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ABSTRACT. On Riemannian symmetric spaces G/K we define an L? type Schwartz
space #9(G) which corresponds to the Schwartz space with weight |x|["@"? on R". We
study some properties of #%(G) and we prove if 2 < g < 4 and p and g are conjugate,
then J9G) equals to the LP-type Schwartz space #7(G) defined by Harish—Chandra.

1. Introduction

For a real number g (2 < g < o) and a Borel function f on R" we put

1/q
Ifllg = ( f - |f(x)|q|x|"<q-2>dx)

and denote by J%R") the Banach space of all Borel functions f on R"
satisfying | fll4 < . The Hardy-Littlewood theorem ([3]) says that if
f € JYR"™), then the Fourier transform f of f is well-defined and there exists
a constant C, > 0 such that

11, < Cllfllg -

. 1 1 .
On the other hand, if 1 <p <2 and ;+ 5 = 1, then the Fourier transform
f of feLP(R" is well-defined and there exists a constant B, > 0 such that
171 < B, IS, -

This is the Hausdorff-Young theorem. These two theorems suggest the resem-
blance between LP(R") and J%R"). In fact, if we put f,(x) = (1 + |x|®)* and
gp(x) = |x?(|x| < 1), =0(]x| > 1), then
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foe LP(R") <a < —%@ﬁ, e JAR")
and

gp€ LP(R") <> > -%»g,, € JU(R").

We have proved a Hardy-Littlewood theorem and a Hausdorff-Young
theorem (Eguchi—-Kumahara [1], [2]) for the spherical Fourier transform on
Riemannian symmetric spaces G/K of noncompact type. The Euclidean space
R" is the symmetric space of the Euclidean motion group by the rotation
group and is of rank one. The factor |x|" is the product of (distance from
the origin)™"* and the Jacobian with respect to the polar decomposition. For
a noncompact type symmetric space X = G/K we denote by a(x) the distance
from the origin to x, by [ the rank of X and by £(x) the Jacobian with
respect to the polar decomposition. Then there exists a constant C, > 0 such
that

- 1/q
Il < C.,( L |f(X)l“a(x)""‘z’Q(x)"‘zdu(x)> ;

for any K-biinvariant measurable function f on G whose value of the integra-
tion on the right hand side is finite (Hardy-Littlewood theorem). There exists
a constant B, > 0 such that

Ifllg < Byl flp»

for any K-biinvariant L? function f on G (Hausdorff-Young theorem). We
define J4(G) as the Banach space of all K-biinvariant measurable functions f
on G satisfying | f|l, < o, where | fll, is defined by the right hand side
of the Hardy-Littlewood inequality (see §3). Let I?(G) = L’(K\G/K) be the

. . . 1 1 .
Banach space of K-biinvariant LP-functions-on G. If ’ + p =1, then it can

be proved that the spherical Fourier transforms of functions in I?(G) and
J9(G) can be extended holomorphically to a certain tube domain ([1, Theorem
2], [2, Theorem 2]).

The purpose of the present paper is to point out more similarities between
I’(G) and J%G). There is a dense subset of I?(G) which plays an important
role in harmonic analysis. That is the Schwartz space #7(G) of LP type
(Trombi—Varadarajan [7]). We define the Schwartz space #9(G) of J? type
and investigate some properties of #9(G). This is a Fréchet space and dense
in JYG). Furthermore, #9(G) is contained in #4G). If 2 <gq <4, then we
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can prove that #9(G) = #P(G). Moreover, we prove that #£4(G) = #P(G) for
all g > 2 if the rank of G/K is one.

2. Notation and preliminaries

Let G be a connected semisimple Lie group with finite center and K a
maximal compact subgroup of G. We denote by g and f the Lie algebras
of G and K, respectively. Let g=1%+ p be a fixed Cartan decomposition of
g with Cartan involution 6, a a maximal abelian subspace of p, and X' the
corresponding set of restricted roots. Let M’ and M be the normalizer and
the centralizer of a in K, respectively, and denote by W = M’/M, which is
called the Weyl group of G/K, and let |W| be its order. Fix a Weyl chamber
a* and put A" =expa*. Let X2* be the corresponding set of positive re-
stricted roots and |Z*| be its order. For a € Z*, g, denotes the root subspace
and m, = dim g, the multiplicity of «. Let n=Y ;.g, and p =% ;. mo.
Then g =%+ a+ n is an Iwasawa decomposition of g. We denote by G =
KAN the corresponding decomposition of G. For xe G, H(x) € a denotes
the element uniquely determined by x € K exp (H(x))N. For ae€ A, we write
log a for H(a).

Let a* be the dual space of a and a¥ its complexification. We denote
by ( , ) the Killing form of g. For A€ a*, let H, € a be the unique element
determined by A(H) = (H,, H) for all Hea. For A, pea* we put (i, u) =
(H,,H,> and |A| =<4, A2, Let fi=0(n) and N denote the corresponding
analytic subgroup of G. For ¢ >0 we put C,, = [w(ep); w e W], the convex
hull of the set\}w_(ep); we W}. For 0 <p <2 we define the tube domain T,
by T, = a* + /= 1Cqp-1),-

We denote by CX(G) the space of all compactly supported C*-functions
on G and by C*(G/K) and CP(K\G/K) the subspaces of CX(G) of right
K-invariant and K-biinvariant functions, respectively. The Killing form
induces euclidean measures on 4 and a*. We normalize them by multiplying
with the factor (2n)™"? and denote them by da and dAi, respectively, where
I = dim a, the rank of G/K. Let dk be the normalized Haar measure on K
so that the total measure is one. The Haar measures on N and N are
normalized so that

O(dn) = dn, f e 2PHMdn — 1
N
Moreover, we normalize the Haar measure dx on G so that

J fx)dx = J f(kan)e**"t9dkdadn,  fe C*(G).
G KAN
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We denote by vol (K/M) the volume of K/M with respect to the K-invariant
measure du(b) induced from the restriction of —¢ , ) to I. Let dk, be the
K invariant measure on K/M defined by dk,, = vol (K/M) du(ky,).

The following integral formula corresponds to the Cartan decomposition
G = KAK (Helgason [6]).

f S(x)dx = e Ivs;l S |Sinh a(H)|"dH

X JJ S(ky exp(H)k,)dk, dk, , feC(G).
KxK

We put

(2m)"? vol (K/M)

Q(exp H) = Wi

Hae z+ ISinh a(H)lm(a) ) Hea.
By the W-invariance of 2(a)(a € A) we can extend it to G by Q(x) = Q(a) for

x = kyak,, ki, k, €K, a€ A.
Finally, we put o(x) = ./<{(X, X) for x=kexp X, ke K, X ep.

3. Schwartz space of L? type

Let I?(G) be the Banach space of all K-biinvariant measurable functions
f on G such that

1/p
nfn,=< X f(x)l”dx) <o,

Of course, we identify two functions which differ only on a set of measure
zero. Let

@1(x) = J eWTTmREERGE  x e G
K

be the elementary spherical function. Then ¢, is bounded if and only if
AeT,. We put &= ¢, The Harish-Chandra c-function is defined by

o= [ ar<Fiamay
N
We define the spherical Fourier transform f of f e I'(G) by

f) = L f(X)o_;(x)dx, Aea*.
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1 w
Let L? (a* ) be the Hilbert space of W-invariant square inte-

s dA
IWlle@)]*

1
rable functions on a* with respect to the measure ————di. Then the
® i WileP
Plancherel theorem can be stated as follows (see e.g. Warner [8], p. 338).

LEMMA 1. For felI*(G)NI*(G), we have

—(lf Fayr dA)m
Iz =\ g7 | AP o :

Moreover, the map f v f can be extended to an isometry of I*(G) onto

2 a* 1 diw

The following is the Hausdorff-Young theorem (cf. Eguchi-Kumahara [1]).

1 1
LEMMA 2. Let 1<p<2and ;+ p = 1. Then the spherical Fourier trans-

form can be defined for functions in IP(G) and, for each f € I’(G), the spherical
Fourier transform f can be extended to a holomorphic function on Int T, and,
for any nelnt Cypy),, there exists a constant B, , >0 such that

1 - _ 1/q
<W f fE+ =1l 2d€> <B,,lIfll,, fel’(G).

Let U(gc) be the universal enveloping algebra of the complexification g¢
of g. Let p>0. We denote by #£?(G) the space of all fe C°(K\G/K) such
that for any ue U(g¢) and any integer m > 0,

HE ) = $uD (1 + 0 ()" I(6) () Zx)727 < 0.

Then #7(G) is a Frécht space by the system of seminorms {u?,} and is
dense in I?(G) (see Trombi-Varadarajan [7]).
Let S(a¥) be the symmetric algebra over a¥ and for se S(a¥) denote by
0(s) the corresponding differential operator on a%. Let 0 <p <2. We define
the space Z(T,) to be the set of all W-invariant holomorphic functions F on
Int T, such that for any se S(ag) and any integer m >0,
(2m(F)= sup (1+|A*)"|@E)F)A)| < 0.

AelntT,

Then the following important theorem due to Trombi—Varadarajan holds true.

LEMMA 3 (TROMBI-VARADARAJAN [7]). Let 0<p<2. Then, for fe
FP(G), the integral f(A) = [ f(x)@-:(x)dx converges absolutely for all i€ T,.
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The function f lies in 5_27(7;,) and the spherical Fourier transform f i f is a
linear topological isomorphism of #°(G) onto % (T,).

4. Schwartz Space of J? type

For q > 2 we define the Banach space J4(G) of all K-biinvariant measur-
able functions f on G such that

1/q

Then the following Hardy-Littlewood theorem holds (Eguchi—Kumahara [2]).

LEMMA 4. Let 2 <q < . Then the spherical Fourier transform can be
defined for f € JUG) and there exists a constant C, > 0, independent of f, such
that

1 ~ 1/q
(m L’ lf(/l)lqlc(i)l-zdl> <Cllfl -

We denote by #%G) the set of all fe C*(K\G/K) such that for any
ue U(at) and any integer m > 0,

v m(f) = sup (1 + a(x))"|(uf) (x)| 6 (x)"* ~#PQ(x)! ~2(x) E(x) ™ < o0 .
xeG

Then #%G) is a Fréchet space by the system of the seminorms {vZ,}.

5. Some inclusion properties

The following estimate in (1) is an immediate consequence of the definition
of Q(x). The statement (2) is due to Harish-Chandra (see [4] Theorem 3).

Lemma 5. (1) We put ¢, = 2715"12n)"2 vol (K/M)|W|™". Then
Q(a) < c,e?lsd  ge 4t
Q(a) ~ c,e?8d  ge 4t and a—- .
(2) There exist constants c, > and d > 0 such that
1 <ef295(a) < c,(1 + |logal) aed*.

1 1
THEOREM 1. Let 1 <p <2 and ;+ p = 1. Then we have

FP(6) = F4G) = IP(G)NJX(G)

and each inclusion map is continuous.
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Proor: Let f € #P(G), ue U(gc) and m > 0 integer. For any x € G there
exist k;, k, € K and a e Cl(4*%) such that x = k,ak,. If ae Cl(4*)\A*, then
Q(a)=0. So we assume that ae A*. Then, by Lemma 5, we have

(1 + a(x)™ () (x)] o (x)"! 2D (x)* =295 (x) =4
= (1 + o(a)"|(uf) ()| 6(a)'! "292(a)' ~#1E(a) >
< c1—2/q(1 + a(a))mﬂ(l—2/q)e2(1—2/q>p(loga)e(2/q)paoga)I(uf)(x)l
< e} HeP(1 + o(a))" 22| (uf ) (x)| S(a) P
= c17McFP(1 + ()1 T2O2AP | (uf ) (x) | 2(x) P
{ 2/qc 2/p

< P w1 - 2/q)+za/p1+1(f) <.

Hence f e #4G) and vZ,(f) < ¢i~#c3Pu? pipa - —yg+2aip1+1 ()
Now let f € #9G) and m be an integer satisfying m > E(l(p -1+ 2zd>
Then
|fO] < e3(1 + a(x)) "o (x) TR (x) T T HE(x)H

where c; = v{ ,.(f).

f If(x)l”dx=IWIj | f(@)IPR(a)da
G A*

< C3| Wl j (1 + a(a))—MPa.(a)l(P—Z)Q(a)p—lE(a)Zp/qda
A+

IA

“LedPlac,|W| J (1 + o(a))™a(a)®~2(1 + o(a))**"4da
A+

IA

~1e2plac, f (1 + a(a))"mp*2rdlag(g)P=Ddg
4

o0
= QJ (1 + £)~mp*2pdlagle=D+1=1g¢ < op
0

where
¢y = cile3Pve ()22t .

Thus we have proved that there exists a constant cs >0 such that | f], <

csvi m(f) < o0.
Next we prove that #9(G) = J%G) and the inclusion map is continuous.

Let fe #4G) and m > dTH Then,



110 Keisaku KUMAHARA

171ty = f P20 dx
=W f /(@ l'(@) (" da
< IV J (1 + 0(@) ™Z(a)*2(a)da
< et n(f))° f (1 + o(@) ™+ 2da

0
= c6f A+ ™1t < o0,
1]

where
ce = crc3{vi m(f)}120"20(/2)7" .
This completes the proof.
LEMMA 6. The space CX(K\G/K) is dense in #%(G).

Proor: For any t >0, let G, denote the set of those x € G satisfying
o(x) <t and let y, denote the characteristic function of G,. Fix a >0 and
a K-biinvariant function a e CP(G,) such that [sa(x)dx=1. We put g, =
(1 —y)*a=1— y,*a, where the star denotes the convolution on G. Then,
by Harish-Chandra [5] Lemma 20, g, e C*(K\G/K) and

_ )0 if ox)<t—a
g'(x)_{1 if o()=t+a

and

(ug,)(x)| < L lw)(yldy  (x€G)
for ue U(g¢).
For any f e #9(G) we put
fi=A—=g)f =@t *0f .

Then it is obvious that f,e C*(G)N #4G). Fix ue U(ge). Then there exist
finite elements u;, u; € U(g¢) such that

u(f — f) = u(g.f) = ¥ uig, uif -
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If 6(x) >t + a, then
fx) = £i(x) = g.(x)f(x) = f(x)
and if a(x) > t, then, for any integer m > 0,
(1 + o ()™ (f) (x)] o (x)"* ~HPQ(x)! " H9(x) Z(x) "X ()
<A+ ().
Hence, if a(x) >t + a, then
(1 + ()™ (f) (x) — @uf) (x)| o (x)"! ~2PR(x)!~¥4(x) E(x) =

<A+ ().

Now suppose that a(x) <t + a. Since f(x)— f(x)=0 for o(x)<t—a, we
assume that t —a<o(x)<t+a. Let t>a Then

(1 + o(x))" 1) (x) — W) (X)) ~20Q(x)'~29(x) Z(x)~ 4
< Y el + ()" |(uf) ()| o (x)' " H0R(x)' ~¥2(x) E(x) ">

< Z a(l+1t— a)_‘v:.‘,.,mﬂ(f) 5

where

¢ = J (i) (y)ldy -
G

This shows that v?,(f — f)—0 as t > oo and f; converges to f in #9(G).
Thus CX(K\G/K) is dense in #7(G).

1 1 1 1 1 1
THEOREM 2. Let g>2 and —+-=1. If ——-<-<-—, then
P q P q r°p
FUG) = I'(G),
and the inclusion map is continuous.
2d 2 l
Proor: Let fe _#%G) and assume that m >7 +1 5— 1 +;. Let ¢,

and c, be the constants in Lemma 5. First we have
|f()] < e3(1 + a(x)) ™0 (x) ™" THDQ(x) T 25 (x) ¥

for all x € G, where c; = v{ ,(f). Then
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j | f(x)I"ax
G
< CQJ (1 + a.(x))—rmo.(x)—rl(l—2/q)g(x)—r(1—2/q)5(x)2r/qu
G
=c}|W| f (1 + a(a)) ™a(a) "1~ H0Q(a)! T 2D E(a)* 4da
A+
< Ci_'(l_z/")cg'/qCHWI J‘ (1 + o,(a))—rm+2rd/qo.(a)rl(2/q—l)e(zr/q—2r+2)p(loga)da
A+
< ci—r(l—Z/q)cgr/q65|Wl J (1 + a.(a))—rm+2rd/qo.(a)rl(2/q—1)da
A+

©
< C4J‘ (1 + t)—rm+2rd/qtrl(2/q—1)+l—1dt < 00 ,
0

where
cq = clmrA=2Aa 2rlact dpl2 (1/2)71 |
If we put
cs = {ciTu-2cZanm 2 r(]j2)"
x the value of the integral in the last term}'",

we have ||fl, < csvi n(f)
If we choose r =2, then we obtain the following corollary.

CROROLLARY. If 2 < q <4, then #%G) < I*(G) and the inclusion map is
continuous.

.1 1 1, . .
The condition l_’_ p < - in Theorem 2 is necessary for the regularity of

the function Q(a)®4"V*! on the walls of the Weyl chamber A* except for
the origin. Hence if the rank [ = 1, Theorem 2 holds for r > p and Corollary
holds for g > 2. In fact, we have the following proposition.

PROPOSITION. We assume that the rank | of G/K is one. Let q >2 and

1 1
;+ P = 1. Then we have #%G) < I'(G) for all r > p and, especially, #4G) <

I*(G).
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1 1 1
PrOOF: Suppose that . > - Let G, = {x € G;0(x) <t} be defined

as in the proof of Lemma 6. We denote by m, the supremum of the absolute
value of fe #9G) on G, The function Q(a) takes the minimal value at
o(@ =1 in (G\G,)NA,. Hence

If1I7 < m} vol (Gy) + {v{ n(f )}'f (1 + o(x)) ™™ Q) H D E(x)* "dx
G,

< m»i vol (Gl) + C,J (1 + a(a))—mrQ(a)l+r(2/q—1)5(a)2r/'1da
(G\Gy)N4,

< m] vol (G,) + ¢” j (1 4 t)™™*ridt < o0
1

for m>d + 1/r.

6. Fourier transforms of #4(G)

LEMMA 7. We assume that q > 2. Let ¢ be a measurable function on G
such that there exist a constant C >0 and an integer m > 0 satisfying

4.1) lo(x)| < CE(x)*4(1 + a(x))" (xeG).

Then

L(f) = f . () (x)o(x)dx

converges absolutely for all fe #4G) and ue U(gc), and L is a continuous
linear functional on #4(G). If ¢ and u*@ satisfy an inequality of the same
type as (4.1), then

juf'¢dx=ff'u*¢dx,
G G

where u* is the adjoint differential operator of u.
Proor: By the inequality
(uf ) ()] < V2, ()1 + a(x) "o (x) " T/0Q(x) T 5 (x) e

(x€G),
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r

f @)l e()ldx <ci | (1 + a(x)" "a(x)"" " 20Q(x)™ " 245 (x)*4dx
G JG

.
<c, (1 + a(a))"**41 "g(a)' ¥4~V dq
J At

(* o
—cy | (1+mrdemleli < o
JO

for n>m+gd+21q.

The second part of Lemma 7 is already clear.

Let Zx(U(gc¢)) the centralizer of K in U(g¢). For any ue U(ge) we can
find a unique element a,€ U(ac) such that u —a,efU(gc) + U(ge)n. For
any z € Zx(U(g¢)), we put 1(z) = e oa,oe®. Then 17(z)e U(ac). The follow-
ing lemma is due to Trombi—Varadarajan [7, Lemma 3.5.3].

LEMMA 8. Let seS(a¥) and d,=deg(s). Then, if zeZg(U(gc)),
(z — t(2)(A)**10(s)(ps(x)) =0 for all Aea® and xe G. Furthermore, given
ue U(gc), there exist constants c, >0 and m, >0 such that for all x € G,
Le T,

[0(8)ugs(x)] < ¢ {(1 + [A)(1 + a(x))}™esZ(x)> 7P

1
THEOREM 3. Let 1 <p <2 and ’ + é = 1. If f € #9%G), then the integral

fo)= L Jx)o-a(x)dx

converges absolutely for any i€ T,. Moreover, the map f f is continuous
from #4G) to Z(T,).

Proor: The first part follows from Lemma 7 and Lemma 8. Let A€
Int T, and fe #%G). Then for se S(a¥)

L [f(x)0(s)p-s(x)|dx < ¢, L IfGI + [A)™(1 + o(x))"E(x)* " Pdx

<y (1 + [A)™y,5(f) -

We can prove the latter part in the same way as in Trombi-Varadarajan
[7] Theorem 3.5.5. For A, f as above, we have, for any z € Zx(U(g¢)),



A function space related to the Hardy-Littlewood inequality 115

L (((z* = 1@ (=) ™)) ()0(s*)(@-2(x))dx = 0 .
Then,

F@(=AFHEONH DN < 2 A +12) T @A ).
<i<d,
Since U(ac) is a finite module over 7(Zx(U(gc)), we have the following. Given
s € S(a¥), there exists my > 0, and for each ve U(ac), a continuous seminorm
Vys on #%G) such that

@@ A < (1 + 2™, 4(f)

for all #%G), A€lInt T,. Since m; does not depend on v, fe ?(Tp) and the
map f +— f is continuous. ’

7. Coincidence theorem

THEOREM 4. If 2<q<4 and ;+$= 1, then #4G)= S?(G). If the
rank of G/K is one, then #4G)= $P(G) for all q > 2.

Proor: By Theorem 3 and Proposition, if fe #9G), then fe f(Tp).
There exists a function f, € #7(G) such that f; = f by Lemma 3. Then by
the Corollary of Theorem 2 and Lemma 1 f,(x) = f(x) for almost all x. Since
fi, f1 € C°(K\G/K), f=f,. Thus we have fe #7(G).
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