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ABSTRACT. Let r, k be integers with r >3, k > 2. We prove that if G is a K| ,-free
graph of order at least (k —1)(2r— 1)+ 1 with J(G) > 2, then G contains k vertex-
disjoint copies of Kj . This result is motivated by the problem of characterizing a
forbidden subgraph H which satisfies the statement “every H-free graph of sufficiently
large order with minimum degree at least ¢ contains k vertex-disjoint copies of a star
Ky ;" In this paper, we also give the answer to this problem.

1. Introduction

In this paper, we consider only finite, simple, undirected graphs with no
loops and no multiple edges. For a graph G, we denote by V(G), E(G) and
0(G) the vertex set, the edge set and the minimum degree of G, respectively.
For a vertex x of a graph G, the neighborhood of x in G is denoted by Ng(x),
and we let dg(x) := |Ng(x)|. For a graph G and a fixed graph H, we say that
G is H-free if G does not contain H as an induced subgraph. A graph KX 3 is
called claw, and a K; 3-free graph is called a claw-free graph.

Our notation is standard except possibly for the following. Let G be a
graph. For a subset L of V(G), the subgraph induced by L is denoted by
{L». For a subset M of V(G), we let G — M =<V(G) — M. For subsets
L and M of V(G) with LN M = &, we let E(L, M) denote the set of edges of
G joining a vertex in L and a vertex in M. A vertex x is often identified with
the set {x}. Thus if x € V(G), then G — x means G — {x}, and E(x, M) means
E({x},M) for M < V(G — x).

In this paper, we are concerned with the existence of vertex-disjoint copies
of Kj , and forbidden subgraphs. As for the existence of vertex-disjoint copies
of Kj, in general graphs, Ota made the following conjecture in [5].
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CoNJECTURE 1.1 ([5]). Let k, t be integers with k > 2, t>2. Let G be a
graph of order at least (t + 1)k + t> — t with 6(G) =k +1t—1. Then G contains
k vertex-disjoint copies of K ..

As is shown in [5], in this conjecture, the condition on the minimum degree
of G is sharp in the sense that for any fixed ¢ and k, there exists a graph of
arbitrarily large order which has minimum degree k+¢—2 but does not
contain k vertex-disjoint copies of K, and, if k is sufficiently large compared
with ¢, then the condition on the order of G is also sharp in the sense that there
exists a graph G with |[V(G)| = (t+ 1)k + > —t—1 and §(G) >k +¢— 1 such
that G does not contain k vertex-disjoint copies of Kj, Conjecture 1.1 is
settled affirmatively for =2 in [5]. Also, in [1], Egawa and Ota proved that
Conjecture 1.1 is true for 1 = 3. As for the case ¢ > 4 of this conjecture, the
author obtained the following partial result in [4]:

THEOREM 1.1 ([4]). Let k, t be integers with k >2, t >4. Let G be a
graph of order at least (t+ 1)k +2t> —4t+2 with 5(G) >k +t—1. Then G
contains k vertex-disjoint copies of K .

In this paper, we focus on the relationship between the existence of vertex-
disjoint copies of K, in graphs and forbidden subgraphs. From the structure
of Kj,, the degree condition “5(G) > ¢” seems to be natural for a graph to
contain K; ;. So, now we consider the statement “every H-free graph of suf-
ficiently large order with minimum degree at least ¢ contains k vertex-disjoint
copies of K ;> The problem is to determine H that makes the statement true.

Our result is the following:

THEOREM 1.2. Let k>3, t>2, and let H be a connected graph with
|V(H)| = 3. If there exists a positive integer ny such that every H-free graph
G with |V(G)| = ny and 6(G) =t contains k vertex-disjoint copies of K, ,, then
He{K, |r>2}

We see from Theorem 1.2 that a star K; , is important as a forbidden
subgraph for a graph with minimum degree at least ¢ to have k vertex-disjoint
copies of Kj,. Along this line, we propose the following conjecture:

CONJECTURE 1.2. Let 1, k, t be integers withr >3, k >2 and t >2. If G
is a K ,-free graph of order at least (k— 1){t(r—1)+ 1} +1 with §(G) > t,
then G contains k vertex-disjoint copies of K ..

If the conjecture is true, the bound on |V(G)| is best possible. To see
this, let B; = K, for each 1 <i <r— 1, and consider G = Ul]:ll A; where A; =
K + Ul:]l B; for each 1 <i<k—1. Then G is a K ,-free graph of order
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(k—D{et(r— 1)+ 1} with 6(G) =¢. It is easy to check that G does not
contain k vertex-disjoint copies of K ,.
The author proved that Conjecture 1.2 is true for r=¢=3 in [3].

THEOREM 1.3 ([3]). Let G be a claw-free graph of order at least Tk — 6 with
0(G) =3. Then G contains k vertex-disjoint claws.

Also, as for this conjecture, the following theorem is proved in [2]:

THEOREM 1.4 ([2]). Let r, t be integers with r >3, t>2. Let G be a
K ~free graph of order at least (t+1)(k — 1){t(r — 1)+ 1} + 1 with 6(G) > t.
Then G contains k vertex-disjoint copies of K ;.

In this paper, we prove that Conjecture 1.2 is true for 7= 2.

THEOREM 1.5. Let r, k be integers with r >3, k> 2. If G is a K| ,-free
graph of order at least (k—1)2r—1)+1 with 6(G) =2, then G contains k
vertex-disjoint copies of Kj ».

2. Proof of Theorem 1.2

Let k, 1, ny be fixed integers as in the assumption of Theorem 1.2. By
contradiction, we may assume that H is not isomorphic to a star (i.e., H ¢
{Ki,|r=2}). For an integer i/ with 1 <i, let X; be a complete balanced
bipartite graph of order 2(z — 1) with partite sets Y;, Z; with |Y;| = |Z;| =1 — L.
We define G|, G, as follows:

(1) G; is a graph with vertex set V(Gy) and edge set E(G;) as follows:

V(Gr) = {32} U ( Q V<Xj>>,

Jj=1

m m m
E(G) = <U1E(X;)> U {yp’p € U1 Yj} u {Zq qe U Z_/}
J= J= =
where m is an integer with 2m(t — 1) +2 > ny.
(2) Gy =K; +nK, where n is an integer with nt+ 1 > ny.

It is easy to see that 6(G;) > ¢ and G; does not contain k vertex-disjoint
copies of K, for i =1,2. Hence by the assumption of Theorem 1.2, it follows
that both G; and G, contain H as an induced subgraph. Since G; contains H
as a(n induced) subgraph, H does not contain K3. On the other hand, since
G, contains H as an induced subgraph, this together with H ¢ {K; ,|r =2}
implies that H contains K3 because |V (H)| > 3. This is a contradiction. This
completes the proof of Theorem 1.2. |
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3. Proof of Theorem 1.5

Let G be a K ,free graph of order at least (k—1)(2r—1)+ 1 with
0(G) = 2. Take s vertex-disjoint subgraphs Cj, C,,...,C, such that C; con-
tains Kj, as a spanning subgraph for each i with 1<i<s. Let C=
V(CHU---UV(Cy)) and H=G— C. We may assume that Ci,Cy,...,C;
are chosen so that

(1) s is maximum, and

(2) subject to the condition (1), |E(H)| is maximum, and

(3) subject to the condition (2), .7, |E(C;)| is maximum.

We may assume that s <k — 1. It follows from the maximality of s that
H consists of m +n components Py, Py, ..., Py, O1,0s,...,0, where P; = K>
for1<i<mand Q; =K, for 1 <j<n. (Thus V(H)=V(P)U---UV(Py)
Ur(Q)U---Ur(Q,) where m>0, n>0.) Note that the condition (2) is
equivalent to the statement that “m is maximum.” Then

[V(H)| = k—-1)2r—1)+1-3s
>k-1)2r—1+1-3k-1)=2(k—1)(r—2)+ 1.

For each i with 1 <i<m, take p; e V(P;) and fix it. Also, let V(Q;) = {q;}
for each j with 1 <j<n. Let H ={pi,...,Pmq1,---,qn}t. Then |H'| =
m-+n ZPV%—HH—‘ > (k—1)(r—2)+1. For each i with 1 <i<s, let a; be a
vertex in V(C;) such that |E(a;, V(C; — a;))| =2, and fix it.

We first prove the following claim.

CLAaM 3.1.  Let i be an integer with 1 <i <s. Let x, y be distinct vertices
in C;, and let Hy, H, be distinct components of H with |V (H;)| = |V (H,)|.
Suppose that E(x,V(H))) # & and E(y,V(Hy)) # &. Then x=a;, H €
{P\,Ps,...,P,} and Hye{Q\,0,,...,0,}. Furthermore, C;=K,, and
E(V(Ci - y), V() = @

Proor. If H\,H, € {Py,Pa,..., Py}, then we can find two vertex-disjoint
copies of K, in <V(H;)UV(H)UV(C;)), which contradicts the maximality
of s. Thus H, €{Qi,Qs,...,0,} holds. Suppose that H; € Q1,Qs,..., 0.
Then by the symmetry of the roles of H; and H,, we may assume that
vy # a;.  Then by replacing C; by <V(C; — y)U V(H,)), we get a contradiction
to the maximality of m. Thus we have H; € {Py, Pa,...,Py,}. Next suppose
that x # a;. Then we can find two vertex-disjoint copies of K » in {V(H;)U
V(H,) U V(C;)», which contradicts the maximality of s. Thus x = a;, and it is
easy to see that this forces C; = K; ,. Now, if E(V(C;) — {x, y}, V(H)) # &,
then (V(H;)U{x}) 2 K, and <V(H>)UV(C; —x)) o K >, a contradiction.
Also, if E(a;, V(H>)) # &, then by replacing C; by {{a;, y} UV(H))>, we get
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a contradiction to the maximality of Y., |E(C;)|. Thus E(a;, V(H)) = &.
Hence E(V(C;—y),V(H))) = . "

We define a family & of vertex subsets as follows:
F = {{x1,x2,...,x:} | x; € V(C;) for each i with 1 <i <s}

CLam 3.2. There exists F e 7 such that | ) _. Ng(x) > H'.

Proor. Choose F e Z so that |({ ), _.Ng(x)) N H'| is maximum, and sub-
ject to the condition, |FN{ai,...,as}| is maximum. Put F = {x;,x2,...,x}.
We may assume that there exists ve H' such that vé¢ (| . Ng(x)NH'
Since 0(G) =2, E(v, V(C)) # &. Hence there exists C; such that x;v ¢ E(G)
and E(v, V(Ci —x;)) # J. Let y; be a vertex in C; such that y,v e E(G).
If E(x;,H') = &, then by replacing F by (F — x;)U{y;}, we get a contradic-
tion to the maximality of |(| ) _. Ng(x))NH’'|. Hence there exists ue H' —v
such that x;u € E(G). Then by Claim 3.1, C; =@ K] 2, a; € {x;, y;} and we may
assume that {u,v} = {p1,q1}. Suppose that y; =a;. Then it is easy to see
that E(x;, H —u) = . Then by replacing F by (F —x;)U{y;}, we get a
contradiction to the maximality of |FN{ay,...,a,}|. Thus x; =a;. Then by
Claim 3.1, u=p;, v=¢q; and E(V(C;— yi),q1) = &. Since 6(G) > 2, there
exists C; with j # i such that E(q1, V(C;)) # . Let y; be a vertex in C; such
that ¢;y; € E(G). Since v¢ (| ) . Na(x))NH', y;¢ F. By the choice of F,
we have E(x;, H'—q1) # . Then by Claim 3.1, x; =a;. If there exists
v'e H —{p1,q1} such that a;v’ € E(G), then by Claim 3.1, we may assume
v' € V(P,), and then by replacing C;, C; by <V(Pi)U{a;}>, <V(P2)U{q}>,
Ayi,q1,;}>, we get a contradiction to the maximality of s. Thus we have
E(x;,H') = {pi1x;} by Claim 3.1. Then by replacing F by (F — {x;})U{y;},
we get a contradiction to the maximality of |(| ) . Ne(x))NH'|. |

By Claim 3.2, we choose FeZ such that (J _,Ng(x) > H' and fix
it. Since |H'| = (k —1)(r — 2) + 1, there exists x; € F such that |E(x;, H')| >
r—1 because |F|=s<k—1. Let Ng(x;))NH ={v1,v2,...,v;} where [>
r—1. Since G is K -free, it follows that / = r — 1 because H' is independent.
Also, we see from Claim 3.1 that x; # ;. Hence C;~ K;, and we may
assume that vja; € E(G) because G is K ,-free. If r >4, then by replacing C;
by <V (C; — x;)U{v1}), {va,v3,x:}), we get a contradiction to the maximality
of s. Thus we have r=3 and /= 2.

Cram 3.3. Let i be an integer with 1 <i <s, and let wy, w, be distinct
vertices in H'.  Suppose that E(wy, V(C;)) # & and E(w,, V(C})) # &. Then
there exists C; with j # i such that E({wi,w:}, V(C;)) # & and E(V(C;),H') =
E(V(C)),{wi,w2}). Further, E(V(C;),H') = E(V(Ci),{wi,w2}) holds.
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Proof. Since now G is claw-free, E(V(C;),{w;,w,}) has two inde-
pendent edges. Let V(C;) = {a;,b;,¢;}. Then in view of Claim 3.1, we may
assume that C; = K 2, wi € {p1,p2,.- -, Pm}, w2 €{q1,92,-..,¢,} and E(V(C;),
{wi,wa}) = {a;w1,b;wi, bjwy}. Then by the maximality of s, it is easy to see
that E(V(C;),H') = E(V(C;i),{wi,w2}). Also, since d(G) > 2, there exists C;
with j # i such that E(w,, V(C))) # &. If C; = K », then since G is claw-
free, we have E(w», V(C; — a;)) # . Also, if C; = K3, then by symmetry, we
may assume that E(wy, V(C —a;)) # . Thus, in any case, we may assume
that there exists b; € V(C; —a;) such that byw; € E(G). Suppose that there
exists w'e H' — {wl,wz} such that E(w’, V' (C;)) # &. Then by Claim 3.1,
w'aj € E(G). Then {{w'}UV(C;—b;)> > Ki5, {{bj,w2,b;})> > Kj >, {{wi}U
V(Ci—b;i)) > Ki», a contradiction. This implies that E(V(C;),H') =
E(V(Cj),{wi,w2}). Thus the claim holds. [ |

We choose F' < F with | ) _,. Ng(x) > H' so that |[F’| is minimum. Let
F:={xeF'||E(x,V(H"))| =i} for i=1,2. Since G is claw-free, this to-
gether with the minimality of |F’| implies that F' = Fy U F;.

Cram 34. If F> # I, then there exists a one-to-one mapping f : F, —
F—F'

ProoF. Let xeF,, and let Ng(x)NH' ={w;,w,}. We may assume
that x e V(C;). Then by Claim 3.3, there exists C; with j#i such that
E(V(C),{wi,wm}) # & and E(V(C),H') =E(V(C;),{wi,w2}), and also
E(V(C),H) = E(V(C;),{wi,w2}) holds. Then by the minimality of |F’|,
V(C)NF' =, ie., V(C)N(F—F')# . This together with

E(V(C),H') = E(V(G),{wi,w}), EV(Cj),{wi,wm2}) # I

and E(V(C;),H') = E(V(C;),{wi,w}) implies that there exists a one-to-one
mapping f: F, — F — F'. |

By Claim 3.4, |F'|+|F2| <|F|. Consequently, |H'| < |F1| +2|F| =
|F'| +|F2| < |F|=s<k—1, and hence |V(H)| = [&fﬂ-‘ + UV( J <2|H'| <
2(k —1).

On the other hand, since |V (H)| >2(k—1)(r—2)+1=2(k—-1)+ 1, this
is a contradiction. This completes the proof of Theorem 1.5. |
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