HIROSHIMA MATH. J.
30 (2000), 167-178

L? boundedness of rough Marcinkiewicz integral
on product torus
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AsstracT. This paper is a continuation of our study [D] [CDF] on rough Marcin-
kiewicz integral operator on product space. Suppose that Q(x’, y') € LI(S"! x §™-1)
(n>=2,m=>2,q>1) is homogeneous of degree zero satisfying the mean zero properties
(1.1)=(1.3). For C* functions f on the product torus T" x T”, the Marcinkiewicz
integral operator on T" x T™ is defined by

. . ~ 1/2
fof (% y) = (JR JR B0+ f(x, y)|2dtds) ,
where d~5,,s has the Fourier series

B s(x,3) ~ D B2k, 2%k )P ki T2y
ki k2

In this paper we show that if ¢ > 1 then the operator i, can be extended to a
bounded operator on L”(T" x T™) for 1< p < 0.

§1. Introduction and results

Let R” be n-dimensional Euclidean space and S”~! be the unit sphere in
R" (n >2) equipped with normalized Lebesgue measure do = do(x’), where
x'=x/|x| for x#0. In [S], Stein introducted the Marcinkiewicz integral
operator u, of higher dimension as follows.

o (x) = ( [ zf)m,

t3
where
Qx—y)

Fi(x) = J]x—y| eyt (y)dy,

Qe L'(S"") is homogeneous of degree zero satisfying [g,., 2(x")do(x’) = 0.
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In [S], Stein proved that if € is continuous and satisfies a Lip, (0 <a < 1)
condition on S§"!, then u, is of type (p,p) for 1 < p <2 and of weak type
(1,1). It was pointed out in our previous paper [CDF] that to assert the L”
boundedness of p, for 1 < p < oo, the smoothness condition assumed on 2 can
be replaced by a weaker size condition 2 € L7 (S"!) (¢ >1). In [CDF], we
considered the Marcinkiewicz integral operator on product space R” x R™ by

o (e drds \?
wat o) = ([ | 1o )

— Q0
where

Q(x—u,y—v)

Fis(x,y) = JJIX—ulsT S (u, v)dudv,

lm—l
ly—v| <2¢

x—u" My —v

QelL (S"'x 8" (n>2,m>2,q>1) satisfying the following conditions:

(1.1) Q(tx,sy) = Q(x, p) for any t,5 >0,

(1.2) J Q(x',y)do(x') =0  for any y' e S™!,
Sn-1

(1.3) J Q(x',y")da(y') =0  for any x' e S"!.
Sm—1

The following theorem can be found in [CDF].

THEOREM A. Suppose that Q € LY (S"~! x S™~1) (g > 1) satisfying (1.1)-
(1.3). Then for 1 < p < oo, there is an A, > 0, independent of f, such that

SN rwrxrm) < Apllf Nl LrRrxrm)-

Let &,,(x,y) = 2—"12-msq>(-2)it,%) with

B(x, y) = x|y, V) as(IxDxs (),

where yp(z) is the characteristic function of the set {z: |z] < 1}. It is easy to
see that

pat 5. = (| [ 1200 163 y>|2drds)l/2.

This suggests that we can define the Marcinkiewicz integral operator on
product torus T" x T™ by

o f(x,y) = (jR |, 181070 y>|2dzds)l/2,
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initially for f e C® (T" x T™), where d~5,$s has the Fourier series

¢ts x y Z ¢ tkl sk) 2niky-x 2mk2y
ki, kay

Let us describe our definition more precisely in the following. For N =n or
m, the N-torus TV can be identified with RV /AN, where Ay is the unit lattice
which is an additive group of points in R" having integer coordinates. Let
A=A, x A, Any feC® (T" x T™) has the Fourier series

f(x y Z Ckl,kz 21uk1x 2mk2y

(k1,k2) €A

where

Ckl,kz = JJQ 0 f(x, y)e—Znik1 ~xe—27rik2-ydxdy
. X O

and Qy (N =n,m) is the fundamental cube of TV which is the set
On ={x=(x1,x2,...,xy) eRY : =1/2<x; < 1/2, j=1,2,...,N}.

Therefore noting &(0,5) = @(£,0) =0 for any #,&, we have

ét,s *f(x, y) — z <13(2’k1, 2sk2)Ckl’kzeZniereZnikz'y'
(k1,k2)eA
Ky #0,k; #0
The main purpose of this paper is to establish the following

THEOREM 1. Suppose that Q € L9 (S"' x ™) (g > 1) satisfying (1.1)-
(1.3). Then for 1 < p < o, there is a B, >0, independent of f, such that
B, < A4, and

oS Nl rrxrmy < Bollf e rnxrm

where A, is the constant in Theorem A.

§2. Proof of Theorem 1

The proof of Theorem 1 will use some ideas in [F]. Let J, be the dilation
operator such that J,f(x) = f(ex). For any fixed integer L > 0, we choose a
function y € #(R") that satisfies Y(x) =1 on Q, and

suppy c {xeR": -1/2-1/L<x;<1/2+1/L, j=1,2,...,n}.
We also choose a function I" € (R™) that satisfies I'(y) =1 on @, and
suppl’ = {yeR":-1/2-1/L<y;<1/24+1/L, j=1,2,...,m}.
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In addition, we require 0 <y <1, 0<I'<1. For any feC® (T"xT™),
without loss of generality, we may assume that f has the Fourier series

; 2mikyx , 2miky-
f(x,y)= Z Ckl,kze mikyx o 2mikyy
(k1,k2) 4
ky #0,ky #0

So we can view f as a periodic function on R” x R”. Let M be an integer
larger than L. We consider the difference

EM(xa Y, t,S) = '!/ i r l ét,s *f(x7 y) - ¢I,S * (f(él/Ml//) ® (51/MF))(X7 y)
M M

We need the following lemma.

LEMMA 1. Under the conditions of Theorem 1, with the choices of Y and
I, we have

M-

lim <JR JR |Ep(x, y, ¢, s)|2dtds>l/2= 0

uniformly for (x,y) e R" x R™.

Using Lemma 1, we may prove Theorem 1. In fact, since fj, f is a
periodic function, for any integer M > 0,

- B 1/p
@) Wafloran = ([, [ 1artx ) pasay)

n m

. 1/p
- (M*"“")j 2L y)|”dxdy) .
MQ, JMQp,

Noting z/z(—)%) =1 on MQ, and F(%) =1 on MQ,, by (2.1) we have

g f 17 rnrm)

= (M‘(’”'”') JM ” JMQM w(%)r (A—yl)ﬂgf (x,»)

(o o (L)

p 1/p
dxdy)

1/p

2 p/2
dtds) dxdy
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From this and Lemma 1, we get

(22) llagf 1l zrrnxrmy

p/2 1/p
< lim (M-<"+'">j J (] J \En(x, y, t,s)|2dtds) dxdy)
M- MQ, IM0,, \ JRJR

t A}g»noo (M_(n+M) JMQ,, JMQ,,, (JR .[R @1 % [f(51/M¢)

p/2 1/p
® (01/m D)) (x, y)|2dtds> dxdy)

R (e

1/p

p/2
® (1/m))(x, y)|2dtds) dxdy)

Let G(x,y) =f(x, y)tﬁ(%)]‘ (A_)/il) Then the last integral in (2.2) is

1/p
(s | [ oGt s)Pasay)

By Theorem A, we have
1/p
(e | [ InoGx sy
R" JR™

<4, M (p+mp) (J

R"

— APM_("I’*'"") (J J

By the choices of y and I" we have

[ 16t raa)

7w (5)r (%)

p 1/p
dxdy) .

1/p
3 (e | g sy

~ 1/p
<a,(som | ] (e
Y [
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where
M M M M
- = n:————— < — _— = .
Ay {x (x1,x2,...,%x,) €R > T I <x < 3 + I ji=12, ,n},
M M M M
= = e Vm m._—_ _— < —+—, j=1,2,....m}.
Am {y (.VlaJ’Z, Iz )GR 2 I3 <yj ) +L J 1,2 m}

Therefore if M > L, since f (x,y) is a periodic function satisfying

fx+1,9)=f(x,y+1)=f(x,y)  for any (x,y) eR"xR",
by (2.3) we have

1/p
ea)  (wrem [ ] Gl )Py )

n+m 1/p
<4, <M“(”+”‘) [M + 2TM] J J |f(x, y)lpdxdy)

n m

=4, ( [1 + %] MJQ" ng |f(x, y)]pdxdy)l/p.

Thus by (2.2)-(2.4) we obtain

(n+m)/p
] T P—

ldaf e crnsrmy < 4p [1 I
Since L > 0 is arbitrary, we have
i@ f |l Lrxnxrmy < Apllfll L ernsrm-

The proof of Theorem 1 is complete.
Thus the proof of Theorem 1 is reduced to proving Lemma 1. However,
the proof of Lemma 1 will depend strongly on the folowing Lemma 2.

LEMMA 2. Suppose that Qe L1 (S" ! x §"Y) (¢ > 1) satisfying (1.1)-
(1.3), then there are J,a,B,a',f > 0 and constants Cy,C, > 0, independent of
I€|, |n| and 7y, such that

(i) (8 m)I* < Crminle] a2, 1€l 1€l ™7, 161 nl s
(i) By +&n) —B(,m)| < Col¢|min{lg|”, 17| }.

Proor. The conclusion (i) is just Lemma 2.2 in [CDF]. Below we only
give the proof of (ii). Denote I =|®(y+¢&,7) — B(y,n)|. Recalling that

®(x, y) = x|y, ¥ as(x)xs(y),
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we have

Q / / . .
J J _n(__?lC,_ym)__T e~ 24 y) (o= 27X _ ) dxdy
W<t dpi<t |x"yl

By (1.2) we have

x e~ 2mim ¥ [g=2mex" _ | drdhdo(x")da(y')

= O([¢] [n1)-

Let S(r,x',&,y) = e 2mmx'[e=2mrex" _ 1] then |S(r,x',&,y)| < C|ré]l. On the
other hand, we have

1 pl
<]
0Jo

1 p1
N J J JJ Q(x/7 yl)me—ZRihr]-(y/_vl)
0 Jo JJ(sm1xsm-1)?

x S(r,x', &, y)S1(r,u', &, y)da(x")da(y")do(u')da(v")drdh

1 pl
— JJ Q(x', yl)Q(u/, U/)J J e—27zihr]-(y'—v’)
(Sn-1xSm-1)2 0Jo

x S(r,x', & y)S1(r,u, &, y)drdhdo(x")do(y")do(u')da(v'),

2
drdh

J J Q(x', y")e MY S(r,x', &, y)do(x")do(y")
Sn—lxgm-1

where Sj(r,u’,¢,y) = e~ 2 (-«)[g2mirtu’ _ 1] Clearly we have

1 pl
(2.6) LJ e 2= S (p X! E DSy (ru', €, y)drdh| < C|E|%.
0

On the other hand,

1 pl
(2.7) J J e MY =S (v, X' E,9)S1 (v, U’ €, y)drdh

0Jo
1
S J
0

< ClePn- (v =)™
By (2.6) and (2.7), we may take an ¢ > 0 satisfying ¢ < 1/¢’ such that

1
J e—znfh»(y'—v')dh} IS(r,x',&,9)S1(r,u', &, 7)ldr
0

1 ¢l
(2.8) j j e-z""h"“’-””S(r,x',f,wsl(r,u',é,y)drdh}s€|¢|2|n-<y'—v'>rf.
0

0
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By [DR] and using (2.8), we have

I* < Clé)? ” Q(x', y)Qu', v")|
(Sn-1xS§m=1)?

X |n- (y' = v')[do(x")do(y")do(u')da(v")

1/q'
< Clélzlﬂl-—ﬁnglliq(s,,_lXsm—l) <JJ |y/ _ v/|—q’£dg(y/)d0'(v/))

(Sm—IxSm—l)2
2 |—¢
< CIEl|m| ™

Thus we get

(29) |B(y + &) — B(,m)| < Clel Inl =2,
Finally by (2.5) and (2.9) we complete indeed the proof of Lemma 2 (ii) if
taking o' =1 and g’ =¢/2.

Now let us turn to the proof of Lemma 1. Denote the Fourier transform
of Ep on (x,y)-variable by Ey, then

EM(-xy Y, Z,S) = JJ EM(é, 7,1, S)EZnixCeZniy-qdéd”'
R"xR™
Recall
f(x7 y) = Z Ckhkzez”ikl‘erMkz-y

(ki,ky) €A
ki #0,ky #0

with rapidly decay cofficients C, . If we denote

Hio o1t (6, 3,1,5) = D21, 2°K2) j j M (ME)F(M)e<e ¥ dédy,
R"xR™

T kot (%, 3, 1,5) = ” M™mj(ME)F(M)

R"xR™
x XL NG (2 k) 4 218, 2%k, + 250)dédn
and
e | G
R"xR™
215 zsn

q5<2'k1 +37 2%k, + ﬁ) — &2k, 2%k)

X dédn,

then we have
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|EM(xa L, S)I

2miky-x ,2mik;-
Ckl,kze e g ot 2y[}1k1,kz,M(x> Y, Z, S) - Jkl,kz,M(xa Y, f, S)]
(k1,k2) €A
k1 #0,ky #0

Z |Ck1,k2 lPkn,kz,M(t1S)'

(ki,k2) e
ki #0,ky #0

1/2
(J J ]EM(X, it S)|2dtds)
RJR

12
< Z ICkl,kzl(”R RPkl,kz,M(t,s)zdtds) .

(ky,ka) e A
ky #0,ky #0

IA

Thus

Since f € C® (T" x T™), so for any & > 0 there is a finite set 4! = A such that

Z |Ck1,k2| <eé.

(k1 ko) g A"
Write

S = 3 lck.,k2|(”mPkl,kz,Ma,s)zdzds)l/z,

(ki ky) e’
k1 #0,ky #0

Z”(M)= Z ICkl,kzl<”RXRPkl,kz,M(t,s)Zdtds>l/2.

(ki ko) ¢ 4!
ki #0,k2 #0

(2.10)

Below we will estimate 5"/ (M) and 3_"(M), respectively. Let us first consider
S2"(M). By Hélder’s inequality,

e Y'ons ¥ dAcwl([] [ werar

(ki ky) ¢ A"

2!
(tk-f- < Skz-}-y)

% M’

+ > 2Chl

(ki k2) ¢ A"

x ( j Jm J an Iz/}(é)f(n)lzlé(ztkl,2‘k2)|2déd:7dtds>l/2.

1/2
déd;ydtds)




176 Yong DING and Dashan FaN

Note that there exists an 4 > 0 such that

(2.12) “ \B(21¢, 2%n) 2drds < 4
RxR

uniformly for (£,7) e R” x R™. In fact, by Lemma 2 (i), it is easy to see that
[ 1benPas
RxR
< J J l2’§|°‘|25n|ﬂdtds+J J 124£|*|1259| P drds
[21g) <1 2y <1 [2:g <1 Jj2eyl 1

+ j J 121&17*2%n P drds + J J 120&17%2%n| P drds < A.
[2¢4]=1 Jj2¢p] <1 [2¢¢]21 J[2¢n| 21

Clearly 4 > 0 is independent of (&,7) e R” x R™. With the choices of ¥ and
I', by (2.11), (2.12) and the Plancherel theorem we have

(2.13) STy <AL) Y |Gl < eA(D),

(ki,k2) ¢ 4!

where A(L) is independent of e.
Finally, let us handle the term 3'(M). Since A' is finite, we need only to
check

M—o0

lim ” Pi ko 1 (,5) dtds = 0
RxR

for any fixed (ki,k;) € A' with ky #0,k; #0. Since Ve SR, I e R,
by (2.12) if we denote

Aues) = || Nrm) TR

t s
<13<2’kl +2¢ o, +E_’7>

— &2k, 2°ky) \d&dy,

where B" and B™ are bounded sets in R"” and R™ respectively, then it suffices
to show

(2.14) lim ” Br(1,5)dtds = 0.
RxR

M-

Set
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nts) = [ @Nrm)
B"xB™

. t sy
¢(2'k1+5 2k + 21 ) (’k 25k + 21 ))déd

% M’ M

and

auts) = [[ 10@N1P@1 | (2%, 2% + 3T - @k, 2%k

dédn,
we have

” Baa(1,5)2dids < C “ Ta(t,5)%dtds + C ” a1, 5)2deds
RxR RxR

RxR

Since the estimates of £y and ¢, are same, we will only prove that
limpy 0 £y =0. By Lemma 2 (ii) we have

) 2 2 25
(2.15) }qs(z'kl + 2 o5k + M”) (2*k,,2Sk2+—A7”)}

SJmn{ (o 1) e+ 21) 7}

On the other hand, since ¢ € B, and B, is bounded, we take M sufficienly large

<C
M

ky +

such that [k +%y < 2|k;| for all £ € B,. Using the conclusion of Lemma 2
(i), we have
. 2 2
(2.16) '@(2%1 +ﬁé 2°k, +T}) — ( ki, 2°ky + Al”)\
< CP2| ™ mind 2]k, +l')ﬂ (2. +i')—ﬂ
- M/ M ’

Hence by (2.15) and (2.16) we have

swscl[ iew@rol | minf (2o )" @) fas

1 ((1/2)logs M
J 22dtdEdy

M)
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wef], oo min{ (2 + )7, (2

[e 0]
y J 2tk [ didedy
(1/2)log, M

ky + XZ—D_M}ds

=o(1)

as M — co. Thus (2.14) follows from this. Combining (2.10) with (2.13) and
(2.14), we finish the proof of Lemma 1.
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