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Introduction

Let X be a Banach space over the real field R with norm |-|. Let {S(¢);
t=0} be a linear contraction semigroup on X of class (C,) and let 4 be the infini-
tesimal generator of {S(#); t=0}. Let Q be a subset of [a, b)) x X(a<bZ + )
and let B be a nonlinear continuous operator from Q into X.

In this paper we are concerned with the existence and uniqueness of global
mild solutions to the initial-value problem for a semilinear differential equation
in X

0.1) u'(t) = Au(t) + B(t, u(t)), 1<t<b, u(r)=z,

where (7, z) is given in Q. Here by a mild solution is meant an X-valued con-
tinuous function u on the interval [7, b) satisfying the following Volterra integral
equation:

(0.2) u(t) = S(t—1)z + S S(t—s)B(s, u(s))ds, T <t<b.

In general, a mild solution may not be differentiable and hence need not be
an exact solution to (0.1). But this notion is known as the most natural one of
the generalized notions of solutions to (0.1). For regularity results of mild solu-
tions, see for instance Martin [10].

Semilinear equations of type (0.1) have been studied by many authors and
the present paper is related to the works of Iwamiya [1], Kato [2], [3], Kenmochi
and Takahashi [4], Lakshmikantham et al [6], Lovelady and Martin [7], Martin
[8], [9]., Pavel [11], [12], [13], Pavel and Vrabie [14], [15] and Webb [16].

In case Q is open, various results have been obtained by the analogy with the
theory of ordinary differential equations in R”. The case in which Q is closed
has been considered in relation to so-called flow invariant sets.

For the case in which 4=0 and equation (0.1) is understood to be an ordinary
differential equation in a cylindrical domain Q=[a, b) x D in the product space
[a, b) x X, Martin established fundamental results. A properly noncylindrical
case was studied by Kenmochi and Takahashi [4] and their results have been
recently generalized by Iwamiya [1].
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The existence and uniqueness of solutions to (0.1) has been treated by Martin
[9] who considered equation (0.1) in the cylindrical case as mentioned above under
the “quasi-~dissipativity’’ condition for B(¢, x) for each ¢t. The results of Martin
have been extended by Pavel [12] to the case of noncylindrical domains.

In this paper we establish the global existence and uniqueness of mild solutions
under the following conditions:

1y If(t, x,)eR, t,1tin [a, b) and x,—»x in X as n— o0, then (¢, x) e Q.
(Q2) liminf,,, h~'d(S(h)x + hB(t, x), Q(t+h))=0

for all (¢, x) € Q, where Q(t)={xe X; (t, x) € Q} for t€[a, b).
(Q3) [x—y, B(t, x)—B(t, p)]-=4g(t, |x—yl)

for all (¢, x), (¢, y) € 2, where

[x, y1- =lim,;o h™*(Ix + hy| —|x]) for x, ye X

and g is a function from [a, b) x R into R with the following properties:
(gl) g(t, w) satisfies so-called Caratheodory’s condition.
(g2) g(t, 0)=0; and w(t)=0 is the maximal solution to the initial-value problem

w'(t) = g(t, w(t)), a <t < b,

w(a) = 0.

We here make some brief remarks on these conditions; precise meaning of
the notation appeared in them are given in Section 1.

Condition (1) is a closedness condition in a certain sense for the domain.
In particular, it implies that each section (%) is closed. So it is equivalent to the
closedness condition for the sections Q(¢) provided that Q is cylindrical.

Condition (22) is a necessary condition for the mild solutions of (0.1) to
exist and it is one of the variants of so-called “subtangential’’ condition. Notice
that in case of A=0 condition (Q2) is identical with the condition

liminf, o h~'d(x+ hB(t, x), Q(t+h)) =0 forall (¢, x)eQ.

Further, it should be mentioned that if (¢, x) is an interior point of Q, condition
(Q2) is always satisfied. We shall see that condition (Q2) together with condition

(1) ensures the existence of approximate solutions for (0.1).
Condition (23) is fulfilled if

IB(t’ X)—B(l, y)l é g(t, Ix_yl) for (t, X), (ta y)EQ

since [x, y]_=<|y|. This is a familiar condition in the theory of ordinary differ-
ential equations and ensures the unicity of solutions. The operator B(t, - ) is
said to be w-dissipative if

[x — y, B(t, x) — B(t, y)]- = w|x—y| for (¢, x), (1, y)eQ;
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hence condition (23) may be regarded as a relaxation of the “dissipativity”’
condition as employed in the papers cited above. The assumptions (g1) and (g2)
on the function g seem to be very general, although condition (23) not only
guarantees the unicity of mild solutions to (0.1) but also it is fully applied to
establish the convergence of the approximate solutions.

So far, the global existence has been discussed by assuming that Q is cylindrical
([13]), or else by imposing some additional conditions on the operators 4 and B.
In this regard we treated the regular case in which 4=0 in the previous paper [1]
under the conditions (21)-(23) and obtained an optimal result concerning the
global existence. The result is obtained without any additional conditions.
In particular, if Q is either connected or cylindrical, then the solution exists up to
b for any initial data. The result states that the maximal interval of existence of
solutions is determined by the connected component of the domain Q in which
the initial data lie. In fact, the verification of the result is based on the fact that
the maximal interval of existence depends continuously upon initial data; and
this continuous dependence implies the global existence (cf. Theorem 2.2). In
this paper we shall show that the above idea is applicable to the global existence
problems for a much wider class of semilinear differential equations.

The present paper is organized as follows:

Section 1. Main Result.

Section 2. Topological Results.

Section 3. Comparison Theorems.

Section 4. Uniqueness of Mild Solutions.

Section 5. Local Uniformity in Subtangential Condition.
Section 6. Approximate Solutions.

Section 7. Local Existence.

Section 8. Existence in the Large.

Section 9. Concluding Remarks.

1. Main result

Let X be a Banach space over R=(— o0, +00) with norm |-|. Given a
subset Q of R x X we denote by Q() the section of Q at te R, i.e. Q()={xeX;
(t, x)e Q}. In what follows, let [a, b) be a fixed subinterval of R and Q a fixed
subset of [a, b)x X such that Q(f)#¢ for all te[a, b). We denote by {S(¢);
t=0} a contraction semigroup on X of class (C,) and write A for the infinitesimal

generator of {S(f); t=0}, i.e. 4 is the linear operator defined by
Ax = lim, o h"1[S(h)x —x]

for x € X such that the right side exists. Let B be a continuous function from Q
into X.
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Given (1, z) € Q, we consider the initial-value problem

u'(t) = Au(t) + B(t, u(t)), t<t<b,
{IvP; 1, 2)
u(t) = z.
First we list two notions of solutions of initial-value problems of the form
(IVP; 1, 2).
DEerINITION 1.1. Let J be a subinterval of [a, b) which is written in the form
[, c]or [t, ¢). A continuous function u from J into X is said to be a solution to
(IVP; 7, z) on J if u(t)=z, (¢, u(t)) € Q for all ¢t € J, u is continuously differentiable
on (1, ¢) and if u satisfies u'(f)=Au(t)+ B(t, u(t)) for all te(z, ¢). Moreover, a
continuous function u from J into X is said to be a mild solution to (IVP; t, 2)
on J if it satisfies

(1.n u(®) = S(t—1)z + gt S(t—s)B(s, u(s))ds forall tel.

It is well known that a solution u to (IVP; 7, z) on J is a mild solution to

(IVP; 1, z) on J.
We next introduce basic notation and terminologies. For x, y e X we define

(1.2 [x, y1- = limy 0 A~(Ix +hy| —|x[)
= Sups<o h™'(Ix+hy[—[x]).

Note that |x|<|x—hy|+h[x, y]_ for all h=0 and [x, y+2z]_ =[x, y1_+|z|
for x, y, ze X. For each (¢, x)€ R x X and r>0 we define

(1.3) S(t, x)={(s, y)eER x X; |s—t|<r,|y—x| <r}.

Moreover, if xe X and D is a subset of X we define the distance between {x}
and D by

1.4 d(x, D) = inf {|x—y|; ye D}.

Let g be a function from [a, b) x R into R. We impose the following two
conditions on g.

(g1) g¢(t, w) is continuous in w for each fixed ¢ and Lebesgue measurable in
t for each fixed w; and for each r>0, there is a locally integrable function L.(t)
defined on [a, b) such that |g(z, w)| < L,(¢) for te[a, b) and for w with |[w|<r.

(g2) g(t, 0)=0; w()=0 is the maximal solution to the initial-value problem:

wi(t) = g(t, w(t)), a<t<b,

1.5
w(a) = 0.
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ReMARK 1.1. Condition (gl) is often called Caratheodory’s condition.

Given (7, n)€[a, b)x R, we denote by m(t; 7, n) the maximal solution of
the initial-value problem

wi(t) = g(t, w(t), ©<t,
(1.5)
w(t) = 1.

Then condition (g2) states that for all T € [a, b), the maximal solution m(¢; 7, 0)
is defined on all of [, b) and m(t; 7, 0)=0.
For convenience of future reference in the rest of this paper, we here list
our basic assumptions:
Q1) 1I1f(,, x,)e, t,ttin [a, b) and x,—x in X as n— oo, then (¢, x) e Q.
(Q2) liminf,,, A~ 1d(S(h)x+ hB(t, x), Qt+ h)) =0 for all (¢, x)e Q.
(Q23) There is a function g from [a, b) x R into R with properties (g1) and (g2)
for which [x—y, B(t, x)— B(t, y)]_<g(t, |[x—y|) holds for all (¢, x),
(t, y)eQ.

REMARK 1.2. It is well known that condition (Q3) is equivalent to the
following condition:
(Q3)" There is a function g from [a, b) x R into R with properties (g1) and (g2)
for which |x—y|<|x—y—3a(B(t, x)— B(t, y))|+dg(t, |x—y|) holds for all
(t, x), (t, y)eQ and 6>0.

Our main result in this paper is now stated as follows:

MAIN THEOREM. Suppose that conditions (Q1), (22) and (23) are fulfilled.
If Q is a connected subset of [a, b) x X such that Q(t)# ¢ for all te[a, b), then
for each (z, 2)€ Q, (IVP; 1, z) has a unique mild solution on [z, b).

We here outline the argument to obtain the above theorem.

First the local existence and the uniqueness of mild solutions to (IVP; 1, z)
are established. We next consider for each (z, z) € Q the unique mild solution u
of (IVP; t, z) that is no longer continuable to the right of T(z, z), the final time
of u. Then we construct a continuous local semiflow U(t, 7, z) on Q (in the sense
of Definition 2.1 below) by setting U(t, t, z)=u(t) for te[r, T(z, z)). The
problem on the global existence of mild solutions is reduced to the problem of
finding sufficient conditions for the final time of each mild solution to be equal
to b. This problem can be handled with the aid of a topological method. Hence
it is sufficient to establish the local uniformity of intervals of existence of mild
solutions as well as the continuous dependence of mild solutions on initial data.
More precisely, we proceed with the argument along the following lines:

(i) Let (1, z)eQ. Then there are numbers r>0 and h>0 such that for

each (t, x)e @ n S,(z, z), (IVP; t, x) has a mild solution on [¢, t+ h].



504 Toshiyuki IwAMIYA

(i) Let {(t, zn)}.=1 be a sequence in Q converging to (7, z) € Q such that
T(z,, z,)>c¢ for n=1 and some number ce(z, b). Then T(z, z)>c
and U(4, 1,, z,) converges to U(t, 7, z) on (z, c].
Secondly let u, and u, be mild solutions on [z, ¢] for some a<t<c<b.
Under condition (23) we make an estimate for the difference |u,(f)—u,(t)| and
derive the integral inequality

luy () —ux (D] — luy(s)—ux(s)l = S: 9(&, [u (&) —uy(Dd¢

for t<s<t=<c. Applying a comparison theorem well-known in the theory of
ordinary differential equations we show that |u,(¢)—u,(¢)] is dominated by a
maximal solution of (1.6) and hence the uniqueness of mild solutions follows
from condition (g2) on the function g. It should be noted that this argument
may be viewed as a prototype of the convergence argument of approximate
solutions for (IVP; , z).

Thirdly, in order to establish the local existence, we investigate the sub-
tangential condition (22) and show that it holds locally uniformly. By virtue
of this local uniformity in subtangential condition, one constructs e-approximate
solutions on an interval independent of ¢ by way of the method of Cauchy
polygons. The approximate solutions to be constructed could be continuous but
might lie outside Q. If the function g is continuous in both arguments ¢t and w
one can apply the techniques evolved by Webb and Martin to show the convergence
of the approximate solutions. However, these procedures do not work in the
present case since g enjoys only a much weaker continuity. To overcome this
difficulty, we construct families {u§; 0<5=<4,} of e-approximate solutions which
might lose the strong continuity but remain in the domain Q at all time. We
then choose an appropriate member from each family to make estimates for the
difference between two families. Furthermore, in order to discuss the convergence
of such approximate solutions, we need to extend usual comparison theorems for
ordinary differential equations so that “bounded measurable’’ approximate
solutions with small errors can be handled. Thus we obtain the local uniformity
of intervals of existence of mild solutions.

Finally, combining results obtained in the second stage with those of third
stage, we see that the continuous local semiflow providing the mild solutions to
(IVP; 1, z) satisfies conditions (i) and (ii) as mentioned above. Thus the main
theorem turns out to be proved.

2. Topological results

This section is devoted to investigate sufficient conditions for the global
existence of mild solutions. Those conditions are stated in terms of local semiflow
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defined as follows.

DerFiNITION 2.1, Let C be a subset of [a, b)x X. Let T be a function from
C into (a, b]= R U {00} such that T(z, z)>7 for (1, z)e C. Let U be a function
from D(U)={(t, 7, 2); (tr, z)e C and t1<t<T(z, z)} into X. U is said to be a
local semiflow on C if U satisfies the following conditions:

(S1) U(r, 1, z) = z for (t, z) e C and (¢, U(t, 1, 2)) e C for (¢, 1, z) e D(U) ;
(S2) T(t, U4, t, z)) = T(z, z) for (t, 7, z) e D(U) ;
(S3) U, s, UGs,1,2))=U(t,7,z) for (1, z)eCand t s <t < T(x, 2).

U is said to be a continuous local semiflow if U is a local semiflow and satisfies
the following additional condition:

(S4) U(t, 1, z) is continuous in t € [t, T(z, z)).

In what follows, we consider T as a function from the subset C of the uniform
topological space [a, b) x X into the extended real line R U {o0} endowed with
the usual uniform topology. If for each (7, z) e Q, (IVP; 1, z) has a unique mild
solution u that is noncontinuable to the right and T(z, z) is its final time, then we
can define a continuous local semiflow U on Q by setting

2.1) U, t,z2) =u(t) for te[r, T(z, 2)).

The continuous local semiflow defined through (2.1) is called a continuous local
semiflow associated with (IVP; 7, z) in the following.

Let C be a connected subset of [a, b) x X and set d=sup {te R; C(¢t)# ¢}.
Let U be a local semiflow on C with domain D(U)={(t, 1, z); (z, z)e C and
1<t<T(z, z)}, where T is a function from C into (a, b]= R U {oc0}. It is clear
that C(d)=¢, Cc<[a, b)x X and T(z, z)<d for all (t, z) e C. The local semifiow
U is said to be a semiflow on C if T(z, z)=d for all (1, z) e Q.

Let C be a subset of [a, b)x X. A local semiflow U on C is said to be a
semifiow on C if U is a semiflow on each connected component of C. Now let U
be a continuous local semiflow associated with (IVP; 7, z). If U becomes a
semiflow on Q, then (IVP; 1, z) has a global mild solution for each (z, z) e Q.
Hence it comes to be the main problem to investigate as to when the local semifiow
U becomes a semifiow. In this regard we obtain the following useful results.

THEOREM 2.1. Let C be a connected subset of [a, b)xX. Set d=
sup{teR; C(t)#¢}. Let U be a local semiflow on C with domain D(U)=
{(t, 7, 2); (1, 2) € C and 1=t<T(z, z)} where T is a function from C into (a, b] <
R U {0}. Suppose that the function T satisfies the following conditions:

(1) Tis lower semicontinuous.

(2) If {(t, z)}uz1 is a sequence in C such that (t,, z,)—(1, z) € C as n—>o©

and if T(z, z,)>c for n=1 and some number c, then T(z, z)>c.
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Then T(z, z)=d for all (z, z) e C.

PrROOF. Let ¢ be an arbitrary element of T(C), the range of T. Set C,=
{(zr,2)eC; T(z, z)<c} and C,={(z,z)eC; T(zr, z)>c}. Since T is lower
semicontinuous, C, is an open subset of C. Let {(t,, z,)},>, be a sequence in
C, converging to (1, z) in C. Then it follows from condition (2) that T(z, z)>c.
This means that C, is a closed subset of C. Since C is connected, C=C, U C,
(disjoint union) and C,# ¢, and it is concluded that C,=¢. Thus c=d. It
turns out that T(C) is a singleton set {d} and the proof is complete.

In case U is a continuous local semiflow, conditions (1) and (2) can be replaced
by conditions (1) and (2) listed below.

THEOREM 2.2. Let C be a connected subset of [a, b)x X. Set d=
sup{te R; C(t)#¢}. Let U be a continuous local semiflow on C with domain
D(U)={(t, 7, z); (1, 2) € C and 1=t<T(z, z)} where T is a function from C into
(a, bJ=R U {o0}. Suppose that T satisfies the following conditions:

(1') For (z, 2)€ C there are r>0 and h>0 such that T(t, x)>t+h for all

(t, x)eC n S/, 2).
2) If {(tss z)}uz1 is a sequence in C converging to (z, z)€ C such that
T(z,, z,)>c for n=1 and some number ce(z, b), then T(z, z)>c
and U(t, 1,, z,) converges to U(t, 1, z) on (1, c].
Then T(z, z)=d for all (z, z)e C.

ProoF. In view of Theorem 2.1, it suffices to show that T is lower semi-
continuous. Let {(t,, z,)},>, be a sequence in C converging to (t, z) in C and
set ¢=liminf,_., T(z,, z,). Notice that ¢>7 by (1’). Assume that ¢<T(z, z).
Then there are numbers r>0 and h>0 such that T(¢, x)>t+h for all (¢, x) e
CnS,c, U, 1, z)). Letne(0, r) be such that n<h, n<c—r and |U(c—1, 1, z)
—U(c, 7, z)|<r/2. Let N be an integer such that T(z,, z,)>c—n =7, and
|U(c—n, 1, 2z,)—U(c—n, 1, z)|<r/2 for n=N. Then (c—n, Ulc—n, 1,, 2,)) €
CnS,c,U(,1,2)) forn=N. It follows that T(z,, z,)=T(c—n, U(c—n, T,, 2,)) >
c¢—n+h for n=N and hence liminf,_, , T(z,, z,)=c+h>c, which is a contradic-
tion. Thus liminf,, , T(z,, z,)= T(1, z) and the proof is complete.

REMARK 2.1. Since (1) implies (1’), (1) is equivalent to (1’) for continuous
local semiflows under condition (2').

REMARK 2.2. If in particular, C is a cylindrical domain, i.e. C=[a, b) x D,
D being a subset of X, condition (2) in Theorem 2.1 can be relaxed to the following
condition.
(3) If{z,},, is a sequencein D such that z,—»z e D as n— o0 and T(z, z,)>¢
for some number c, then T(t, z)>c.
Similarly, condition (2) in Theorem 2.2 can be replaced by the following:
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(3") 1If{z,},», is a sequence in D such that z,—»z e D as n— o0 and T(z, z,)>c¢
for some number ce(z, b), then T(z, z)>c¢ and U(t, 1, z,)-> U(t, 1, 2)
for te [z, cl.

In case U is a continuous local semifiow associated with the problems
(IVP; 1, 2), (1, z)€Q, condition (1) states that the maximal intervals of mild
solutions are locally uniform for initial data (z, z) € Q and condition (2') implies
that mild solutions depend continuously upon initial data.

3. Comparison theorems

In this section we make an attempt to extend comparison theorems for
ordinary differential equations so that they may be applicable to our problem.

Let g be a function with properties (g1) and (g2) and let m(¢; 7, n) denote the
maximal solution to the initial-value problem for the ordinary differential equation:

w'(t) = g(t, w(t)), t<t,
3.1
w(t) = 1,

where (t, n) e [a, b) x R. Given ¢>0 we define a function g, by

3.2) gt, w) =sup{g(t, ); 0 S y —w < ¢&}.

It is easy to see that g, also satisfies Caratheodory’s condition, and that g,(t, w)
converges to g(t, w) uniformly on compact subsets in w as ¢-0. Given (1, 7)€
[a, b)x R, we denote by m,(t; T, n) the maximal solution of the initial-value
problem for an ordinary differential equation:

w'(t) = g(t, w®), t>1t,
(3.3)

w(t) = 1.

Notice that if ¢=0, then (3.3) coincides with (3.1) and my(t; 7, n)=m(t; 7, 1).
We first state the following fact (for the proof, see e.g. Lakshmikantham and
Leela [5]):

Lemma 3.1. Let t€[a, b) and let [z, c] be a compact subinterval of [a, b).
Then there are £3>0 and n,>0 such that for each e€(0, &) and n€(0, 1), the
maximal solution m(t; t, n) of (3.3) exists on [z, c],

(34 lim,,, m/(t; 7, n) = m(t; 7, ) uniformly on [z, c] and
3.5) lim, , o m/(t; 7, n) = O uniformly on [z, c].

We also employ the following result which may be regarded as an extention
of ordinary comparison theorems for ordinary differential equations.
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LemMA 3.2. Let n>0. Let [t, c] be a compact subinterval of [a, b) on
which a maximal solution m(t; 7, ) of (3.1) exists. Let o be a bounded meas-
urable function from [z, c] into R and suppose that o satisfies the integral
inequality

(3.6) alts) — a(t;) < S g(t, o(t)dt

fortst, <t,<c. Ifa(t)<n, then
3.7 ot) Em(t;t,n)  forall te[r, c].

PrOOF. We first show that a is of bounded variation. Let r>0 be such that
la(t)| =r for all te[t, c]. Then by condition (g1) there is a locally integrable
function L,(¢) defined on [7, c] such that |g(t, w)| S L/(¢) for te[r, c] and we R
with |w|=r. Let {s;}o<is, be an arbitrary subdivision of the interval [z, c].
Using |h|=2h* —h for he R, where h* =max {h, 0}, and applying (3.6), we have

Jo(s) — als;— )| = 2 él (a(s) —ols;— Nt + alsg) — s,)

i=1

<23 S L(tdt + 2r
i=1

Si-1

=2 g L(t)dt + 2r.

This means that « is of bounded variation. Therefore, (3.6) yields
(3.8) lim,,, a(s) < a(f) < limg,, a(s)

for all te[7, c].
Define
g(t,w) if a(®) =w
(39) 1, w)={ !
g(t, a(t) if oft) > w.

Then the function f also satisfies Caratheodory’s condition. Let m*(t; 7, n) be a
maximal solution to the initial value problem for the ordinary differential equation

{ w () = f(t, w(t)), T<t,
w(t) = 1.

Assume that m*(¢; t, ) is defined on [z, ¢*] with t<c*=<Zc.
We now claim that m*(¢; 7, n) = a(t) for te[r, c*]. Assume to the contrary
that m*(t,; 7, 1) <a(t,) for some ¢, €[z, c*]. Clearly t, >7, and it follows from
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(3.8) that there is an interval (s, t,], t<s<t;, on which m*(¢; 7, n)<o(f). Let
d=inf {s; m*(t; 7, n)<a(t) on (s, t,]}. If d>1, then we see from the definition
of d and (3.8) that

(3.10) od) — m*(d; 1, n) = a(d) — lim,,, m*(t; 7, n)

< a(d) — lim,, () < 0.
Combining (3.10) with the assumption that 7= «(7), we obtain
(3.11) m*(d; 1, n) = od).
Since m*(t; 7, n)<a(t) for te(d, t,]1, (3.9) and (3.11) together imply
0> m*(ty; 1, n) —aty)
2 [m*(ty; 7, n) — m*(d; 1, n)] — [a(ty) —(d)]
2 "6, mae; o, myae — S; g(t, o(t))dt = 0.

This is a contradiction. Hence it follows from (3.9) that
ma(es v m) = n + (£, mGs; o m)ds

=+ gGs, m*(s; 7, m)ds

which means that m*(¢; <, n) is a solution of (3.1). Hence m*(¢; 7, 1) eventually
exists on all of [, c] and a(t)Sm*(t; 7, n) <m(t; 7, n) for te[r, ¢c]. Thus the
proof is complete.

We next give two comparison theorems involving integral inequalities with
small errors.

PROPOSITION 3.1. Let >0 and n>0. Let [z, c] be a subinterval of [a, b)
on which a maximal solution myt; 7, n) of (3.3) exists. Let a be a bounded
measurable function from [t, c] into R and suppose that o satisfies

(3.12) ot,) — olty) < S g(t, o(i))dt + ¢

for 1=t <t,<c. If (t)<n, then
(3.13) aty = m(t;z,n)+e  forall te[x,c].

PrROOF. Set

(3.14) h(t) = olt) — at) — S! g(s, a(s))ds
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for te[r, c]. Then we have
12
(3.15) h(ty) — h(ty) = a(t;) — o(ty) — S, 9(s, o(s))ds < &

for tst,<t,<c. Define

(3.16) h(?) = inf_ ¢ <, h(s),
and
(3.17) oy (D) = a(t) + hy(t) — h(t)

for te[z, c]. It follows from (3.15) through (3.17) that h, is a nonincreasing
function on [z, ¢], 0 h(t)—h, () Ze, 0Za(t) —a,(f)<e and

(3.18) ault) = (@) + ' g(s, a(©)ds + hy(t)

for all te[z, c]. Hence

(3.19) (1) = (1) = halts) = ha(t) + (s, o(s))ds
< [ g6s, atoas

< S 9,(5, %(s))ds

for t<t,<t,<c. Since a,(1)=a(1)<7, it follows from Lemma 3.2 and (3.19)
that a,(t) <my(t; 1, n) and hence a(f) Sm(t; t, n)+ ¢ for t € [7, c], which completes
the proof.

Combining Proposition 3.1 and Lemma 3.1, we have the following result.

PropoSITION 3.2. Let {g,},>1 and {n,},>; be null-sequences. Let [, c]
be a subinterval of [a, b). Let {a,},>, be a sequence of bounded measurable
functions from [1, c] into R. Suppose that for each n=1, a, satisfies

(3:20) 4 <,
and
(32 0t = a,(t) 5 | gt )t + 5,

for 1=t <ty<c. Then we have

(3.22) limsup, ., 2,(f) <0
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forall t=t<c.

4. Uniqueness of mild solutions

Our objective in this section is to discuss the continuous dependence of mild
solutions on initial values and establish a uniqueness theorem for mild solutions.

PROPOSITION 4.1.  Suppose that condition (23) holds. Let n>0 and let
[z, ¢] be a subinterval of [a, b) on which a maximal solution m(t; t, ) of (3.1)
exists. Let (1, 2;)€Q, i=1,2. Suppose that mild solutions u; of the problems
(IVP; 1, z;) exist on [z, c], respectively. If |z,—z,|<n, then
“.1) () —uy()| < m(t; v, m)  forall tefs, cl.
In particular, (IVP; 1, z) has at most one mild solution for all (z, z) e Q.
PrOOF. Set a(t)=|u,(f)—u,(t)] for te[r,c]. Let ¢>0. Since u ) and
S(h)B(t, u(t)), i=1, 2, are continuous with respect to te[t, c] and h=0, there
is a number 6>0 such that |u(f)—u,(s)|<e and |S(h)B(t, ut))— B(s, u(s))| e,
for i=1, 2, he[0, 6) and s, te[r, c] with |t—s|<5. By (Q3), we have
(4.2) |uy,(D—ux())
Sluy(0) —ux(0) — 8(B(t, uy (1)) — B(t, u(N))| + g(t, [uy (1) —uy (1))
S 1S(8)uy(1—0) — S(B)uz(t—0)| + luy(t) — S(8)uy(t—3) — SB(t, uy(1))|
+ |uy(r) — S(O)ux(t—0) — 6B(t, ux ()| + 5g(t, |uy(1)—ux(1))
= |uy(t—6) — uy(t—9)|

+ (' 150=9BGs, u,) = B, ui@ids

t
+ {150 9)BGs, ux(s) = Bl uxo)lds + 8g(t, luy(®—us(0)
< |uy(1=98) — uy(t—0)| + og(t, luy () —ux(1)]) + 20e.
for te[t+6,c]. Let t; and t, be such that 1<t,<t,+d<t,<c. Integrating
both sides of (4.2) from ¢, + 6 to ¢,, we obtain

(4.3) S"_é o(s)ds — S"” o(s)ds < & S"H g(s, a(s))ds + 2c—1)3e.

Since |o(t) — a(s)] < |u (1) —u,(s)] + |u () —u,(s)| £ 2¢ for ¢, se 1, c] with |t—s| L4,
we have
(4.4) 8{alt,)—a(t)) < S'z_é o(s)ds — S"” a(s)ds + 4de.

ty
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Combining (4.3) with (4.4) gives
4.5) aty) — alty) < S"H g(s, a(s))ds + Ce
t

for some constant C>0. Since ¢>0 is arbitrary, (4.5) yields

alty) — a(t;) < g g(s, a(s))ds

for t1<t,<t,<c. The first assertion now follows from Lemma 3.2. The second
assertion follows from the first assertion and the assumption that m(t; 7, 0)=0
on [1, ¢]. The proof is thereby complete.

5. Local uniformity in subtangential condition

In what follows, we assume conditions (21) and (£22).
First we state the following two lemmas which will be often used in the
subsequent argument.

LEMMA 5.1. - Let {(S,, Ya)}azo0 be a sequence in Q such that s,<s,,,. Then
we have the relation

(5-1)  yu— S(s,—50)¥0
= 2020 S(5n =Skt 1) [k 1 = S(Skw 1 = SIVie — (Sicw 1 = S)B(S1> Vi)
+ 2820 (S 1 — S)S(Sn— S+ 1)B(Si> Vi)
for n=0.

LemMMA 5.2. Let e>0and M>0. Let {(S,, Yn)}nz0 be a sequence in Q such
that Sn§5n+1, IB(Sm yn)lgM and

(52) Iyn+ 1 S(sn+ 1 _sn)yn - (sn+ 1 —sn)B(sm yn)| é (sn+ 1 —S")S

for nz0. If s,tse[a, b) as n—oo, then the sequence {y,},>o is a Cauchy
sequence in X and the limit (s, y)=lim,_, ., (s,, y,) lies in Q.

Proor. Define a sequence {¢,},>, in X by the equation
(5:3) Yar1 = S(ns1=5)Vn + (Sas 1= 5)B(Sn Ya) + (S 1 — )80
Then |¢,|<¢ for n=0. Using (5.3), we have
Vn = S($y,=50)¥o + =5 (Sk+1—5)S(5n— S+ 1) [B(Sw> Y1) + &

by induction. Hence
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A Yo = Im = S(sm—50) [S(sa—=$m)¥0 — Yol
+ 2820 (S 1 = 8)S(Sm — Sk 1) [S(8, — ) [B(si yi) + &1 — [B(s> i) + €11
+ 2R (ke 1 = S)S(Sy— S+ 1) [B(s, Y1) + &1
— 2Rt (ke 1= S)S(Sm— Sk 1) [B(Sks ¥i) + &]

for p<m=n. Let n>0 and let p be an integer such that s—s,<#n. Then there
exists a positive number g such that u<#.

SUPo < o <l S(0) [B(s, yi) +&]—[B(sw, yo)+edlsn for 0sk<p—1
and SUPo<e<u |S(0)Yo—VolSn. If m and n are such that p<m<n and
and s—s,<s—s,<u, then (5.4) yields
|Ya—=Yml = [S(55—5m)¥o— Yol
+ 2820 (kv 1 = 3DIS(5, — 5) [B(sis YO +&] — [Blsi, yi) +&ll
+ 255 (kv 1 =SB Y+l + XTS5 (Sir 1 — S| Blsis yi) + &l
=10+ (—son + 2(M+e)n.

Since 7 is arbitary, this means that {y,},>, is a Cauchy sequence in X. It follows
from (Q1) that (s, y)=1lim,_, ,, (s, ¥,) € Q. This completes the proof.

The next result states that the subtangential condition (©22) holds locally
uniformly in a certain sense.

PROPOSITION 5.1. Let (t,x)eQ and €e€(0,1). Let r>0 be such that
|B(s, y)—B(t, x)| <¢/4 for (s, y)eQn St x), supos,<,|S(0)B(t, x)—B(t, x)| =
¢/4, and such that |B(s, y)| M for (s, y)e Q n S(t, x) with some constant M >0.
Set ho=sup {he(0, b—1); (M +1)+supo<, <, |S(e)x—x|=<r}. Let he[O0, ho)
and yeQ(t+h) satisfy |y—S(h)x|<hW(M+1). (The existence of such pair
(h, y) is guaranteed by (Q2).) Then for each h* € (h, hy) there exists an element
y* e Q(t+ h*) such that

(5.5 |y* = S(h* —h)y — (h*—h)B(t+h, y)| < (h*—h)e.

PrROOF. Let h* e(h, hy). We shall define inductively a sequence {(S,, Y»)}nz0
in Q n S,(t, x) which possesses the following properties:

(56) (SO’ yO) = (t+h’ y) and ¢ + h é Sn é Sn+1 é t+ h* for n Z 0;
5.7 lim,_ s, =t + h*;
(58) Iyn+1—s(sn+1—sn)yn - (Sn+1 —S")B(S,,, yn)l é (S"+1—S)8/4

for n=0.
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Set (so, yo)=(t+h, y). Suppose that (s,, y,) is defined in Qn S,(t, x) in
such a way that s,e[t+h, t+ h*] and |y,— S(s,— t)x| <(s,— t) (M + 1), and define
G, to be the supremum of those o =0 satisfying s,+o<t+ h* and

(5.9 d(S(0)y, + 0B(s,, yn), £As,+0)) < o¢f8.
Then, choosing a number o, € [5,/2, 7,], we put s, , =s,+ 0, and take an element
VYn+1 Of Q(s,4 ) such that
(510) lyn+1 - S(sn+l —Sn)yn - (sn+1 —S")B(Sn, yn)l .S_ (sn+1 —S,,)8/4.
Note that, by (5.9) and (Q2), s, <s, ., whenever s,<t+h*. Since
IYn+ 1~ S(sn+ 1 —sn)ynl é (sn+ 1 _Sn)(M+ 1)
by (5.10), we have
Iyn+ 1 S(sn+ 1~ t)XI
é lyn+1 - S(sn+1 _sn)ynl + ls(sn+1 —Sn) [yn - S(Sn_'t)x:“
S Gar1=S)M+1D) + (5,— (M +1) = (5,4, —)(M+1)
and
[Ynt1 =% S |Yn+1 — S(Sp+1—0)x| + [S(sp11—1)x — x|
S GSuer—DM+1) +sup {|S(e)x — x|;0 < 0 < ho} <,
which shows that (S,+1, Vu+1) €2 NS,(f, x). In this way we obtain a sequence
{(Ss» Yw)}nzo in 2N S,(t, x) satisfying (5.6) and (5.8). Now it remains to show
that s=1lim,_, ,, s,=t+h*. Suppose to the contrary that s<t+h*. Then Lemma

5.2 and (5.8) together imply that {y,},>, is a Cauchy sequence in X and (s, y*)=
lim,,  (s,, yo) €2 N S, x). Moreover we can find a number #>0 such that

n<t+h*—sand
(5.1 d(S(my* + nB(s, y*), QAs+n) < ne/12.

Choose an integer N =1 such that s—s,<#/2 for n= N, and set 5,=s—s,+1n for
each n=N. Then s,+n,=s+n=t+h* and n,>n=2(s—s,)>206,246, for all
n=N. Here we have employed the fact that s,<s,,,<s for all n>0. Hence it
follows from the definition of &, that

d(S()Yn + MuB(sps Yn), Qsp+1,)) > ,€/8
for n2N. Using the continuity of B and noting that s,+#,=s+#, we obtain

d(S(m)y* + nB(s, y*), As+mn)) = lim,_, o, d(S(1,)ys + 1,B(sps Yn)> (S»+1,))
2 nef8,
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which contradicts (5.11) and hence lim,_, ,, s,=s=t+h*. Thus it has been shown
that the sequence {(s,, y,)}»20 has all of the desired properties (5.6)-(5.8).
It is now easy to prove the lemma. First by (5.1) we have

(5.12) Yo — S(s,—t—h)y — (s,—t—h)B(t+h, y)
= 2020 S(sn— S 1) Dt 1 = S(Sk 1 =SV — (S 1 — S B(sp Yi)]
+ 2820 (kv 1= 5)S(Sn— S+ 1) [B(si» i) — B(2, x)]
+ 2726 (ks 1 =50 [S(sn—8x+1)B(t, x) — B(1, x)]
— (s,—t—h)[B(t+h, y) — B(t, x)]

for n=0. Since (t+ h*, y*) and (s,, y,) are contianed in Q n S,(t, x) for n=0,
we obtain the estimate

[Yn — S(sp—t—h)y — (s,—t—h)B(t+h, y)| < (s,—t—h)e.
Passing to the limit as n— co, we finally obtain
|y* — S(h*—h)y — (h*~h)B(t+h, y)| < (h*—h)e.

This completes the proof.

6. Approximate solutions

This section is devoted to the construction of approximate solutions to the
problems (IVP; 1, z).
We begin by introducing the notion of ¢-approximate solutions.

DeFINITION 6.1. Let (r,2z)eQ. Let ¢>0 and Te(0, b—1). A strongly
measurable function u from [t, 7+ T] into X is said to be an e-approximate
solution to (IVP; 1, z) on [1, T+ T] if it has the following properties:

(el) u(r)=z and (¢, u(t))eQ forall te[r, T+ T];
(€2) B(s, u(s)) is integrable in the sense of Bochner and

6.1) lu(t) — S(t—1)z — g' S(t—$)B(s, u(s))ds| < (t—1)e
forall te[r, 1+ T].

REMARK 6.1. Since B is continuous and S(h)x is continuous with respect
to h for each x € X, the strong measurability of S(¢—s)B(s, u(s)) with respect to
s€[0, t] follows from the strong measurability of u.

The purpose of this section is to prove the following.

PROPOSITION 6.1. Suppose that conditions (Q1) and (Q2) hold. Let
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(1, 2)€Q. Let R and M be positive numbers such that t+ R<b and |B(t, x)| =M
for (t, x)e Qn Sg(t, z). Let T be a positive number such that T(M+1)+
SUPo<o<r |S(0)z—2z|<R. Then for each ¢>0 there exist a positive number
d, and a family of e-approximate solutions {uj; d€(0, 6,1} to (IVP; 1, z) on
[t, T+ T] with the following properties:

(P1) ug(r)='z and (t, uj(1)) e Q n Sg(z, z) for 6€(0, 4,] and te[z, 1+ T];
(P2) |uj()—us(s)|<efor 6e(0, 6,] and t, se[t, T+ T] with |t—s|<9;

(P {7 usts) — S(Ous(s—8) — 8B(s, us(s)lds < be;
(P4) lt:f,(t)—ug(t)l <c¢ford,0'€(0,6,] and te[z, t+T].

REMARK 6.2. Proposition 6.1 is valid even if the semigroup S is not a
contraction semigroup of class (C,). However, for simplicity, we deal with only
the case where S is a contraction semigroup of class (C,) in this paper.

We first need the following lemma.

LeMMAa 6.1. Let (t, x)eQ and ¢€(0,1). Let r>0 be a number such that
|B(s, y)—B(t, x)| =¢/4 for (s, y)eQn S/t x), suPog,<,|S(0)B(t, x)—B(t, x)| <
¢/4 and such that |B(s, y)|SM for (s, y) € 2 n S.(t, x) with some constant M >0.
Set ho=sup {he(0, b—1t); h(M+1)+supy<,<;|S(@)x—x|<r} and let t* and ¢
be such that t<t+06<t*=<t+h,. Then there exist a sequence {y,},5o of real-
valued step functions on [t, t*) and a sequence {v,},5, of X-valued step functions
on [t, t*) with the following properties:

(6.3) ya(t) = t for n 2 0.

64 Yua(9) = 1u(Vm($)) = Vu(s) for 0 = m < n and se[1, 1*).

(6.5)  7.(s—8) = 7(s) — & for n = 0 and se[1+6, 1*).

(6.6) The sequence {7,(s)},» ¢ is monotone nondecreasing and vy,(s) 1 s as
n — oo for each se[t, t*).

(6.7) (1) = x and (3,(5), v.(s) € R N S,(t, x) for n = 0 and se[t, t*).

(6.8) vl —S(8)—Dx| £ (r(s)— (M +1) for n 2 0 and se[t, t*).

(6.9)  lvo(s)—S(8)vo(s—8) — dB(yo(s—9), vo(s— )| < d¢ for se[t+6, 1*).

(6:10)  |v(5) — S(Vu(8) = Vu=1(NVa-1(8) = ¥alS) = Vn=1(NBWn-1(5), vp—1())

S )= Vu-1(Ne for n 2 1 and se[t, 1¥).

(6.11)  [v,(s) — S(¥u(s) — Yo())o(s) — ((s) — 70())B(y0(5); vo(s))
< 2(7,(8)—7o(8))e for n 2 1 and se[t, t*).
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(6.12) o) — SOA(8)—1)x — (vals) —DB(t, X)| = 2(y,(s) — D)e for n 2 0
and set, t*).

Proor. For each nonnegative integer n, let N(n) be an integer satisfying
t+N(n)o/2"<t*<t+(N(n)+1)6/2" and set t}=t+kd/2" for 0Lk N(n) and
I,={t}; 0k=N(n)}. Thenl,cI,,, and t}*'el, for k even. For each n=0,
we define a step function y, on [¢, t*) with values in I, by

v(s) =tk for se[t, ty;) and 0=k =N(n) -1,

= thm for se [tRms t5)-

Then it is easy to see that the sequence {y,(s)}, o has properties (6.2)—(6.6).

We then construct a sequence {v,},>, of X-valued step functions on [t, t*)
with properties (6.7)+(6.10). To this end, we begin by choosing a sequence
{vo(tD}o <k <n(oy Of elements in X such that

(6.13) vo(13) = x and (2, vo(1))€Q n S,(t, x) for 0 <k < N(0),
(6.14) |vo(fR) — S(e—0x| = @-D(M+1) for 1= k= NO),
(6.15)  [vo(1%) — S(O)vo(tk-1) — 8B(ff-1, vo(tR-1)| < de for 1=k < N(0).

This is accomplished by induction on k. In fact, set vy(t3)=x. Suppose that
vo(t9) is chosen so that (6.13) and (6.14) hold. Then we can apply Proposition
5.1 with h=t)—t and h*=1t),, —t=h+J to select an element vy(t),;) € X such
that (41, vo(1R+1)) € RN S(2, x) and  |vo(1+1) — S(8)vo(tR) — OB(£, vo(2))| < Je.
Hence (6.13) and (6.15) hold for k replaced by k+1. From this and (6.14) it

follows that |vg(10+,) — S(t9+ 1 —x)| = (1941 —t) (M +1). Thus the desired sequence
is constructed. We now set

(6.16)  vo(s) = vo(¥o(s))

for se[t, t*). Then it follows from (6.13)~(6.15) that v, satisfies (6.7)—(6.9) with
n=0. This completes the first stage of our construction.

Next we find the sequence {v,},>; by induction. Assume that v, has been
defined in such a way that (6.7)—(6.10) hold for se[¢, t*). To construct v,,, on
[t, t*), we first specify the values of v,,, on the set I,,,. Letsel,,,. Ifsel,,
we set v, ,(s)=v,(s). If sel,,,—1I,, we can choose with the aid of Proposition
5.1 with h=v,(s)—t, y=v,(s) and h*=s—1, an element, say v,,,(s), so that
(s, 0,4+ 1(5) €N S(t, x) and

[0 +1(5) — S(s=u())va(s) — (s = Ya(8))B(7(S); V(] = (s—7a(s))e.
Set
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(6.17) Up+1(8) = 051 1(Vn+1(5))

for se[t, t*). Then we infer from the definition of v, that

(n+1(5) Vs 1(s)) €2 N 5,1, x),
[Vn+1(8) = SWn+ 1(8) = Va(8))0s(8) = (V4 1() = Va(NB((5), 04| = (Vn+1(5) —7u(5))E
and
[Vn+1(5) = SO+ 1() = DX| = (ns1(8) =) (M +1).
Thus a sequence {v,},5, of functions satisfying (6.7)-(6.10) has been constructed.
We now show that the sequences {y,},>0 and {v,},> o constructed above enjoy
properties (6.11) and (6.12). Let se[t, t*). Let k be such that yy(s)=19. First,
in view of Lemma 5.1, we observe that v,(s) can be written as
0(s) = v(¥a(s))
= 2125 SWu() =74 1)) [0j+1() = SO+ 1() = y,())v;(s)
= 41D —7,(NBF (), v(5))]
+ 2520 0+ 1) = 1,()S((8) =75+ 1()B(1(5), v,(5))
+ 2526 S(ra(s) — 13+1) [vo(19.+1) — S(8)vo(29) — 6B(15, vo(t3))]
+ L5285 (31— 1DSO() — 134:)B(Y, vo(19) + S(7a(s) —1)x
for n=20. Since (y,(s), v;(s)) € 2 n S,(¢, x) for 0= j<n, we have

[0a(5) — S(pu(s)—1)x — (ya(s)—1)B(t, x)|
< 2028 10544(8) = S@j+1(8) = ,()0i(5) — (14 1() =V (NB(5), v ()
+ 2128 (+1(8) =2, (NIB(H(5), vi(s)) — B(t, x)|
+ 2528 (0 +1(8) =V IS(u(s) — v+ 1(8))B(2, x) — B(t, x)|
+ ZE28 [vo(t9+1) — S(B)vo(t9) — SB(tY, vo(tP)
+ ZE28 (1941 —tDIB(t}, vo(29)) — B(t, x)|
+ ZEZ3 (1941 —1DIS(ya(s) — 13+ )B(2, x) — B(t, x)|
S T8 @i+ —vi()e + T35 (74 1() —7(s)ef4
+ X125 (74 1(9) — v ())e/4
+ ThZE (% —1De + TEZL (10,1 — 1De/4 + TEZL (104, — 1%e/4
< 2Ayu(s)—1)e

for n=0. Similarly, we have
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[0a(s) — S(7a(8) —V0($))v0(s) — (¥a($) —70())B(¥o($), vo(s))|
= 252010541(8) = Sy 1() —7N0i(5) — 7+ 1(8) =¥ (SNBH (5), v(s))
+ 2126 0 1) =V (NIBR(5), vi(s)) — B, %)
+ 27250y 1) = 7ANISA() — 7+ 1()B(, x) — B(t, x)|
+ (7(8) = VoI B(yo(s), vo(s)) — B(t, x)|
= 2(7(5) —vo(s))e

for n=0 and se[t, t*). This completes the proof.

LEMMA 6.2. Let (t, x), &, r, t* and 6 be as in Lemma 6.1. Then there
exists an X-valued, strongly measurable function v on [t, t*) with the following
properties:

(6.18) v(t) = x and (s, v(s)) e Q N S[t, x) for se[t, t*).
(6.19) [v(s) — S(s—t)x — (s—1)B(t, v(t))| < 2(s—1t)e for se[t, t*).
(6.20) |o(s) — S(&)v(s—38) — dB(s, v(s))| £ 7¢ for se[t+3, t*).

Proor. By Lemma 6.1 one finds a sequence {y,},>, of real-valued step
functions on [t, t*) and a sequence {v,},>, of X-valued step functions on [t, t*)
satisfying (6.2) through (6.12). Since lim,., 7,(s)=s and v,(s)=0v,(y.(s)), it
follows from (6.10) and Lemma 5.2 that the sequence {v,(s)},»o is a Cauchy
sequence in X for each se[t, t*). We then define a function v on [t, t*) by
v(s)=lim,_, , v,(s). Clearly, v is strongly measurable; and (6.7) and (221) together
imply that (s, v(s))€ 2 n S,(t, x). Moreover, by use of (6.11) and (6.12), we
obtain

lv(s) — S(s—t)x — (s—1)B(t, x)| < 2(s—1)e
and
[o(s) — S(s—70(s)wo(s) — (s —Vo()B(yo(5), vo(S) = 2(s —yo(s))e
for se[t, t*). Using the terms +S(s—yo(s)vo(s), F(s—7o(s)B(o(s), vo(s)),
+S(8)S(s —7o(5))vo(s —6), £ S(6) (s —7o(8))B(yo(s —6), vo(s—5)), etc., we have
v(s) — S(é)v(s—95) — 6B(s, v(s))
= 1(s) — S(s—70(8))vo(s) — (s —70(8)B(yo($), o(5))
— S(8) [v(s —6) — S(s—70o(s))ve(s —8) — (s—70(5))B(yo(s — ), vo(s—9))]
+ S(s—70(s)) [vo(s) — S(8)ve(s—8) — SB(yo(s — ), vo(s—9))]
+ (s —70(s)) [B(2o(s), vo(s))— B(t, x)]
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— (s=70()S() [B(yo(s — ), vo(s —6)) — B(t, x)]
+ 85(s —70()) [B(yo(s — ), vo(s —8)) — B(t, x)] — [ B(s, u(s)) — B(t, x)]
— (s—=70()) [S(9)B(t, x) — B(t, x)] + S[S(s —70(s))B(t, x) — B(t, x)] .

From this it follows that

[o(s) — S(8)v(s — ) — dB(s, v(s))|
= 2(s—vo(8))e + 2(s—yo(s))e + Se + (s—7o(5))e/4 + (s —po(s))e/4
+ de/4 + e[4 + (s—7yo(s))e/4 + de/4 < Td¢

for all se[t, t*). This completes the proof of Lemma 6.2.

LEMMA 6.3. Let (1, 2z)eQ. Let R>0 and M >0 be such that t+R<b and
|B(t, x)I M for (t, x)e 2N Sg(t,z). Let T>0 be small enough to satisfy
T(M+1)+supo<,<71S(0)z—2|<R. Then for each e€(0, 1) there exists a
sequence {(t;, X;)}o<i<n in Q2 with the properties listed below.

(i) (g, x0)=(r,2)andty =1+ T.

(ii) O0<tjy; —t;Sefor0<i<N-1.

(iii) (¢, x)€ n Sg(z, z) for0 =i < N.

(V) x4y = S(s 1 — 8% — (i — 8)B(t, x)| S (44— t)efor 0S i< N — L.
(v) ForeachiwithO=<i=< N — 1 there eixsts a number r(i) € (0, €] such

that

(6.21) St x;) = Sg(z, 2),

(6.22) |B(s, y)—B(t;, x))| < ¢/4 for all (s, y) €Q n S,u)(ti, X)),

(6.23) SUPo 5. £r(s |S(@)B(ti, X)) — Bty x| < e/4,

and

6.24) (Ger1—t)(M+1D) +sup {|S(o)x;—x;|; 0< 0 < t;, — t;} S r(i).

PrOOF. The proof can be given in a way similar to that of Proposition 5.1.
Let e€(0, 1). Set (ty, xo)=(1, z). We define a sequence {(t;, x)}o<i<y in 20
Sgr(z, z) in the following manner: Suppose that (¢;, x;) is defined in Q N Sk(z, 2)
in such a way that t,e[r, v+ T] and |x;—S(t;—7)z|=(t;—7)(M +1). First we
take the supremum r(i) of all r € (0, £] such that

(6.25) St x;) = Sg(z, 2),

(626) lB(S: y)_B(tia xi)‘ é 8/4' for all (S’ y)GQ n Sr(ti’ xi)
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and
(6.27) SUPo <. <, [S(0)B(t;, x;)— B(1;, x;)| < /4.

Since r(i)>0, we set h;=sup {he(0, b—1t); h(M+1)+supy <, <s |S(@)x;—x;| <
r(i)} and define t;,,=min {t;+h;, t+T}. Observe that ¢;<t,,; whenever

“t;<t+T. Next, by using Proposition 5.1, one finds an element x;,, of Q(¢;,)
such that

[Xi41 = S(tiv 1 —1)%; — (i —t)B(t;, x)| < (441 —t))e.
From this and the hypothesis on x; we infer that

X341 — S(tiv 1 — )2
S [Xiwy = Sy s — )3l + [S(is g — )%, — S(ti4 1 — 72|
S —tWM+1) + -0 (M+1)
=ty —7)(M+1)

and hence |x;4;—2z|S(X;01—S(ty1—1)z|+|S(t;+—T)z—z|<R.  This shows
that (¢;, 1, X;+1) € 2N Sg(z, z). We continue this induction argument.

We now claim that ty=1+ T for some integer N>1. Assume to the contrary
that ¢;<t+ T for all i=0. Then, by Lemma 5.2, (¢, x,)=lim;_ , (¢; x;) exists
and (f,, x,)€Q N Sg(t, z). Since the set {(¢;, x;); 0<i< oo} is compact in Q,
there is a number re(0, ¢] such that S(t;, x;)=Sx(z, z), |B(s, y)— B(t;, x;)| <¢/4
and supo <, <, |S(6)B(t;, x;)— B(t;, x;)| <¢/4 for (s, Y) e Q2 n S(t;, x;) and 0Zi=< o0,
Further, there is a number h>0 such that h(M +1)+supg <, <4 1S(0)x;— x| S 7.
But in virtue of the definition of r(i) and h;, we would have h;>h for i=0. This
contradicts the fact that h;=t;, , —t,»0 as i->c0. Hence we conclude that there
is an integer N=1 such that ty_, <ty=t+T. It is now easy to see that the
sequence {(t;, x;)}o<:<n~ has the properties (i)—(iv). This completes the proof.

Proposition 6.1 is a direct consequence of the following lemma.

LeMMA 6.4. Let (t,z)eQ. Let R>0 and M >0 be such that t+R<b and
|B(t, x)ISM for (t,x)eQn Sg(t,z). Let T>0 be small enough to satisfy
T(M+1)+supo<,<7|S(0)z—z|<R. Let £¢€(0, 1) and let {(t;, x;)}o<i<y be a
sequence in Q as in Lemma 6.3. Then there exist a number 8, and a family
{us; 6€(0, 6,1} of X-valued strongly measurable functions on [z, T+ T] such
that

@) us(t)=x;for 0= i< N and (t, us(t)) € Q n Sg(z, z) for te[z,7+T],

t
®) |ug(t) — S(t—1)z — S S(t—s)B(s, us(s))ds| < 3(t—1)e
fortelr, 1+ 717,
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©) luylt) — uys)] < Tefort, se[t, T+ T] with |t — 5] £ 5,
(d) Sf::w.,(s) — S(8)uy(s—8) — SB(s, uy(s))lds < 14Tse,
(e) ll:,s(t) —uy(t) £ 4e? for te[t, 7+ T] and 6, 6’ €(0, J,].

Proor. Let €€(0, 1). Set §,=min {(t;, ,—1;)/2: 0Si<N-—1} and fix any
0€(0, ,]. Applying Lemma 6.2 with t=¢; and t*=t;, ,, one finds an X-valued
strongly measurable function v; on [, t,,,) satisfying

(6.28) ov{(t,) = x; and (¢, v(1))eQ n Si(z, z) for te[t, t;1,);
(6.29) |v(t) — S(t—1t)x; — (t—1t.)B(t;, v(t)| = 2(t—t)e for te[t;, t;44) ;
(6.30) [vdt) — S(B)vt—3) — 8B(t, u(t))| < T8¢ for te[t,;+5, t;1,).
For each te[t, t+ T], set
us(t) =v(t) if telt, t;x,), and uyt+T) = xy,

Then it is clear that the function u; is strongly measurable and satisfies
conditon (a). Let te[r, 7+ T] and let i be the integer such that te[t;, t;,,).
Then we have the following relation:

(631) uy(t) — S(t—1)z — g' S(t—5)B(s, uy(s))ds

= uy(t) — S(t—t)x; — S S(t—s)B(s, uy(s))ds
+ T S(— 14 ) DXy 1 — Sty 41— £))%;
= 7 S0t~ 9)BCs, us(9)ds]
= uy(t) — S(t—t)x; — (t—1,)B(¢;, x:)

~ [\ st=5)Bs, v~ Bts, x)1ds

~ (" rse=9B(, x) - B, xpds
+ X6 S =t ) [Xj0 1 = S(tj 4y —1)x;— (141 — 1)B(;, x))]

— B8t {7 Sy~ [BGs, 0,9~ Bty x)1ds

J

— B8 S—t50) | IS0, = 9B, x)— Bt x)ds.

tj

It follows from (6.25)—(6.29) and (6.31) that
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lus(t) — S(t—8)z — S ' S(t—s)B(s, uy(s))ds| < 3(t—1)e

which is nothing but condition (b).
Lets, te[t, v+ T] with s<t<s+d. Since d<t;,,—t; we have

(t—s)M + |S(t—s)x; — x;
<(tis1—t)(M+1) +sup {|S(o)x;—x;|; 0SS ;.. — ;) <e.
If t,<s<t<t;,, for some i=0, then we have
lus(t) — us()l = lot) — S(t—t)x; — (1—1,)B(t;, x;)|
+ lvi(s) — S(s—t)x; — (s — ) B(E;, x))|
+ (= 9)IB(t;, x)| + [S(t—9)x; — x|l
S20-1)e + 2s—t)e + & £ S,
since t;,,—;Se<l. Ift,_ Ss<y=t<t;,, forsomeixl1,
lug(t) — us(s)|
< loft) — S(E—t)x; — (t—1)B(t;, x))|
+ [vi-1(8) — S(5s—ti-)x; — (s—1;- )B(ti— 15 X;— 1)
+ IS —1) [x; — S(ti—ti- )xi—y — (=12 )B(ti— 1, x;-1)]|
+ (6= - ISE—1)B(ti- 15 X;—1) — B(ti— g, X;-y)|
+ (t=1)IB(t;, x)| + (t;— )| B(t;— 1, x;— 1)
+ ISt =t ) [SE—8)x;- 1 — X;-4]|
S2t—t)e+2(s—t;_ e+ (ti—t;_ e+ (t;—t;_Defd + e < Te.

Thus conditon (c) is satisfied.
To see that u; satisfies condition (d), we estimate the norm of

[us(s) — S(8)us(s—0) — 6B(s, us(s))|
for se[t+6, 1+ T]. If t;+8<s<t;,, for some i, then (6.30) yields
(6.32) lus(s) — S(8)us(s—8) — 6B(s, us(s))l < 7de.
If t;Ss<t;+0 for some i, then we have
(6.33)  |uy(s) — S(B)us(s—0) — SB(s, us(s))|
< lvi(s) — S(s—1)x; — (s—1)B(t;, x))|
+ ISG)[v;-1(s—8) — S(s—8—t,_ )x;—q — (s—8—t;_ )B(ti_ 1, Xi— ]I
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+ IS(s— 1) [x;— S(t;— t;- Dxi— ¢ — (Gi— ;- )B(ti— 1, x;- )]

+ (t;+0—9)|B(t;, x)) — B(ti—1, Xi— 9|

+ O|B(s, v{(s)) — B(t;, x;)|

+ (t;—1;- IS(s— 1)B(t;, x;) — B(t;, x,)|

+ (s—=0—1_ISO)B(t;— 1, Xi-1) — B(ti—y, X;— )|
S2s—t)e+ 2(s—0—t;_ e + (t;—t;—)e

+ (t;+0—35)e/4 + Se[4 + (t;—t;_,)e/4 + (s—0—1;_)e[4

< T(t—ti- e

Now note that

[ lus) = S(Oma(s—3) — B(s, uyls)lds
= 503 [ i) — S@uls—8) - 3B, usls)lds

+ 20 ) — S@us(s—8) — 3B, us(9)lds.

Applying (6.32) and (6.33) respectively to the first and the second sums on the
right side, we see that the left integral is not greater than

T T(t —t)de + NG (81— 1)de < 14T0e.

Thus we conclude that u; satisfies conditon (d).

To complete the proof, take any pair , 6’ €(0, §,]. Let u; and u; be the
strongly measurable functions on [, T+ T7] constructed for é and &', respectively.
Let te[r, t+ T] and i be such that te[¢,, t;,,). Then (6.29) implies

[us(D) — us (D)
< lug(t) — S(t—t)x; — (t—1)B(t;, x,)|
+ |us(t) — S(E—t)x; — (t—1)B(t;, x))|
< 4(t—t)e < 4e2,

which shows that condition (¢) holds. Thus the proof is complete.

7. Local existence

In this section we give a result on the local existence of mild solutions to the
problems (IVP; 1, z).
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THEOREM 7.1. Suppose that conditions (Q1)-(Q3) are satisfied. Let
(r,2)€Q. Let R>0and M >0 satisfy t+ R<b and |B(t, x)| <M for (t, x)e 2 n
Sg(t,z). Let T be a positive number such that T(M+1)+supo<,<t
|S(6)z—z|<R. Then the problem (IVP; t, z) has a unique mild solution u on
[z, +T].

Proor. Set r=2(R+|z|). Let L, be an integrable function on [1, 7+ T]
such that |g(t, w)| < L,(¢) for te[r, 7+ T] and for w with |w|<r; the existence
of such function L, is guaranteed by condition (g1). Let {e,},>; be a null-
sequence in (0, 1). Then Proposition 6.1 implies that for each n>1 there exist a
number 6, and a family {u%; d €(0, J,]} of ¢,-approximate solutions for (IVP; 1, z)
on [, t+ T] with properties ( P1) through (P4). Let m and n be positive integers.
Let 6 >0 be such that §<4,, and 6 <4, and such that

(7.1) X:L,@)dé <ent

for t<s<t<t+ T with |t—s|Z4. . Set Up-"(s)=|uP(s)—u}(s)| for se[z, t+ T].
By (23), we have
[u3(s) — uj(s)l
< |u3(s) — u3(s) — o(B(s, uz(s)) — B(s, uj(s))| + g(s, [ug(s) — u3(s)l)
< |ug(s—0) — u3(s—9d)| + |u3(s) — S(O)u3(s—5) — 6B(s, ug(s))|
+ |u3(s) — S(O)u3(s—0) — 0B(s, uj(s)| + 69(s, lug(s) — u3(s))

for se[t+9, t+T]. Lett, and t, be such that 1<t,<t; +6<t,<t+T. Inte-
grating both sides of (7.2) from ¢, + 6 to ¢, and using (P3), we obtain

t+

1.3) g:—a Up-n(s) ds — S * Upon(s)ds

ty

<6(" g, Upr@)ds+o(n+a)
tt

Since |U3"(6) — UG- "(s)| = |[u3(t) —uF(s)| + luj(t) —ui(s)| Sen+e, for t, selr, 7+ T]
with |t—s| <6 by (P2), we obtain

sUpn(t) < |

t

2=

, UBn(9)ds+6(en+e,)
and
ti1+é
sUpn(t) 2 [ Upr)ds—oGen+e,).
t

Hence
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t+

@4 s{Upne)-Upa s (7 Upds - (M7 Upnods

1

+ 26(e,, +8,).

From (7.1), (7.3) and (7.4) it follows that
t2
7.5) Up(t) = Upr() < g, Upn(s)ds + 4.

For simplicity in notation we write u™ for % with §=4,,. Since

[Uz-(1) — lu™(t) — u"(O)|| = [ug(®) — u™(D)] + [u3()) — u"(D)] < &, + &,
for te[t, t+ T] by (P4), combining (7.5) with Proposition 3.2, we see that
(7.6) lim,, ,, , [u™(t) — u"(t)] = 0

holds for t e [1, 7+ T] and the convergence is uniform on [z, 7+ T]. This means
that {u"},, is uniformly Cauchy on [z, 1+ T].

We now define u(t)=lim,_ , u"(t) for each te[r, 7+ T]. It is clear that
u(t)=2z and (¢, u(t)) e Q for te [z, T+ T] by (P1) and (Q1). Also, the continuity
of u is deduced from (P2) and the uniform convergence of {u"},»;. Since
u" is an g,-approximate solution for (IVP; 1, z), the application of the Lebesgue
convergence theorem yields

u(t) = St—7)z + S' S(t— $)B(s, u(s))ds

for all te[r,7+T]. This show that u is a mild solution to (IVP; 1, z) on
[t, 7+ T]. Since the uniqueness of u follows from Proposition 4.1, the proof is
complete.

8. Existence in the large

This section is devoted to the verification of our main result on the global
existence we mentioned in Section 1.

In the previous section we established a result on the uniqueness and local
existence of mild solutions of the problems (IVP; 1, z), (t, z) € Q. By virtue of
this result, we may think of a family of mild solutions u(¢; 7, z) of (IVP; t, z),
(t, z) e Q, which are not continuable to the right. Using this family, we may
construct a continuous local semiflow by

8.1) ut, 7, z) = u(t, 7, z), telr, T(z, 2)).

In view of Theorem 2.2, the following proposition plays an important role in
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proving the global existence of mild solutions of (IVP; 1, z).

PROPOSITION 8.1. Suppose that conditions (Q1)-(Q3) are satisfied. Let
(t, 2)€ Q. Then there is a number c with the following properties:
(i) t<c<b and (IVP; 1, ) has a unique mild solution u on [, c].
(ii) Let €¢>0. Then there is a number r>0 such that t+r<c and for
every (t, x)e 2n S/, z), IVP; t, x) has a unique mild solution v on
[t, c] and v satisfies |v(s)— u(s)| < ¢ for all s € [max {z, t}, c].

Proor. Let R>0 and M >0 be such that 7+ R<b and |B(t, x)| <M for
(t, x) €2 n Sg(t, z). Let T>O0 be such that

We shall see that any number c in the interval (z, t+ T) is the desired one. The
first property follows from Theorem 7.1. To show that ¢ has the second property,
let e>0. By Lemma 3.1, one can find an #>0 such that a maximal solution
m(t; t, n) exists on [7, ¢] and m(s; t, n)<e¢ for all se[1, ¢]. Choose an r>0 so
that t+r=<c, r<t+T—c, (c—1)(M+1)+r(M +4)+supy <, <715(6)z—2z| <R and
SUPg<,<r 1S(0)z— 2|+ (M +3)<infy <, <, m(t+0; 7,1).  This is possible since
t<c<t+Tand infy., <, m(t+0; 7, 1)>0 for sufficiently small »>0. Take any
(t, x)e2nS,(t,z) and set R*=R—r. Note that c—t<c—7+r<T and
|S(6)x — x| £|S(0)z —z| +2r for all ¢=0. Since |B(s, y)|<M for all (s, y)eRn
Sgr«(t, x) and since

(c=)(M+1) + supo <, 5. |S(0)x — x|

S(—t)M+1) + r(M+3) + supy<,<11S5(0)z —z|
< R* by the choice of r > 0,

Theorem 7.1 implies that the problem (IVP; t, x) has a unique mild solution v on
[t, ¢] such that (s, v(s)) € @ n Sg(z, z) for se[t, ¢]. If t<t, then

(1) —u(D)| < [W(7)—x] + [x—z|
< |SG—t)x — x + g S(t—&)B(E, WE)dE| + r

< SUPo <<, [S(0)z—2z| + P(M +3)

-~

(t;T,1m).

IIA
3

Hence |v(s) —u(s)| £ m(s; t, n) for se [, c] by Proposition 4.1. If t>1,
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[o(6) —u()| < |x—z| + |u(t)—z]

<r+|S(t-1)z -z + S S(t—&)B(E, u(&)de|

IIA

SUPo <o, IS(0)z—2z| + r(M +1)
<m;t,n).

Hence |v(s)—u(s)| Em(s; t, n) for se[t, c] by Proposition 4.1. Thus the proof
is complete.

We are now in a position to prove our global existence theorem.

THEOREM 8.1. Suppose that conditons (Q1)~(Q3) are satisfied. Let C be a
connected component of Q and set d=sup {te[a, b); C(t)#¢}. Then for each
(z, 2)e C, (IVP; 1, z) has a unique mild solution on [t, d). In particular, if Q
itself is connected, then for each (t,z)eQ. (IVP;1,z) has a unique mild
solution on [z, b).

ProOOF. By virtue of Theorem 2.2, it suffices to show that the continuous
local semiflow U defined by (8.1) satisfies conditions (1") and (2') stated in Theorem
2.2. (1’) follows from Proposition 8.1. Let {(,, z,)},>, be a sequence in C such
that (z,,, z,)—(7, z) € C as n— o0, and suppose that T(z,, z,)>c for n=1 and some
number ¢>t. Then it follows from Proposition 8.1 that there is a number
¢'<c such that T(z, z)>c¢’ and U(4, 7,, z,)- U(t, 7, z) uniformly for te(z, ¢'].
Combining this with Proposition 4.1, we see that U(t, 1,, z,) converges uniformly
for te(z, ¢] as n—»oo. Define u(t)=lm,,,, U(t, t,, z,) for te(z, c]. Then it
follows from the Lebesgue convergence theorem that the limit function u is a
mild solution to (IVP; 1, z) on [z, ¢]. This implies that T(z, z)>c and U(4, 7,
z,)- U(t, 7, z) uniformly for te(z, c] as n—»oo. Hence (2') holds. Thus the
proof of Theorem 8.1 is complete.

9. Concluding remarks

1) From the point of view of the flow invariance for semilinear evolution
equations, it might be useful to summarize our results in the following form.

THEOREM 9.1.  Suppose that Q is connected and that conditions (21) and
(Q3) are satisfied. Then the following are equivalent:
(a) lim,,, h~1d(S(h)x+ hB(t, x), (t+ h))=0 for all (¢, x) € Q.
(b) liminf,, o h~1d(S(h)x + hB(t, x), (t+ h))=0 for all (t, x) € Q.
(c) For(t,x)eQ and e€(0, 1), there is a number ho>0 with the following
property. Let he[0, hy) and ye(t+h) satisfy |y—S(h)x|<
h(|B(t, x)|+1). Then for each h* e(h, h,) there exists an element
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y* € Q(t+ h*) such that
|y*—S(h*—h)y —(h*—h)B(t+h, y)| < (h*—h)e.
(d) For each (z, 2) € Q, there is a mild solution u to (IVP; t, z) on [z, b).
2) It should be mentioned that the topological method evolved in Section 2
is discussed in terms of local semiflow and is not affected by the characteristics
of semilinear differential equations. Hence it would be applicable to a much

broader class of differential equations in order to deduce the global existence
from the local existence.
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