ® tl - <2> vlvs—thP ® tl
- <H2_ 1) v,v5g; mod J(2).

(3.4.2) d W, = o5 gt — (s— Dovf+ttvP~1g,/2 mod J(p+2).
(3.43) d,Z,= 2" WP PP ® 6 — (s+ o5+~ 1g,/2mod J(p+3).
(3.44) d,X = — v2g® —0vi*3057g, mod J(p+4).
ProOF. The calculations are based on (2.3.1-5) and Lemma 3.2. We have
d, Y, = sdo(v5 ) ® 7 + sv5ld T + (s—1Ddo(v3) ® £7/2
+ (;) v, 05 2{d (1) + v,d,(¥{P)} + sv,v571d(15) mod J(2)

by (2.6.4), which implies (3.4.1) since we see by (3.2.5) that
(3.4.5) d,(73) = — v,9; — Tmod J(1).

W,= —vP{&, — (s — 1)v{v3?7&,/2} by definition. By (2.6.3) for s=—1 and
(34.5),

(3.4.6) —dy¢y = vy (=3P TP + 0,077t @ V+ g5 +v3;7 TP)

= A, = v8-1g% 4 v2032Pt{? ® ¥ mod J(2p—1).
Furthermore, we see that
(3.4.7) di&, = 20371 ® V — vyv5~1g, mod J(2) and

AW, = — stbvP PP @ &, + vPA, + (s— Dv2vPPd, ¢,/2mod J2p—1).

These imply (3.4.2). We see also (3.4.3) because
CdiEy = =203 (0, + 0,81 ® 12 +0,12 ® (P — 20,057t ® 15+ v,05g%
—tP®0 + 203037t @ V+ 10,0592 mod J(4).

Finally, we show (3.4.4). In the first place, we see that
dy(t;—v¥¢)) = —v3d ¢, mod (p) and ¢, — v}, = = v}7Pt® +v,0; @1
— V80327t (0,12 4+ 0,12 +v2 V) mod J(2p), and so
d((t,—v¥ny) = di(t,—v3)An — (1, —v3,) ® (n,—v}7P)
=0}4,(v37? ® L+0,0; P 4:) + (1, - v3¢;) ® viv;P6— B, ® (v,07 D1

+ 0370328 V) = 0,07 P Ay —v3g P + 205037t ® t,— v}V @0
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+03*P032PC, mod J(2p),

where 4, = —0372t® ® t® +0,0; PP @ 1P + 0501274, 4’ = 1P ® @
+ t%pz ® t(13) + th) ® t(12) = t%pz ® tia)— U(ZZ)tg.Z) ® C(2)+U127+Pzgll’ modJ(p)
(by (3.2.4)), C; = = (55+0v, V) ® (P+ 0P P g5 41 +v;P1Prh @ 1P
+0,0;P{P @V AtP+1PV ® 1P — 0571 @ V} and 208 v3°, @ ¢,
= — d,(v}v3*t?) mod J(2p).

In the second place, we have
dy(v,1910) = {dov, @15 +0,d, (1)} ANy — 512 @ (10— v3?)
= A, + v}i*?v5??B, mod J(2p),

where By = (5P’ t? — 547  — 5 — 0, V)Rt — 2 @121,
Furthermore, V = — 5145 4+ v,v572t2?/2 mod J(2) by definition. Thus

(3.4.8) d,&, = ;P {-20@1t{P 4+ v,v;1d,(t5t5)}
=0;2?V ® o—v,v;°g, mod J(2),

since d,(£818) = v5t5 @ (P —vitPg, — 1 ® t¥ —2t2®1t2 mod J(p). Noting that
d{?=0=v,d,Vmod J(p) by (2.6.3-4), we have also

di&s = @ {7 + v3777%dy(15*7°) + v,03%d,(z7V)
= v3?7?’B, — v;°C, mod J(2)
by (3.2.1-4). These relations imply (3.4.4). q.e.d.

To give generators of H'M}=Ext} (B, M}® ,B), we write each integer m#0
as

(3.5.1) m = sp® by integers v = v(m) = 0 and s = s(m) # 0mod p uniquely,
and define the integers ¥ =¥(m), e=¢(m), s,, A(m) and e(m) by
(3.5.2) v =min{y, 1},

0 if s# — 1mod p?,

e = sm = (=1 491 ()i,
1 otherwise,

A(m) =2+ ep*(P*—1) + (p+ D (P’ - D/(p-1),
e(m) =m —ep*(p—1) — (p*-D/(p—1).

Furthermore, by using the elements in (3.3.1-2), we define the elements
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(3.5.3) Ym and y, in X with y, = v%t, + 01,
for all integers m=sp*#0 in (3.5.1) inductively on v=0 as follows:
Js=Y, and y, = — (v3?{P +s5Z)[2 if s# — 1modp?ie.,e=0;
Vs = WP + 082 P-2p5t1X (=0v5t, mod J(1) by (3.2.3)) if s=1tp2—1;
Vmp = (T = 0 + s "D 2W,)/(2—9), g =p**' —p—,
for m=sp®#0 with v=1—¢, where 5,, € X is taken to satisfy
(3.54) of***in, = do(vi*™P) — v7P{v ] — (2—V)vit,} mod J(A(mp)+p+1)
(the existence is certified by (2.3.1-4) and (3.2.1)).
LEMMA 3.6. d,y,= —s,0{M™v5Mg, mod J(A(m)+1) in Q¥B.

ProoF. The lemma for m=sp” with v<1—e¢ is certified directly by (2.3.1-5),
(2.6.4), (3.2.4) and (3.4.1-4), by noticing that d,(v3t,)=d,(v3)®t,, d,(V3(P)=
do(v)®CP mod J(2p) if e=0=v—1, and that if e=0=v, e=0=v—1 or e=1=

v+1, then s,,,=<s-51>, _2_1<s-l2-1> or 1, Am)=2, p+3 or p>+1, and e(m)=m,

m—1 or m— p+1, respectively.
For m=sp® with v=1—¢, we note by definition that

01" P(Ym—vinm) = v1y5,—do(v3™P) — (2—V)v{v3?t;  and so
A1 (VY mp) = d1(v1 Y5+ 501 P W, (y)/(2— V) mod J(A(m) + p+1);
A(mp) = pA(m) — p + 3, e(mp) = pe(m) — 1
and s, = (e(m)—1)s,/2(2— V) mod p.

Then, (3.4.2) implies the lemma by induction on v, by noticing that s?=smod p
and v§: Q¥B/J(n)—Q¥B/J(n+ p) is monomorphic. q.e.d.

By virtue of Lemmas 3.6 and 2.6, we have the cycles
(B.7.1) yu/vi ASjSAMm)), o8V /[v] (1S j<p), x3(*Dfv] 1S j<a,)

in QIM}® ,B for any m, se Z and n=0; and we consider them the elements in
H'Mi=Ext} (B, M{® ,B) by (3.1.3). Now, consider the exact sequence

(3.72) - — H=IM} -2, H*MY U2, HnMy o, HoMY -8 HPH MY —s -
associated to the exact sequence in (3.1.2).

PROPOSITION 3.8. §: H'M{—H2MY (the range is given by (3.1.5)) satisfies
the following for any m, se Z and n=0:
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(38.1) O(yn/vdm) = — s5,08mMg, for s, with p)s,, and e(m) in(3.5.2).
(38.2) S(WFV[h™1) = vPTP = — vP*+P-1g,.

svsh,{ if n=0,
(3.8.3) H(xsLHD[pan) =
g, s05"Ohol if n=1,

where ¢,=min {n, 2} and c(n, s)=sp"—p"~1.

Proor. We note that d,(v¥ t;)= —v¥*?"1g,—vPT? in Q¥B/(p, v;) by
(2.3.1-5), which means the second equality in (3.8.2). By (3.1.3) and the de-
finition of J, the other equalities follow immediately from Lemma 3.6, (2.6.3)
and (2.6.1). q.e.d.

LemMaA 3.9. In (3.7.2) for n=1, assume that a submodule K>Im (1/v,) of

H"M} is the direct sum of F,[v,]-submodules K,(1€ A) isomorphic to F,[v,,

. v1']/F,[v,] and cyclic ones K, (u€ M) generated by k, such that {ok,|ue M} is
linearly independent. Then, K=H"M].

PrROOF. By assumption, H"M9 /21, K 1, K % , Hn+1M9 is exact, which
together with (3.7.2) implies the lemma by [4; Remark 3.11]. In fact, for any
x=3,x+2,ak, (x,€K,, a,e F[v,]), we have x,ev,K; and d(a,k,)=0
if v,a,, and so éx=0 implies a,=0 for v, fa, and xev,K. The other parts of
exactness are seen easily. q.e.d.

By these results, we have the following main result in this section:

THEOREM 3.10. H!'M}=Ext} (4, M})=Extl (B, Mi® ,B) is the direct sum
of
(3.10.1) the F,[v,]-submodules F,{t,[v]|j=1} and F,{{D[v]|j21}, which are
both isomorphic to F,[v, vi']/F,[v,], and

(3.10.2) the cyclic ones F,[v,]1<{x) for x=x'|vheA;UA,UA;, which are
isomorphic to F,[v,]/(v}), where
Ay = {Yu/vit™im = sp’, v 2 0, se Z with pys(s+1) or p?s + 1},
A, = vVl Yse Z}, A3 = {x5{**D[virln 2 0, se Z with pJs}.
PrOOF. We see that the direct sum K of the submodules in (3.10.1-2) satisfies

the assumption in Lemma 3.9 for n=1 by (3.1.6), (3.5.3) and Proposition 3.8.
Therefore, the theorem holds by Lemma 3.9. q.e.d.
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§4. Non-triviality
Theorem A in the introduction is in (2.7.1) and the following (4.1.1):

THEOREM 4.1. Let p be a prime>5. Then, the products B,,B,,; € H3(A/(p))
=Ext3 (4, A/(p)) in (2.7.2-3) are non-trivial in the following cases:

(4.1.1) BBy #0if and only if p f ms for s 2 1 and m 2 1.

@4.12) BB, #0ifplm + nand pfnforn=1and m = 1.

(4.1.3) Incasen =sp', j=a;(i,s=22) and m =2 1, B,B,,; # 0 if and only
if m # c(e, u) — c(i, s) for any e = 1 and u = 2 with p ¥ u.

ProoF. The ‘only if” parts are in (2.7.2-3). Consider the homomorphisms
M, My Mt gy I Nt 9 H3NG = H(A/(p)),

where the first two are in (3.7.2) for n=2, j is the inclusion map in (3.1.1) for s=1
and ¢’ is the boundary associated to the exact sequence in (3.1.1) for s=0. Then,
by the definition (2.4.6) and (2.5.4), (1/v,)"1j,6'~1(B..B)=v%B and so

4.14) v3pelmd = Ker(1/vy) if B,f=0 for B=p,;€HA.
Now, by (2.5.1), [9; Lemma 5.4] and (2.5.3), we have

b =, tt = (e (1§ e,

and v3B, ;= —sv3+°(>)h,{ in case of (4.1.3), respectively. Thus, the assumptions
in (4.1.1-3) imply v%B,;¢Imé by Proposition 3.8 and Theorem 3.10, and so
BBy #0 by (4.1.4). q.e.d.

COROLLARY 4.2. On the compositions of the f-elements in (1.1) for s=1
and 122, Bo(Bipzip,2 A ag)s Bisy(Bepip A 1a) and ByoBgppy in [M, M], are all
non-trivial in [M, M], if ptst, and so are B (By A 1y) and B0, (s'21) if
pls+s' and pts'. Here d=in.

Proor. Consider the Adams-Novikov spectral sequence with E,=H*NY¢
(N9=A/(p)) converging to n,M, and the induced map i*: [M, M],—>=n,M.
Then, (1.2) shows that f;8e€ H3N for B=B,,2/,,2, Bipp OF By converges to

BsiB = Bs(B A 1p)i = i*(B(s(B A 1p)) € neM  for the corresponding g in =,.S,

and B,)ifsx=i*(B50B(x)) if Bx= Py, Or By by (1.1). Thus, we have the corollary
by the non-triviality of 8 in (4.1.1-2) and the sparseness of this spectral sequence.
q.e.d.
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REMARK. On the compositions f,f), we know some relations in [16;
5.1] including

BsoBsy =0 if pks+s and p|ss’.
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