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Existence and qualitative theorems for nonnegative solutions
of a similinear elliptic equation
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In this paper we study a qualitative feature of positive solutions for the

Dirichlet problem

x)) = Q in BR

(0.1)
u(x) = 0 on dBR,

where BR = (xeRN; |x| < R}9 N >2 and /is a continuous function on [0, oo)

which satisfies the following conditions:
(Al) lim sups_> + 0/(s)/s < — m < 0.

(A2) There exists a unique ζ0e(Q, oo) such that

F(Co) = 0, F(0 < 0 for ζ6(0, ζ0) and f ( ζ 0 ) > 0,
where F(ζ) = &f(s)ds9

(A3) α = sup {C < Co /(O = 0} and β = inf {£ > ζ0 f(ζ) = 0}
exist and 0 < α < β < oo.

(A4) / is Lipschitz continuous in a neighborhood of JS.

We first establish an existence of positive radially symmetric solutions of

(0.1) and study their shape. Hence they satisfy the following ordinally

differential equation associated to (0.1)

N - 1
u" + - u' + f(u) = 0 for 0 < r < R,

(0.2)
ιι(0) = μ, ιι'(0) = u(R) = 0,

where u is now a function of r = |x| alone (xeRN). Then we show the

following

THEOREM 1. Under the conditions (Al)-(A4) there exists an RQ> 0 such

that for any R> R0 the equation (0.2) admits a positive solution with properties

Co < u(0) < β and u' < 0 on (0, R].

THEOREM 2. Let R=ao and define u(oo) by linv^iφ ). Under the

conditions (A\)—(A4) for some μe(£0, β) there exists a nonnegative solution u of

(0.2). Let
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R1 =inf{r >0; w(r) = 0}.

Then u' < 0 on (0, RJ and u = 0 on (Rί9 oo) // R^ < oo.

According to L. A. Peletier and J. Serrin [7, Theorem 5] the nonnegative
solutions w(r) of (0.2) with R = oo have compact supports if and only if

§Q\F(ζ)\~1/2dζ < oo. Taking this fact into account we have

COROLLARY. Let Rλ be the same constant as in Theorem 2 and f satisfies
the conditions (Al)-(A4). If, furthermore,/(O) = 0 andf(s) is Holder continuous
at s — 0, then the solution obtained in Theorem 2 has a compact support which is
equal to [0, KJ.

When / is locally Lipschitz continuous on [0, oo), these theorems are
known by H. Berestyski, P. L. Lions and L. A. Peletier [2] with help of
B. Gidas, W. -M. Ni and L. Nireberg's theorem [5]. But in the case/is not
Lipschitz continuous at 5 = 0, the situation is subtle. In [3,4] one of the
authors and N. Fukagai obtain analogous results by the "shooting
method". This method is elementary but the calculus was complicated because
of the lacking of regularity of/at s = 0. In this paper, to simplify the calculus
we give different proofs under little weakened conditions than in [3,4]. Since
we adopt variational methods for existence of nonnegative solutions of (0.1), we

rewrite as

J(u) = Φ(u) -

where

φ(u) = -\ \Fu\2dx

and

ψ(u)= I F(u)dx.(u) = ί
JB

If we define/as/(s) = 0 on [β, oo), the nonnegative solutions of (0.2) for this/
don't exceed β by virtue of the maximum principle, and so these solutions are
considered as the solutions of (0.2) for the original function /. Thus we may
assume /(s) = 0 on [/?, oo). Furthermore, since the solutions considered here
are nonnegative, we define /(s) on (— oo, 0) as /(s) = — /(— s).

REMARK 1. If our problem is only the existence of solutions, the
conditions (A3) and (A4) are not necessary, but we may pose only a weaker
condition
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ΛΓ + 2
lim/ + (s)/5/ = 0 with / <

J V - 2 '

where / + (s) = max{/(s), 0}.

§1. Existence of nonnegative solutions

As preliminaries for the proofs of Theorems 1 and 2 we show the existence of
weak solutons in #Jr(BR) and in H$(RN), and then regularity of them, where

and

H}(RN) = {ueHl(RN)'9 u(x) = u(\x\)}.

We study critical points of J(u) in #J,r(βΛ) and of Φ(u) in H}(RN) under the
condition Ψ(u) = 1. Let Ci be arbitrarily chosen in (ζ0, β). Then by virtue of
(A2) and (A3) we see F(s) <F(ζl) for 0 < s < d

LEMMA 1. Let pe(R0, R) and put

i f P < W ,

uεHQtr(BR) and if RQ is large enough, then

J(ύ) < 0

and

Ψ(u) > 0.

PROOF. By simple calculation we have

Φ(ύ) = ^-\SN^\t

where | SN x | is the area of N — 1 dimensional unit sphere and

ωN = 2πN/2/NΓ(N/2)

with
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f00

ι = e-'t"-1*.
Jo

Γ(N)

On the other hand we have

ψ(u)= F(u)dx + I F(u)dxu)= F(u)dx+ F(u)
JBP., J*pVBp-ι

= F ( ζ l ) I dx + IS"'1! Γ F(u)rN~ίdr
Jjp-! JP- 1

> FίOΛp - If + F(£2)ωN{p" - (p - If}

and so

- Ψ(ΰ)

? - 2F(C2)] ^TT - l ~ 2F (ίι)}»

where F(C2) = πώiosζsζi F(ζ). Then there exists .R0 such that ^(tί) > 0 and
J(u) < 0 for any p > R0. The proof is complete.

LEMMA 2. Lef .R0 be the constant obtained in Lemma 1. Then under the
conditions (Al)-(A3) for any R > R0 there exists a weak solution v of (0.1) in

HQ^BR) such that J(v) < 0.

PROOF. Since the proof is standard, we sketch a brief proof. Consider
inf{J(w); ueH^r(BR)}. Since F(ζ) is bounded, J(u) is bounded from
below. Hence we can choose {«,-} in #J>r(5R) such that

r(BR)} as ;'— > o o .

Then by an easy caculation we see that {Uj} is bounded in Hj>r(£K), and so we
may extract a subsequence-still denoted by {Uj}- such that

Uj — > v weakly in H o,r(BR)

and by Sobolev's imbedding theorem

Uj — > Ό strongly in Lq(BR) for 2 < q < 2*

and
Uj — » v a. e. ,

where 2* = 2N/(N - 2) iϊ N > 2 and 2* is any constant > 2 if N = 2. From
these facts it follows that J(υ) < C. By the definition of C we have

J(υ) = C.
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On the other hand, in view of Lemma 1 we see

J(v) < J(u) < 0,

which asserts Lemma 2.

LEMMA 3(Strauss[9]). Let N>2. Every function ueH}(RN) is almost
everywhere equal to a function U(x) continuous for x φ 0 and such that

\U(x)\<CN\x\^-N^2\\u\\Hl(RN) for \x\ > *N

where CN and αN depend only on the dimension N.

LEMMA 4 (Strauss [9]). The injection H}(RN) c Lq(RN) is compact for 2<q

<2*

Putting R = oo in (0,1) we interpret (0.1) as BR = RN and lim^^ u(x) = 0
instead of u(x) = 0 on dBR. Then by the same way as in [1] we have the
following Lemma. We give a brief proof to close the paper.

LEMMA 5. Let R = oo in (0.1). Then under the conditions (Al)-(A3) there

exists a nonnegative nontrivίal weak solution w of (0.1).

PROOF. Let M = {ueH}(RN)i Ψ(u) = 1}. Then M Φ φ. In fact, accord-

ing to Lemma 1 we have Ψ(ύ) > 0. Defining ύσ by ύσ(x) = u(x/σ) for any
σe(0, oo). We see Ψ(ύσ) = σN Ψ(ύ). if we choose σ as σNΨ(ύ)= 1, we see

M φ φ. Consider inf{Φ(w); weM}. By the same way as in the proof of

Lemma 3, taking Lemma 4 into account we have weH^(RN) such that

Φ(w) = inf{Φ(w); weM}.

Since w (> 0) attains an infimum of Φ(ύ) under the condition Ψ(ύ) = 1,
there exists a nonzero constant θ such that

that is

(1.1) -Aw = θf(w) weakly in H}(RN),

or

d2w N - 1 dw
(1.2) —-y- + — = - θf(w) weakly in 0 < r < oo.

ar r or

Suppose θ < 0. Then we see w < α. In fact, from Lemma 3 it follows that w

is continuous except r Φ 0 and lim,..̂  w(r) = 0, from which we can find a

bounded domain Ω <= RN such tht w > α in Ω and for some ball B C Ω we have
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sup w = sup w,
B Ω

if there exists x0 e RN such that w(x0) > α. Then the maximum principle
[6, Theorem 8.19] leads to a contradiction, and so we see w < α. Since w < α,
we have F(w) < 0, which contradicts

ίF(\v)dx= 1.

Thus θ > 0. If we take w(x/^/θ) as w, this w is the solution to be found. The
proof is complete.

Let u be υ or w. Since ueHQf(BR)(oτ H$(RN)), a weak derivative du/dr is
locally integrable function of (0, Λ] (when R = oo, (0, Λ] is interpreted as
(0, oo)). Thus it follows from Schwartz distributional arguments [10, Theorem
17] that u is locally absolutely continuous on (0, #], and therefore u has
derivatives u'(r) at almost all re(0, R~\. Since u satisfies

d2u N - 1 du
° weakly in (°> R)>

and/(w) is bounded in (0, R), it follows from the same reasoning as above that
u' is also locally absolutely continuous on (0, #]. From this we have, for any

s, re(0,Λ)

/ Λ Λ T - I Cr /Λ*"1

(1.3) ιι'(r) = - u'(s)- /MO) M dζ,
\r/ Js \r /

which yields weC2(0, R]. Furthermore, since /(w) is bounded in (0, R), we see
that we WfcS(BJ for any 1 < p < oo (c.f. [6, Theorem 9.15]). Hence w e C1^*)-
Letting s->0 and then r-»0 in (1.3) we have w'(0) = 0. From the equation

r

there exists M"(0) and so weC2[0, Λ], Thus we have the following

PROPOSITION 1. Let R0 be the constant obtained in Lemma 1. Then under
the conditions (A V)-(A 3) there exists a C2 positive solution v of (0.2) for some
μe(0, β) such that J(v) < 0.

In view of the above facts and Lemma 3 we have the following

PROPOSITION 2. Let R = oo. Then under the conditions (^l)-(^3) there
exists a C2 nonnegatίve nontriυial solution w of (0.2) for some μe(0, β).
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§2. Qualitative lemmas for solutions

As in Section 1 let u be v or w. Then u is a C2 solutin of

(2.1) w" + —

and we have the following

LEMMA 6. For α«y 0 < r^ < r2 < R the following identity

(2.2) |u'(r2)|2 + F(u(r2)) + — - |w'(r)|

PROOF. Multiply the both sides of (2.1) by u' and integrate them from r^
to r2. Then we have (2.2) sinceίίw')2}' = 2w'V and {F(u)}' =f(u)uf. The
proof is complete.

LEMMA 7 (Pohozaev's identity [8]). Lei v be a C2 solution of
(0.2). TTzeλz the following identity

(2.2) )̂ fVwfr"-1*- + AT ΓfW
/ J o Jo

PROOF. Multiply the both sides of the equation

ri-iy-ipγ =_/(„)

by v'r'N and integrate them from 0 to R. Then we have

PR PR
(2.3) — f(v)v'rNdr = [ — rNF(v(r))]ξ + F(v(r))rN ldr

Jo Jo

_ p* N_1

Jo

On the other hand

CR ΓR
(rN'lvJυrrdr = RN(v'(R))2 + {(t;')2^"1 + v'v"rN}dr.

Jo Jo
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Since
CR \ M ΓR

(v')2rN~1dr9ΓJoJo Δ Δ Jo

it follows that

(24) (R(rN-1v')v'rdr = -RN(v'(R))
Jo 2 v ^ / J o

From (2.3) and (2.4) we obtain (2.2). The proof is complete.

LEMMA 8. υ'(R) < 0.

PROOF. By Pohozaev's identity we have

ί̂ -T l̂ fW r"~ ldr + N [RF(v)rN~ldr = RN(v'(R))2.
\ 2 / J o Jo

On the other hand, since v satisfies J(v) < 0 or

|SΛ

it follows that

jvUr^)^ Γ(v')rN-ldr- (RF(υ)rN-ldr<
\ z jo Jo

RN(v'(R))2 = F(υγrN-ldr -7^^J(v) > 0,
Jo lύ I

which together with the fact v'(R) < 0 yields v'(R) < 0.

LEMMA 9. Suppose there exists r0e[0, R) such that w'(r0) = 0. Then one

of the following statements holds:

(i) M(r 0)>Co
(ii) u = 0 on |>o, R].

PROOF. Use Lemma 6 with rx = r0 and r2 = R. Then,

' = F(n(r0)).
Jr0

Hence we obtain F(w(r0)) > 0, from which together with (A3) it follows that

(2.5) iφ o) > Co

or

(2.6) ιι(r0) = 0.

First consider the case of (2.5). If ιι(r0) = Co» then u' = 0 on [r0, R], and so

u = Co on Crθ' *1 which is a contradiction, since w(K) = 0. Thus



Semilinear elliptic equation 261

u(ro) ^ ίo By the same reasoning as is mensioned above we see u = 0 on
[r0, #] in the case of (2.6). Thus the proof is complete.

LEMMA 10. Suppose that there exists an r0e[0, R) such that u(r0)
= 0. Then u = 0 on [r0, #].

PROOF. Since u is C2 and nonnegative on [0, #], we obtain u'(r0)
= 0. Hence it follows from Lemma 9 that u = 0 on [r0, K], since M(ΓO)
= 0. The proof is complete.

§3. Proofs of Theorems 1 and 2

As for the proof of Theorem 1 taking Lemmas 8, 9 and 10 into account we
have only to prove v' < 0 on (0, R). On the other hand, as for the proof of
Theorem 2, let

R1 =inf{r>0; w(r) = 0).

Since w φ 0, we have, from Lemma 10,

R! >0, w > 0 on[0, R).
and

w = 0 on [Rl9 oo) if #! < oo.

Since wr(0) = 0, it follows from Lemma 9 that w(0) > ζ0. Thus we also have
only to show w' < 0 on (0, RJ. Since the proof of Theorem 1 is the same as in
Theorem 2, we prove only Theorem 2. Suppose there exists r'e(0, RJ such
that w^r') = 0. Then we may assume w"(r') < 0, since w > 0 on [0, R^) and

w(Ri) = 0. From Lemma 9 it follows that

(3.1) w(r') > Co-

Consider the case w"(rr) = 0. Since w satisfies the equation (2.1), we have

/Mr')) = 0.

This together with (3.1) leads to

w(r') = β.

Then from the uniqueness of solutions of the equation (2.1) with w(r') = β and

M'(r') = 0 it follows that w = β on (0, KJ, which contradicts w^) = 0. As for
the case w"(rr) < 0, since w'(0) = 0, there exists a r" e [0, r) such that

(3.2) w'(r") = 0 and w"(r") > 0.

Then it follows from Lemma 9 that
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(3.3) w(r")>C 0.

On the other hand, since w is a solution of the equation (2.1), we see
/(w(r")) < 0, which yields

(3.4) 0 < w(r") < α

or

(3.5) w(r") = β.

The inequality (3.4) contradicts (3.3). On the other hand, (3.5) doesn't occur by

the same reasoning as is mentioned above. Thus we have w' < 0 on

(0, RJ. The proof is complete.
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