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On the differentiability of Riesz potentials of functions
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In the n-dimensional euclidean space R”, we define the Riesz potential of
order o of a nonnegative measurable function f on R” by

RS = [ RGs=1)10)dy,

where R (x)=|x|*"" if a<n and R,(x)=log(1/|x]). It is known (cf. [2]) that if
feLP(R"), p=1,and |R,f| # oo, then R, f is (m, p)-semi finely differentiable almost
everywhere, where m is a positive integer such that m<a. In the case ap>n,
this fact implies that R, f is totally m times differentiable almost everywhere.
A function u is said to be totally m times differentiable at x, if there exists a poly-
nomial P for which lim,_,, |x—x,|™™[u(x)— P(x)]=0.

In this note, we are concerned with the case where ap=n and « is a positive
integer m, and aim to give a condition on f which assures the total m times differ-
entiability of R, f.

THEOREM. Let m be a positive integer, p=n/m>1 and f be a nonnegative
measurable function on R" such that R, f# oo and

[ 108 @410y <0 forsome 6> p 1.

Then R,.f is totally m times differentiable almost everywhere.

The proof of the theorem will be carried out along the same lines as in that
of Theorem 3 in [2].
We first prepare the following lemmas.

LEMMA 1. If m, p and f are as in the Theorem, then
[ 1o, Rax=p )y < M ( [ rrtiog@+10N1dy) "

for all x e R*, where E(f)={y; f(y)=1} and M is a positive constant independent
of f and x.

ProOF. We may assume that x=0. We set

E; = {y; 271 < f(y) < 2/}
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for j=1, 2,.... Then we have

[ ROy s T2, 2 [ Ry s T2 Ry
E(S) E; B(0,rj) »
=M, Y7, VIEj|'e,

where B(0, r;) denotes the open ball with center at 0 and radius r; such that
|B(0, r))|=|E;| (|E| denotes the n-dimensional Lebesgue measure of a set E)
and M, is a positive constant independent of j. By Holder’s inequality, we obtain

S5 DIE|P S (S50, 2 |E ) IF(E 5y 810 ) 10
< My [ 1ytog @+10NPdy) "

for some positive constant M, independent of f. Thus the lemma is proved.

LEMMA 2. Under the same assumptions as in the Theorem,

i,y b= %ol | Ru(x= {0~ f(x0)ldy = 0

B(x0,2|x—xol)

for almost every x, € R".

PrOOF. Set E(f, xo)={y; [f())—f(x0)|21} and F(f, xo)=R"—E(f, xo).

From Lemma 1 it follows that

Ru(x—)1f (y)—f(xo)ldy

fE(f,xo)nB(xo,r)

< M( f () —f (xo)IP[log 2+ | f(y)—f (xo)l)]"dy)l/p
B(xo,r)

sM([,  1f0rMog@+fONIP—f (xoTlog @-+f(xo)IIdy) "
B(xo,r)

for any x and r, where M is the positive constant given in Lemma 1. Since

[ #7108 @+10)1°dy < oo, we have
i g [x = oI [ Ru(x =1 ()=f (xo)ldy = 0
E(f,%0) N B(xo,2]|x—xol)

for almost every x, € R".
On the other hand, for any ¢>0 we obtain

Ru(x=»If (0 —f(xo)ldy

»[F(f,xo) NB(xo,r)

= J‘B(x,er) Ru(x—y)dy + f‘,(xo,’)_n(x,") R (x=p) | f(»)—f(x0)ldy
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X0,r

S MGy + @ 0= xoldy

with a positive constant M’ independent of f, x, r and &. Hence

fim sup,.., [x— x| ™ f R(x =) ()~ (xo)ldy

F(f,x0) N B(xo,2|x—xol)

< Mg + oo lim sup,..g ¥ = ol | F5) =S Gcolldy.

J B(xg,2|x—xo])

Since fe L},.(R"), it follows that

fim, ., | — xo| ™ f Ru(x— ) 1f(9)~f (xo)ldy = 0

F(f,x0) N B(x0,2|x—xo|)
for almost every xo, € R". Thus the lemma is established.
We are now ready to prove the theorem.

PrOOF OF THE THEOREM. Let f be as in the theorem. For a multi-index A
with |A] £m, define

Ay =lim, o [(0/0x)*R,](xo — ) f (y)dy.

R"—B(xo,r)

If |A] = m, then the limit exists and is finite for almost every x, as is well-known (cf.
[4; Theorem 4 in Chap. II]), and if || <m, then the limit exists and is finite for

X, such that f|x0—y|m‘|‘|‘"f(y)dy<w. Thus A, exists and is finite for almost

every x,€ R". In what follows let x, be a point such that 4, exists and is finite
for any multi-index A with |A|Sm.

On account of Lemma 4 in [2], f R, (x—y)dy is infinitely differentiable
B(0,1)
in B(0, 1). We let B;=0 if |A]<m and Bl—(a/ax)lj‘ R, (x—y)dy if
B(0,1 =0
|Al]=m. Asin [2; Theorem 3], consider the numbers C,=A4, +f(x0)B,1 and deﬁne

P(x) = 3 21sm (A1) 71C(x —x0)%.
Letting K (x, y)=R(x—y)— X 1=0 (AD7'(x = x0)*[(9/0x)*R, ] (xo— ), We write
x = ol (R () — P()}
=lx=xol [ Kl 9SOy

+ Ix=xg K, DL 0)=f (x0)1dy
B(xo0,1)—B(x0,2]|x—xol)

= |x=Xo|™ X a1sm (AD (X —X0)*
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x lim, ;o (0/0%)*R(x0 = ) Lf (¥) =S (x0)]dy

B(xo,2|x=x0|)=B(x0,r)

+ 1o s =0l ([ Kes(6, 9y = Do () Bix=x0))

B(xo0,1

el Ry ) L0) (o) ldy

=11+12+I3+14+15’

sinceJ (0/0x)*R,(x)dx =0 for any r, s>0 and any A with |A|=m.
B(0,r)—B(0,s)

We first note that I, tends to zero as x—Xx, since f(l+|y|)"""f(y)dy<oo,
which follows from the condition that R,f#oo0. If lim, wr‘"f lf(y)—
B )

f(x0)ldy=0, then, as in the proof of Theorem 3 in [2], we see that I, ;(;u':l I; tend
to zero as x—Xx,. Further, the definition of B, implies that I, tends to zero as
x—Xx,. Finally, in view of Lemma 2, I tends to zero as x—x, for almost every
xo € R*. Thus, we infer that R,,f is totally m times differentiable at almost every
Xg-

RemMARK 1. In the case p=1 and m=n, if we modify the condition on f in
the Theorem, then we obtain the total n times differentiability of R,f. Indeed,
if f is a nonnegative measurable function on R" such that |R,f|# co and f f(y) log

(2+f(y))dy < 0, then R, f is totally n times differentiable almost everywhere.

Since our definition of differentiability is different from that of [1], we give
a sketch of a proof. Instead of Lemmas 1 and 2 we can establish the following
results in a way similar to these lemmas, and carry out the proof along the same
lines as the proof of Theorem 4 in [3].

LeMMA 1'. There exists a positive constant M such that
[ R{x=»f()dy < MFlog(1]F)
{y;f(»)21}

for any nonnegative measurable function f on R" such that FEJf(y) log (2+
f(y)dy<e™.

LEMMA 2'. If f is a nonnegative measurable function on R" such that ff(y)
log 2+f(y))dy < 0, then

lime, | 1S0)=f (ol loB (= xol/lx—y1)dy = 0

for almost every x, € R".
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REMARK 2. We can find a nonnegative measurable function f on R” such that
I f)Pllog(2+f(y)]P'dy<oo and R,f is not totally m times differentiable

at any point of R", where m is a positive integer and p=n/m>1.
For the construction of such f, take a sequence {x;} which is everywhere
dense in R". For a sequence {r;} of positive numbers, define

[y —x;I7"[log (1/ly —x,;)]~*[log (log (1/[y~x,IN]~" on B(x;, r))

0 elsewhere.

fiy) = [
If r;<e~e, then it follows that

ffj(y)”[log @+f(y)IF~tdy = M[log(log (1/r)] 7**

for a positive constant M independent of j and R,,fi(x;)=co0. If {r;} is so chosen
that Y%, j»~'[log (log (1/r))]»*' <oo and max,s; {()<f;+1(y) on B(x,. s,
ri+1), then f=3 %, f; satisfies the required conditions. In fact, R, f(x;)= o0
for each j and

[(Ersortog @+ i, £00Pay
<z, (ZJ-1£10)? (108 2+ T4, /()71 dy
(Xksrk)=U g5 g B(xy,ry)

S, GROIPTKlog Q+ONIdy
< M ), v~ [log (log (1/r)] 7",

which implies that Jf(y)P[log Q+f(y)]rtdy<oo.
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