
HIROSHIMA MATH. J.
26 (1996), 103-116

On a function space related to the Hardy-Littlewood inequality

for Riemannian symmetric spaces

Dedicated to Professor Kiyosato Okamoto on his 60th birthday

Keisaku KUMAHARA
(Received September 5, 1994)

ABSTRACT. On Riemannian symmetric spaces G/K we define an Lq type Schwartz

space /q(G) which corresponds to the Schwartz space with weight |x|π(ς~2) on Rn. We

study some properties of /q(G) and we prove if 2 < q < 4 and p and q are conjugate,

then Jq(G) equals to the Lp-type Schwartz space JP(G) defined by Harish-Chandra.

1. Introduction

For a real number q (2 < q < oo) and a Borel function / on Rn we put

It"

and denote by Jq(Rn) the Banach space of all Borel functions / on Rn

satisfying ||/||(9) < oo. The Hardy-Littlewood theorem ([3]) says that if
/ e Jq(Rn), then the Fourier transform / of / is well-defined and there exists
a constant Cq > 0 such that

\ \ f \ \ q < C q \ \ f \ \ ( q ) .

On the other hand, if 1 < p < 2 and - + - = 1, then the Fourier transform
P q

/ of / e Lp(Rn) is well-defined and there exists a constant Bp > 0 such that

11/11, <Bp\\f\\p.

This is the Hausdorff- Young theorem. These two theorems suggest the resem-
blance between Lp(Rn) and Jq(Rn). In fact, if we put /α(x) = (1 + |x|2)α and

9β(x) = \*\β(\x\ < 1), = 0(|x| > 1), then
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~ofΛ e Jq(Rn)
2p

and

gf e U(Rn)oβ > --ogβ e Jq(Rn).

We have proved a Hardy-Littlewood theorem and a Hausdorff-Young
theorem (Eguchi-Kumahara [1], [2]) for the spherical Fourier transform on
Riemannian symmetric spaces G/K of noncompact type. The Euclidean space
Rn is the symmetric space of the Euclidean motion group by the rotation
group and is of rank one. The factor \x\n is the product of (distance from
the origin)rank and the Jacobian with respect to the polar decomposition. For
a noncompact type symmetric space X = G/K we denote by σ(x) the distance
from the origin to x, by / the rank of X and by Ω(x) the Jacobian with
respect to the polar decomposition. Then there exists a constant Cq > 0 such
that

α \ V «
\f(x)\qσ(x)«q-»Ω(xΓ2dμ(x)) ,

r /

for any X-biinvariant measurable function f on G whose value of the integra-
tion on the right hand side is finite (Hardy-Littlewood theorem). There exists
a constant Bp > 0 such that

11/11,

for any X-biinvariant IP function / on G (Hausdorff-Young theorem). We
define Jq(G) as the Banach space of all X-biinvariant measurable functions /
on G satisfying ||/||(€) < oo, where ||/||(ί) is defined by the right hand side
of the Hardy-Littlewood inequality (see §3). Let /P(G) = LP(K\G/K) be the

Banach space of X-biinvariant ^/-functions on G. If - + - = 1, then it can
P <1

be proved that the spherical Fourier transforms of functions in IP(G) and
Jq(G) can be extended holomorphically to a certain tube domain ([1, Theorem
2], [2, Theorem 2]).

The purpose of the present paper is to point out more similarities between
P(G) and Jq(G). There is a dense subset of P(G) which plays an important
role in harmonic analysis. That is the Schwartz space JP(G) of U type
(Trombi-Varadarajan [7]). We define the Schwartz space /q(G) of Jq type
and investigate some properties of /q(G). This is a Frechet space and dense
in Jq(G). Furthermore, Jq(G) is contained in /q(G). If 2 < q < 4, then we
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can prove that /q(G) = JP(G\ Moreover, we prove that /q(G) = SP(G) for
all q > 2 if the rank of G/K is one.

2. Notation and preliminaries

Let G be a connected semisimple Lie group with finite center and K a
maximal compact subgroup of G. We denote by g and I the Lie algebras
of G and K, respectively. Let g = ϊ + p be a fixed Cartan decomposition of
g with Cartan involution θ, α a maximal abelian subspace of p, and Σ the
corresponding set of restricted roots. Let M' and M be the normalizer and
the centralizer of α in K, respectively, and denote by W = M'/M, which is
called the Weyl group of G/K, and let | W\ be its order. Fix a Weyl chamber
α+ and put A+ =expα + . Let Σ+ be the corresponding set of positive re-
stricted roots and \Σ+\ be its order. For α 6 Σ+

9 gα denotes the root subspace

and mΛ = dim gα the multiplicity of α. Let n = ̂ r+ga and p = iZ^+maa-
Then g = ϊ + a + n is an Iwasawa decomposition of g. We denote by G =
KAN the corresponding decomposition of G. For x e G, H(x) e a denotes
the element uniquely determined by x e K exp (H(x))N. For aeA, we write
log a for H(a).

Let α* be the dual space of α and α£ its complexification. We denote
by < , > the Killing form of g. For λ e α*, let Hλ e α be the unique element
determined by λ(H) = <#A, #> for all H e α. For A, μ e α*, we put <>l, μ> =
(Hλ,Hμy and \λ\ = </l, Λ>1/2. Let n = 0(n) and N denote the corresponding
analytic subgroup of G. For ε > 0 we put Cεp = [w(εp); w e W~], the convex
hull of the set (w(βp); w e W}. For 0 < p < 2 we define the tube domain Tp

by Tp = α* + J^ΪC(2lp.i)p.
We denote by C™(G) the space of all compactly supported C°°-functions

on G and by CC°°(G/X) and Q°(X\G/X) the subspaces of C^G) of right
X-invariant and K-biinvariant functions, respectively. The Killing form
induces euclidean measures on A and α*. We normalize them by multiplying
with the factor (2π)~ί/2 and denote them by da and dλ, respectively, where
/ = dim α, the rank of G/K. Let dk be the normalized Haar measure on K
so that the total measure is one. The Haar measures on N and N are
normalized so that

θ(dn) = dn, f e-
2p(H™dn = 1 .

JN

Moreover, we normalize the Haar measure dx on G so that

I f(x)dx = I f(kan)e2p(lo*a)dkdadn , / e CC°°(G).
J G J KAN
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We denote by vol (K/M) the volume of K/M with respect to the K-invariant
measure dμ(b) induced from the restriction of — < , > to I. Let dkM be the
K invariant measure on K/M defined by dkM = vol (K/Mγldμ(kM\

The following integral formula corresponds to the Cartan decomposition
G = KAK (Helgason [6]).

α α e Γ +

fl dkldk29 /eQ°(G).
J jKxK

We put

β(exp H) = (^L^

By the VΓ-invariance of Ω(a)(a e A) we can extend it to G by Ω(x) = Ω(a) for

Finally, we put σ(x) = \/(X, Xy for x = k exp X, ke K9 X ep.

3. Schwartz space of If type

Let /P(G) be the Banach space of all K-biinvariant measurable functions
/ on G such that

-α11/11, = l/(*)Nχ < oo.
\ JG /

Of course, we identify two functions which differ only on a set of measure
zero. Let

φλ(x) = I
JK

be the elementary spherical function. Then φλ is bounded if and only if
λeTlf We put Ξ =φ0. The Harish-Chandra c-function is defined by

c(λ) = I g(~\/~ϊλ+p)(H(ίϊfi(ifϊ
JN

We define the spherical Fourier transform / of /e/1(G) by

/ W = I f(x)φ-λ(x)dx , A e α * .
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\w
Let L2( α*, n\\*^ ) be ^e Hubert space of W-mvariant square inte-

\W\\c(λ)\

grable functions on α* with respect to the measure l τ . r / l l ,^{2dλ. Then the
1

\W\\c(λ)\
Plancherel theorem can be stated as follows (see e.g. Warner [8], p. 338).

LEMMA 1. For fe Il(G)Γ\I2(G), we have

v l/2

I l / l l 2 = (τ4r

Moreover, the map f ι->/ can be extended to an isometry of I2(G) onto

L 2 ία* l

'\w\\c(λ)\2

The following is the Hausdorff-Young theorem (cf. Eguchi-Kumahara [1]).

LEMMA 2. Let 1 < p < 2 and - 4- - = 1. Then the spherical Fourier trans-
P 4

form can be defined for functions in P(G) and, for each f e P(G), the spherical
Fourier transform f can be extended to a holomorphic function on Int Tp and,
for any η e Int C(2/p-i)p, there exists a constant Bpη > 0 such that

( i Γ - /— , Y7'
iwi W + ̂ Wq\c(ξ)Γ2dξ < B,jn,

\l yy\ J α * /

Let l/(9c) be the universal enveloping algebra of the complexification 9C

of 9. Let p > 0. We denote by JP(G) the space of all /e C°°(K\G/X) such
that for any u e U(QC) and any integer m > 0,

μU/) = sup (1 + σ(x)Γ\(u f ) (x)\Ξ(xΓ 2 / p < oo .
JC6G

Then e/p(G) is a Frecht space by the system of seminorms {μ£m} and is
dense in P(G) (see Trombi-Varadarajan [7]).

Let S(α£) be the symmetric algebra over α£ and for s 6 S(α^) denote by
d(s) the corresponding differential operator on α .̂. Let 0 < p < 2. We define
the space ^(Tp) to be the set of all FΓ-invariant holomorphic functions F on
Int Tp such that for any s 6 S(α£) and any integer m > 0,

ζ*tm(F)= sup (1 + \λ\2Γ\(d(s)F)(λ)\ < oo .
λelntΓp

Then the following important theorem due to Trombi-Varadarajan holds true.

LEMMA 3 (TROMBI-VARADARAJAN [7]). Let 0 < p < 2. Then, for /e
./P(G), the integral f(λ) = JG/(x)φ_λ(x)dx converges absolutely for all λ e Tp.
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The function f lies in 3?(Tp) and the spherical Fourier transform f i—>/ is a

linear topological isomorphism of <?P(G) onto 3f(Tp).

4. Schwartz Space of /* type

For q > 2 we define the Banach space Jq(G) of all X-biinvariant measur-

able functions / on G such that

11(4) αz
\f(x)\qσ(x)l(q~2)Ωq-2dx < oo .

Then the following Hardy-Littlewood theorem holds (Eguchi-Kumahara [2]).

LEMMA 4. Let 2 < q < oo. Then the spherical Fourier transform can be

defined for f e Jq(G) and there exists a constant Cq > 0, independent of /, such

that

' 1 Γ - V"
j^J t\f(λ)\«\c(λ)Γ2dλ) <CJ/||(4).

We denote by /q(G) the set of all /eC°°(X\G/X) such that for any

u e t/(α£) and any integer m > 0,

v!tm(f) = sup(l + σWΓKHDWIσίxΓ-^OM1-^)^)-^ < oo .
jceG

Then /q(G) is a Frechet space by the system of the seminorms {vq

tm}.

5. Some inclusion properties

The following estimate in (1) is an immediate consequence of the definition

of Ω(x). The statement (2) is due to Harish-Chandra (see [4] Theorem 3).

LEMMAS. (1) We put c{ = 2~lΣ+l(2π)112 \ol(K/M)\WΓl. Then

Ω(a) - c1 e

2p(lo*a) aeA+ and a -> oo .

(2) There exist constants c2 > and d > 0 such that

1 < ep(lo*a)Ξ(a) < c2(l + |log a\)d a e A+ .

THEOREM 1. Let 1 < p < 2 and - + - = 1. Then we have
P q

c /«(G) c P(G) Π Jq(G)

and each inclusion map is continuous.
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PROOF: Let / e SP(G), u e U(QC) and m > 0 integer. For any x e G there
exist k1; fc2 e K and α e C\(A+) such that x = k1αk2. If α e Cl(/l"l")\/l+, then
Ω(a) = 0. So we assume that aeA+. Then, by Lemma 5, we have

= (1+ σ(a)Γ\(ίtf)(x)\σ(af1-3l^Ω(a)1-3"Ξ(aΓ219

σ(a))m+ί(1-2"»+2d/p\(uf)(x)\Ξ(aΓ2/p

σ(x))m+l<1~2/q)+2d/p\(uf)(x)\Ξ(xΓ2/p

Hence /e/«(G) and v« m(f) < cl-^'μ

Now let / e /q(G) and m be an integer satisfying m > -I l(p — 1) H -- I.
P

Then

where c3 = vf>m(/).

ί |/(x)|̂ x = |̂ | ί |/(α)|'0(α)dα
JG JA+

<c3\W\\ (l+σ(a)Γmpσ(a)l(p-2)Ω(a)p-lΞ(a)2p/qda
JA+

< c{-lclPlqc^\W\ I (1 + σ(α))-mpσ(α)ί(p-2)(l + σ(ά))2pd/qda
JA+

< c{-lc2

2

plqcs f (1 + σ(α))-mp+2^σ(α)ί(p-2)dα
J^

Γ°°
= c4 (1 4- tΓmp+2pdlqtl(p-2}+l-1dt < oo ,

Jo

where

Thus we have proved that there exists a constant c5 > 0 such that ||/||p <

Next we prove that /q(G) c= Jq(G) and the inclusion map is continuous.
d + /

Let / e /q(G) and m > . Then,
4
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ll/llfc = ί l/M|V(x)'<*-2>Ω(xΓ2<ίx
JG

= \ W \ \ \f(a)\qσ(a)l(t~2)Ω(a)q~lda
JΛ+

^ \W\{vlm(f)} ί (1 + σ(d)Γ^Ξ(dfΩ(a)da
Jx+

\
JA

σ(a)Γmq+2dda

Γ
= c6

J
(1 + tΓmq+d+l-ldt < oo ,

o

where

This completes the proof.

LEMMA 6. The space Q°(K\G/K) is dense in /q(G).

PROOF: For any t > 0, let Gt denote the set of those x e G satisfying
σ(x) < t and let χt denote the characteristic function of Gt. Fix a > 0 and
a K-biinvariant function cteC™(Ga) such that JGα(x)dx=l. We put gt =
(1 — χt) * α = 1 — χf * α, where the star denotes the convolution on G. Then,
by Harish-Chandra [5] Lemma 20, gteC?(K\G/K) and

θ if σ(x) <t-a

if σ W ^ t + α

and

< ί
JG

for M e 17 (gc).
For any / e /q(G) we put

Then it is obvious that ft € CC°°(G) Π /q(G). Fix ue l/(gc). Then there exist
finite elements uh u[ e L/(gc) such that

w(/ - ft) = u(gj) = X u'tgt ii,/ .
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If σ(x) > f + α, then

/(x)-/«(x) = fc(x)/(x)=/(x)

and if σ(x) > t, then, for any integer m > 0,

Hence, if σ(x) > t + α, then

(1 + σ(x)Γ|(M/)(x) - (uft

Now suppose that σ(x) < t + a. Since /(x) — /,(x) = 0 for σ(x) < t — α, we
assume that t — a < σ(x) < ί + α. Let ί > α. Then

(1 + σ(x)Π(u/)(x) - (uft

: = ί IMα
JG

where

This shows that vjtlll(/ —/4)-*0 as ί->oo and /f converges to / in /4(G).
Thus C?(K\G/K) is dense in /P(G).

THEOREM 2. Lei f̂ > 2 and - + - = 1. // < - < -, then
p q p q r p

/*(G) c Γ(G),

and the inclusion map is continuous.

PROOF: Let / e /q(G) and assume that m > — -f / ( — 1 ) + -. Let cί

4 \<? / r

and c2 be the constants in Lemma 5. First we have

|/(x)| < c3(l + σ(x)Γmσ(xΓl(ί~2lq)Ω(xΓi+2lqΞ(x)2lq

for all x e G, where c3 = vf>m(/). Then
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ί 1/MΓdχ
JG

<cr (1 + σ(x)Γrmσ(xΓrl(i~2/q)Ω(xΓr(1~2lq)Ξ(x)2r/qdxcrΛ
J

= c'3\W\ I
JA+

< c\-r(1-2/q)c2rlqcr

3\W\ f (1 +
JΛ +

< c\-r(l-2lq)c2

2

rlqcl\W\ I (1 4- σ(a)Γrm+2rd/qσ(a)rl(2/q-1}da
JA+

f °°

Jo

where

If we put

x the value of the integral in the last term}1/Γ,

we have ||/||r < c5v?,m(/).
If we choose r = 2, then we obtain the following corollary.

CROROLLARY. // 2 < q < 4, then /q(G) <= /2(G) and ίήβ inclusion map is
continuous.

The condition --- < - in Theorem 2 is necessary for the regularity of
p q r

the function Ω(ά)r(2/q~1}+1 on the walls of the Weyl chamber A+ except for
the origin. Hence if the rank / = 1, Theorem 2 holds for r > p and Corollary
holds for q > 2. In fact, we have the following proposition.

PROPOSITION. We assume that the rank I of G/K is one. Let q>2 and

- + - = 1. Then we have /q(G) c Γ(G) for all r > p and, especially, /q(G) c
p q
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PROOF: Suppose that --- > -. Let Gr = {x e G; σ(x) < t} be defined
p q r

as in the proof of Lemma 6. We denote by mt the supremum of the absolute
value of / e /q(G) on Gt. The function Ω(a) takes the minimal value at
σ(a) = 1 in (G\Gl)Γ\A+. Hence

ll/ l i ; < m\ vol (GJ + {v?,m(/)}' ί (1 + σ(x)ΓmrΩ(x)^q-^Ξ(x)2r'qdx
JGi

< m\ vol (GJ + c'\ (1 + σ(a)y
J(G\Gί)Γ(A+

< m\ vol (GJ + c" (1 + tΓrm+rddt < oo

for m > d + 1/r.

6. Fourier transforms of /q(G)

LEMMA 7. ^Γβ assume that q>2. Let φ be a measurable function on G
such that there exist a constant C > 0 and an integer m > 0 satisfying

(4.1) \φ(x)\ < CΞ(x)2i*(\ + σ(x))m (x e G) .

L(/) =

converges absolutely for all f e /q(G) and M e l/(gc), and L is a continuous
linear functional on /q(G). If φ and u*φ satisfy an inequality of the same
type as (4.1), then

ί uf-φdx= f-u*φdx,
s JG

where u* is the adjoint differential operator of u.

PROOF: By the inequality

\(uf)(x)\ < v£M(/)(l + σ(x)Γnσ(xΓl(ί'2/q)Ω(xΓ1J'2/qΞ(x)2/q

(xeG),



114 Keisaku KUMAHARA

I \(uf)(x)\\φ(x)\dx<Cί I (1 + σ(x))m~nσ(xΓl(1~2/q)Ω(xΓ1+2/qΞ(x)4/qdx
JG JG

<c2\ (1 + σ(a))m+4d/q-nσ(a)l(2/q-1)da
JA+

(1 + t)m+4dlq-nt2llq^da < oo-ΓJo

4
for n > m + - d + 2lq.

The second part of Lemma 7 is already clear.
Let Zκ(U($c)) the centralizer of K in U(QC). For any M e t/(gc) we can

find a unique element au e £/(αc) such that w — αM eϊl/(gc) + l/(gc)n. For
any z ε ZK(U(^C)\ we put τ(z) = ep o αz o e~p. Then τ(z) e U(ac). The follow-
ing lemma is due to Trombi-Varadarajan [7, Lemma 3.5.3].

LEMMA 8. Let seS(α£) and ds = deg(s). Then, if zeZK(U(§c)\
(z-τ(z)(λ))ds+1d(s)(φλ(x)) = 0 for all λea^ and xεG. Furthermore, given
u 6 l/(gc), there exist constants cus>0 and mus>0 such that for all x e G,

\d(s)uφλ(x)\ < c U f S { ( l +

THEOREM 3. Let 1 < p < 2 and - + - = 1. /// 6 /*(G), then the integral
P q

I.
converges absolutely for any λeTp. Moreover, the map f\-+f is continuous
from /q(G) to

PROOF: The first part follows from Lemma 7 and Lemma 8. Let λ
Int Tp and / e /q(G). Then for 5 e S(αfc)

ί \f(x)d(s)9.,(x)\dx^Cl !
JG JG

We can prove the latter part in the same way as in Trombi-Varadarajan
[7] Theorem 3.5.5. For λ, f as above, we have, for any zeZK(U(Qc)),



A function space related to the Hardy-Littlewood inequality 115

ί (((z* - τ(z)(-λ)Y^)f)(x)d(s*)(φ-λ(x))dx = 0 .
JG

Then,

|τ(z)(-λ)|< +1 \(d(s)f)(λ)\ < 2d*+1(i + μir Σ IΦίί-^l^'Vi..^*'/)

Since U(ac) is a finite module over τ(Zx(l/(gc)), we have the following. Given
s e S(α<:), there exists ms > 0, and for each v e U(ac\ a continuous seminorm
vVtS on /«(G) such that

for all /q(G\ λ € Int Tp. Since ms does not depend on Ό, /e ^(Tp) and the
map / h->/ is continuous.

7. Coincidence theorem

THEOREM 4. // 2 < 9 < 4 and - + - = 1, ί/ien /«(G) = ,/p(G). // the
P 4

rank of G/K is one, then /q(G) = SP(G) for all q>2.

PROOF: By Theorem 3 and Proposition, if / E /q(G\ then feX(Tp).
There exists a function /x e ^P(G) such that /i = / by Lemma 3. Then by
the Corollary of Theorem 2 and Lemma 1 /i(x) = /(x) for almost all x. Since
/1? /! 6 C°°(K\G/X), / = /!. Thus we have / e J?P(G).
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