# Stable extendibility of the tangent bundles over lens spaces

Dedicated to Professor Takao Matumoto on his sixtieth birthday

Mitsunori IMAOKA and Hironori YAMASAKI
(Received Oct. 2005)
(Revised Jan. 11, 2006)

**ABSTRACT.** The purpose of this paper is to study the stable extendibility of the tangent bundle  $\tau_n(p)$  of the (2n+1)-dimensional standard lens space  $L^n(p)$  for odd prime p. We investigate the value of integer m for which  $\tau_n(p)$  is stably extendible to  $L^m(p)$  but not stably extendible to  $L^{m+1}(p)$ , and in particular we completely determine m for p=5 or 7. A stable splitting of  $\tau_n(p)$  and the stable extendibility of a Whitney sum of  $\tau_n(p)$  are also discussed.

#### 1. Introduction

Let F be the real number field R, the complex number field C or the quaternion number field H. For a subspace A of a space X, a t-dimensional F-vector bundle  $\zeta$  over A is said to be *extendible* to X, if there is a t-dimensional F-vector bundle over X whose restriction to A is equivalent to  $\zeta$ , that is, if  $\zeta$  is equivalent to the induced bundle  $i^*\eta$  of a t-dimensional F-vector bundle  $\eta$  over X under the inclusion map  $i:A \to X$ . Instead, if  $i^*\eta$  is stably equivalent to  $\zeta$ , namely  $i^*\eta + m$  is equivalent to  $\zeta + m$  for a trivial F-vector bundle m of dimension  $m \ge 0$ ,  $\zeta$  is called *stably extendible* to X (cf. [10], p. 20 and [4], p. 273).

Let  $L^n(p) = S^{2n+1}/Z_p$  denote the (2n+1)-dimensional standard lens space mod p. For an R-vector bundle  $\zeta$  over  $L^n(p)$ , we define an integer  $s(\zeta)$  by

$$s(\zeta) = \max\{m \mid m \ge n \text{ and } \zeta \text{ is stably extendible to } L^m(p)\},$$

where  $s(\zeta) = \infty$  if  $\zeta$  is stably extendible to  $L^m(p)$  for every  $m \ge n$ .

Let  $\tau_n(p) = \tau(L^n(p))$  be the tangent bundle of  $L^n(p)$ . Then, concerning  $s(\tau_n(p))$ , the following theorems have been obtained.

THEOREM ([7], Theorem 5.3). Let p be an integer > 1. Then,  $s(\tau_n(p)) = \infty$  if n = 0, 1 or 3.

<sup>2000</sup> Mathematics Subject Classification. Primary 55R50; Secondary 55N15. Key Words and Phrases. tangent bundle, lens space, stably extendible, KO-theory.

Theorem ([8], Theorem 4.3). Let p be an odd prime. Then,  $s(\tau_n(p)) < 2n + 2$ , if  $n \ge 2p - 2$ .

THEOREM ([6], Theorem 1). 
$$s(\tau_n(3)) = \infty$$
 if and only if  $0 \le n \le 3$ .

The purpose of this paper is to develop these results on the stable extendibility of the tangent bundle  $\tau_n(p)$ . Our main results are stated as follows.

THEOREM 1. Let p be an odd prime. Then,  $s(\tau_n(p)) = 2n + 1$  if  $n \ge 2p - 2$ .

Theorem 2. (1) If 
$$0 \le n \le 5$$
, then  $s(\tau_n(5)) = \infty$ .

(2) If  $n \ge 6$ , then  $s(\tau_n(5)) = 2n + 1$ .

THEOREM 3. (1) If 
$$0 \le n \le 7$$
, then  $s(\tau_n(7)) = \infty$ .

(2) If  $n \ge 8$ , then  $s(\tau_n(7)) = 2n + 1$ .

These theorems give support to our following conjecture.

Conjecture. For an odd prime p,

$$s(\tau_n(p)) = \infty$$
 for  $0 \le n \le p$ , and  $s(\tau_n(p)) = 2n + 1$  for  $n \ge p + 1$ .

We organize the paper as follows. In §2, we state some known results necessary to establish our results. In §3 we prove Theorem 1. In §4, we study  $\tau_n(5)$  and  $\tau_n(7)$  and prove Theorems 2 and 3. In §5, as a consequence of the preceding results, we give Theorem 4 concerning Schwarzenberger's property. In §6, we study the extendibility of the m-times Whitney sum  $m\tau_n(p)$  of  $\tau_n(p)$  for  $m \ge 1$ , and show in Proposition 6.1 the inequality

$$s(m\tau_n(p)) \ge m(2n+1)$$
 or  $s(m\tau_n(p)) \ge m(2n+1) - 1$ 

if m is an odd or even integer respectively. Then, in Theorem 5 we give some condition for

$$s(m\tau_n(p)) = m(2n+1)$$
 or  $m(2n+1) - 1 \le s(m\tau_n(p)) \le m(2n+1) + 1$ 

to hold according as m is odd or even.

The authors would express their thanks to Professor T. Matumoto for his valuable suggestions.

#### 2. Preliminary

For an odd prime p, the structures of the reduced K-ring  $K(L^n(p))$  and the reduced KO-ring  $KO(L^n(p))$  are determined by Kambe [5].

Let  $\eta$  be the canonical C-line bundle over  $L^n(p)$ , the induced bundle from the canonical C-line bundle over the complex projective space  $CP^n$  under

the projection  $\pi: L^n(p) \to CP^n$ , and  $\sigma = \eta - 1$  its stable class in  $\tilde{K}(L^n(p))$ . Sometimes, we denote  $\eta$  (resp.  $\sigma$ ) by  $\eta_n$  (resp.  $\sigma_n$ ) to make it clear that  $\eta$  (resp.  $\sigma$ ) is over  $L^n(p)$ .

Let  $r: \widetilde{K}(X) \to KO(X)$  and  $c: KO(X) \to \widetilde{K}(X)$  be the homomorphisms induced by the real restriction and the complexification of the vector bundles, respectively. We set  $\overline{\sigma} = r(\sigma)$  in  $\widetilde{KO}(L^n(p))$ . Also, let  $L_0^n(p)$  denote the 2n-skeleton of  $L^n(p)$  as in [5].

Then, we shall use the following result, where [x] denotes the largest integer m with  $m \le x$  for a real number x.

THEOREM 2.1 ([5], Theorem 2, Lemma 3.4).

(1) We have the following isomorphism of abelian groups:

$$\widetilde{KO}(L^n(p)) \cong \begin{cases} \widetilde{KO}(L_0^n(p)) & \text{if } n \not\equiv 0 \mod 4, \\ Z_2 + \widetilde{KO}(L_0^n(p)) & \text{if } n \equiv 0 \mod 4. \end{cases}$$

(2) Let 
$$q = (p-1)/2$$
 and  $n = s(p-1) + r$   $(0 \le r < p-1)$ . Then  $\widetilde{KO}(L_0^n(p)) = (Z_{p^{s+1}})^{[r/2]} + (Z_{p^s})^{q-[r/2]}$ ,

and the direct summand  $(Z_{p^{s+1}})^{[r/2]}$  and  $(Z_{p^s})^{q-[r/2]}$  are generated additively by  $\overline{\sigma}^1,\ldots,\overline{\sigma}^{[r/2]}$  and  $\overline{\sigma}^{[r/2]+1},\ldots,\overline{\sigma}^q$  respectively. Moreover, the ring structure is given by

$$ar{\sigma}^{q+1} = \sum_{i=1}^q rac{-(2q+1)}{2i-1} igg( rac{q+i-1}{2i-2} igg) ar{\sigma}^i, \qquad ar{\sigma}^{[n/2]+1} = 0,$$

where  $\binom{a}{b}$  denotes a binomial coefficient.

We also apply the following property.

Lemma 2.2 ([5], Lemma 3.5(2)). The homomorphism  $c: KO(L_0^n(p)) \to \tilde{K}(L_0^n(p))$  is a monomorphism.

The following theorem due to Sjerve [11] is crucial in our proof, where  $\pi_m: S^{2m+1} \to L^m(p)$  is the natural projection.

Theorem 2.3 ([11], Theorem A). If  $\zeta \in \widetilde{KO}(L^m(p)) \cap \ker \pi_m^*$ , then the geometrical dimension of  $\zeta$  satisfies  $g.\dim \zeta \leq 2\lceil \frac{m}{2} \rceil + 1$ .

## 3. Proof of Theorem 1

By Theorem 2.3, we have the following.

Proposition 3.1. For any  $n \ge 1$ ,  $s(\tau_n(p)) \ge 2n + 1$ .

PROOF. Let  $m \ge n$  be an integer. Since  $r(\eta_m) - 2 \in \ker \pi_m^* \subset \widetilde{KO}(L^m(p))$  for the projection  $\pi_m : S^{2m+1} \to L^m(p)$ , where  $r : \widetilde{K}(L^m(p)) \to \widetilde{KO}(L^m(p))$  is the homomorphism mentioned in §2, we have

$$g.\dim((n+1)(r(\eta_m)-2)) \le 2\left\lceil \frac{m}{2}\right\rceil + 1$$

by Theorem 2.3. Thus, there is a  $(2\left[\frac{m}{2}\right]+1)$ -dimensional vector bundle  $\beta$  over  $L^m(p)$  satisfying that  $(n+1)r(\eta_m)$  is stably equivalent to  $\beta$ . When m=2n+1, we have  $2\left[\frac{m}{2}\right]+1=2n+1$  and thus  $\beta$  is of dimension 2n+1. Hence,  $(n+1)r(\eta_{2n+1})$  is stably equivalent to  $\beta+1$ , and  $\tau_n(p)$  is stably equivalent to  $i^*\beta$  since  $\tau_n(p)+1=(n+1)r(\eta_n)$  is stably equivalent to  $i^*\beta+1$ . Therefore,  $\tau_n(p)$  is stably extendible to  $L^{2n+1}(p)$ , and we have the required inequality  $s(\tau_n(p)) \geq 2n+1$ .

PROOF OF THEOREM 1. By Theorem 4.3 in [8], we have  $s(\tau_n(p)) < 2n + 2$  as we described in §1. Thus, by Proposition 3.1, we obtain the required result.

REMARK 3.2. Proposition 3.1 is a special case of Theorem 4.2 in [7]. Therefore, Theorem 1 is originally due to Kobayashi-Maki-Yoshida ([7], [8]).

### 4. Stable extendibility of $\tau_n(5)$ and $\tau_n(7)$

Let p be an odd prime. Hereafter, we use the same notation  $\alpha$  to denote the stable class of  $\alpha$  in  $\widetilde{KO}(L^n(p))$  (resp.  $\widetilde{K}(L^n(p))$ ) for a real (resp. complex) vector bundle  $\alpha$  over  $L^n(p)$ . Also, we simply denote by  $\alpha = \beta$  that vector bundle  $\alpha$  and  $\beta$  are stably equivalent.

Using ring structures of  $KO(L^n(p))$  and  $K(L^n(p))$  for an odd prime p, we have the following lemma, where and hereafter we denote  $r(\eta)$  or  $c(r(\eta))$  simply by  $r\eta$  or  $cr\eta$  for the homomorphisms  $r: K(L^n(p)) \to KO(L^n(p))$  and  $c: KO(L^n(p)) \to K(L^n(p))$ .

LEMMA 4.1. In  $KO(L^n(p))$ ,

$$(r\eta)^2 = r(\eta^2) + 2,$$
  $(r\eta)^3 = r(\eta^3) + 3r\eta.$ 

PROOF. Recall that  $cr\eta = \eta + \eta^{-1}$  (cf. [3], Proposition 11.3, p. 191). Since  $c: KO(L^n(p)) \to K(L^n(p))$  is a ring homomorphism, we have  $c(r(\eta^2)) = \eta^2 + \eta^{-2}$  and  $c((r\eta)^2) = (cr\eta)^2 = (\eta + \eta^{-1})^2 = \eta^2 + \eta^{-2} + 2$ . Then, by Lemma 2.2,  $(r\eta)^2 = r(\eta^2) + 2$  in  $KO(L^n(p))$ . In the same way,  $c(r(\eta^3)) = \eta^3 + \eta^{-3}$  and  $c((r\eta)^3) = (cr\eta)^3 = (\eta + \eta^{-1})^3 = \eta^3 + \eta^{-3} + 3(\eta + \eta^{-1})$ . Thus, we have  $(r\eta)^3 = r(\eta^3) + 3r\eta$ , and complete the proofs.

Since  $\tau_n(p)$  is stably trivial for n = 0 or 1 (cf. [7]), we have

LEMMA 4.2.

$$s(\tau_n(p)) = \infty$$
 for  $n = 0$  or 1.

Concerning  $\tau_n(5)$  for  $2 \le n \le 5$ , we have the following.

Proposition 4.3. The following stable equivalences hold:

$$\tau_2(5) = 2r(n^2) + 1$$
,  $\tau_3(5) = r(n^2) + 5$ ,  $\tau_4(5) = 9$  and  $\tau_5(5) = rn + 9$ .

Hence,  $s(\tau_n(5)) = \infty$  for  $2 \le n \le 5$ .

PROOF. Let n=2 or 3. Then, by Theorem 2.1,  $\widetilde{KO}(L^n(5))=Z_5\{\overline{\sigma}\}$  and  $\overline{\sigma}^2=0$ . Thus, we have  $5r\eta-10=0$  and  $(r\eta)^2-4r\eta+4=0$ . Then, using Lemma 4.1, we obtain  $r(\eta^2)+r\eta-4=0$ . Since  $\tau_n(5)=(n+1)r\eta-1$ , we have

$$\tau_2(5) = 3r\eta - 1 = -2r\eta + 9 = 2r(\eta^2) + 1;$$

$$\tau_3(5) = 4r\eta - 1 = -r\eta + 9 = r(\eta^2) + 5.$$

Similarly, for n = 4 or 5,  $\widetilde{KO}(L_0^n(5)) = Z_5\{\overline{\sigma}, \overline{\sigma}^2\}$  and thus  $5r\eta - 10 = 0$ . Then, we have  $\tau_4(5) = 5r\eta - 1 = 9$ ,  $\tau_5(5) = 6r\eta - 1 = r\eta + 9$ . Thus, we have  $s(\tau_n(5)) = \infty$  for n = 2, 3, 4 or 5 as is required, since  $r(\eta^2)$  and  $r\eta$  over  $L^n(5)$  are extendible to  $L^m(5)$  for every  $m \ge n$ .

REMARK 4.4. According to Yoshida [12],  $L^3(p)$  has a tangent 5-field. Hence,  $\tau_3(p) = \beta \oplus 5$  for a 2-plane bundle  $\beta$  in general.

Proposition 4.5.

$$s(\tau_n(5)) = 2n + 1$$
 for  $n = 6$  or 7.

PROOF. Let n=6 or 7. By Proposition 3.1, we have  $s(\tau_n(5)) \geq 2n+1$ . To establish the opposite inequality, we suppose that  $\tau_n(5)$  is stably extendible to  $L^{2n+2}(5)$ , and derive a contradiction from the hypothesis. Thus, there is a (2n+1)-dimensional vector bundle  $\alpha$  over  $L^{2n+2}(5)$  satisfying that  $\tau_n(5)$  is stably equivalent to  $i^*\alpha$  for the inclusion map  $i:L^n(5)\to L^{2n+2}(5)$ . By Theorem 2.1,  $\widetilde{KO}(L^{2n+2}(5))$  is generated additively by  $\overline{\sigma}$  and  $\overline{\sigma}^2$  modulo a 2-torsion. Thus, we can put  $\alpha-(2n+1)=a\overline{\sigma}+b\overline{\sigma}^2+\delta$  in  $\widetilde{KO}(L^{2n+2}(5))$ , where  $\delta$  is zero or a 2-torsion element. Then, since  $i^*\delta=0$  in  $\widetilde{KO}(L^n(5))=Z_{5^2}\{\overline{\sigma}\}+Z_5\{\overline{\sigma}^2\}$ , we have  $i^*\alpha-(2n+1)=a\overline{\sigma}+b\overline{\sigma}^2$  in  $\widetilde{KO}(L^n(5))$ .

Since  $i^*\alpha = \tau_n(5)$  and  $\tau_n(5) - (2n+1) = (n+1)\overline{\sigma}$ , we have

$$\begin{cases} a \equiv n+1 \mod 5^2, \\ b \equiv 0 \mod 5. \end{cases}$$

Hence, we can put

$$\begin{cases} a = 5k + a_1 & \text{with } k \equiv 1 \mod 5, \\ b = 5l & \end{cases}$$

for some integers k and l, where  $a_1 = 2$  and 3 when n = 6 and 7 respectively. Since  $K(L^{2n+2}(5))$  has no 2-torsion (cf. [5]),  $c\delta = 0$ . Then, we have

$$c\alpha - (2n+1) = ac\overline{\sigma} + bc\overline{\sigma}^2 = a((\eta + \eta^{-1}) - 2) + b((\eta + \eta^{-1})^2 - 4(\eta + \eta^{-1}) + 4)$$
$$= (a - 4b)(\eta + \eta^{-1}) + b(\eta^2 + \eta^{-2}) - (2a - 6b).$$

Let  $C_i(\gamma)$  denote the *i*-th Chern class of a complex vector bundle  $\gamma$ , and  $C(\gamma) = 1 + C_1(\gamma) + \cdots$  the total Chern class. We denote  $C_i(\gamma)$  and  $C(\gamma)$  in the  $Z_5$ -coefficient cohomology group by the same letters. Then, for  $x = C_1(\eta)$ ,

$$\bigoplus_{i>0} H^{2i}(L^{2n+2}(5); Z_5) \cong Z_5[x]/(x^{2n+3})$$

as graded algebras (cf. [11]), and we have

$$C(c\alpha) = C(\eta + \eta^{-1})^{a-4b}C(\eta^2 + \eta^{-2})^b = (1 - x^2)^{a-4b}(1 - 4x^2)^b$$

Since  $a - 4b = 5(k - 4l) + a_1$  with  $k \equiv 1 \mod 5$  and b = 5l, and since n = 6 or 7,

$$C(c\alpha) = (1 - x^{2})^{a_{1}} ((1 - x^{2})^{5})^{k-4l} ((1 - 4x^{2})^{5})^{l}$$

$$= (1 - x^{2})^{a_{1}} (1 - x^{10})^{k-4l} (1 - 4^{5}x^{10})^{l}$$

$$= (1 - x^{2})^{a_{1}} (1 - (k - 4l)x^{10}) (1 - 4^{5}lx^{10})$$

$$= (1 - x^{2})^{a_{1}} (1 - kx^{10})$$

$$= (1 - x^{2})^{a_{1}} (1 - x^{10})$$

$$= 1 - a_{1}x^{2} + \dots + (-1)^{a_{1}+1}x^{10+2a_{1}}.$$

Since  $10 + 2a_1 = 2n + 2$ , we have  $C_{2n+2}(c\alpha) \neq 0$  which contradicts that  $\alpha$  is (2n+1)-dimensional. Thus, we have completed the proof.

PROOF OF THEOREM 2. We obtain (1) by Lemma 4.2 and Proposition 4.3, and (2) by Theorem 1 and Proposition 4.5.  $\Box$ 

Next, we consider the proof of Theorem 3, but we can proceed similarly to Theorem 2.

Proposition 4.6. We have the following stable equivalences:

$$\tau_2(7) = r(\eta^3) + r\eta + 1, \qquad \tau_3(7) = r(\eta^3) + 2r\eta + 1,$$

$$\tau_4(7) = 2r(\eta^3) + 2r(\eta^2) + 1, \qquad \tau_5(7) = 2r(\eta^3) + 2r(\eta^2) + r\eta + 1,$$

$$\tau_6(7) = 13 \quad and \quad \tau_7(7) = r\eta + 13.$$

Hence,  $s(\tau_n(7)) = \infty$  for  $2 \le n \le 7$ .

PROOF. First, let n=2 or 3. Then,  $\widetilde{KO}(L^n(7))=Z_7\{\overline{\sigma}\}$ ,  $\overline{\sigma}^2=0$  and  $\overline{\sigma}^3=0$  by Theorem 2.1. Thus, we have  $7r\eta-14=0$ ,  $(r\eta)^2-4r\eta+4=0$  and  $(r\eta)^3-6(r\eta)^2+12r\eta-8=0$ . Then, using Lemma 4.1 and these three equations, we obtain  $r(\eta^3)+5r\eta-12=0$ . Since  $\tau_n(7)=(n+1)r\eta-1$  in  $KO(L^n(7))$ , we have

$$\tau_2(7) = 3r\eta - 1 = -4r\eta + 13 = r(\eta^3) + r\eta + 1;$$
  
$$\tau_3(7) = 4r\eta - 1 = -3r\eta + 13 = r(\eta^3) + 2r\eta + 1.$$

Next, let n = 4 or 5. Then,  $\widetilde{KO}(L_0^n(7)) = Z_7\{\bar{\sigma}, \bar{\sigma}^2\}$  and  $\bar{\sigma}^3 = 0$  by Theorem 2.1. Thus, we have  $7r\eta - 14 = 0$ ,  $7(r\eta)^2 - 28r\eta + 28 = 0$  and  $(r\eta)^3 - 6(r\eta)^2 + 12r\eta - 8 = 0$ . Then, using Lemma 4.1 and these three equations, we obtain  $r(\eta^3) + r(\eta^2) + r\eta - 6 = 0$ . Since  $\tau_n(7) = (n+1)r\eta - 1$  in  $KO(L^n(7))$ , we have

$$\tau_4(7) = 5r\eta - 1 = -2r\eta + 13 = 2r(\eta^3) + 2r(\eta^2) + 1;$$
  
$$\tau_5(7) = 6r\eta - 1 = -r\eta + 13 = 2r(\eta^3) + 2r(\eta^2) + r\eta + 1.$$

Similarly, for n = 6 or 7, we also have  $7r\eta - 14 = 0$  by Theorem 2.1. Thus, we have  $\tau_6(7) = 7r\eta - 1 = 13$  and  $\tau_7(7) = 8r\eta - 1 = r\eta + 13$ . Hence,  $s(\tau_n(7)) = \infty$  for  $2 \le n \le 7$  as is required, since  $r(\eta^3)$ ,  $r(\eta^2)$  and  $r\eta$  over  $L^n(7)$  are extendible to  $L^m(7)$  for every  $m \ge n$ .

Proposition 4.7.

$$s(\tau_n(7)) = 2n + 1$$
 for  $8 \le n \le 11$ .

PROOF. Let n=8,9,10 or 11. By Proposition 3.1, we have  $s(\tau_n(7)) \ge 2n+1$ . We suppose that  $\tau_n(7)$  is stably extendible to  $L^{2n+2}(7)$ , and derive a contradiction from the hypothesis. Thus, there is a (2n+1)-dimensional vector bundle  $\alpha$  over  $L^{2n+2}(7)$  satisfying that  $\tau_n(7)$  is stably equivalent to  $i^*\alpha$ . By Theorem 2.1,  $\widetilde{KO}(L^n(7))$  and  $\widetilde{KO}(L^{2n+2}(7))$  are both generated additively by  $\bar{\sigma}$ ,  $\bar{\sigma}^2$  and  $\bar{\sigma}^3$  modulo a 2-torsion. Thus, we can put  $\alpha - (2n+1) = a\bar{\sigma} + b\bar{\sigma}^2 + d\bar{\sigma}^3 + \delta$ , where  $\delta$  is zero or a 2-torsion element. Then, since  $i^*\delta = 0$  in  $\widetilde{KO}(L^n(7))$ , we have  $i^*\alpha - (2n+1) = a\bar{\sigma} + b\bar{\sigma}^2 + d\bar{\sigma}^3$  in

$$\widetilde{KO}(L_0^n(7)) = \begin{cases} Z_{7^2}\{\bar{\sigma}\} + Z_7\{\bar{\sigma}^2, \bar{\sigma}^3\} & n = 8 \text{ or } 9, \\ Z_{7^2}\{\bar{\sigma}, \bar{\sigma}^2\} + Z_7\{\bar{\sigma}^3\} & n = 10 \text{ or } 11. \end{cases}$$

Since 
$$i^*\alpha = \tau_n(7)$$
 and  $\tau_n(7) - (2n+1) = (n+1)\overline{\sigma}$ , we have 
$$\begin{cases} a \equiv n+1 \mod 7^2, \\ b \equiv 0 \mod 7 \ (n=8,9), \mod 7^2 \ (n=10,11), \\ d \equiv 0 \mod 7. \end{cases}$$

Hence, we can put

$$\begin{cases} a = 7k + a_1 & \text{with } k \equiv 1 \mod 7, \\ b = 7l, \\ d = 7h \end{cases}$$

for some integers k, l and h, where  $a_1 = 2, 3, 4$  or 5 according as n = 8, 9, 10 or 11. Consider the complexification of  $\alpha$ . Then,

$$c\alpha - (2n+1) = ac\overline{\sigma} + bc\overline{\sigma}^2 + dc\overline{\sigma}^3$$

$$= a((\eta + \eta^{-1}) - 2) + b((\eta + \eta^{-1})^2 - 4(\eta + \eta^{-1}) + 4)$$

$$+ d((\eta + \eta^{-1})^3 - 6(\eta + \eta^{-1})^2 + 12(\eta + \eta^{-1}) - 8)$$

$$= (a - 4b + 15d)(\eta + \eta^{-1}) + (b - 6d)(\eta^2 + \eta^{-2}) + d(\eta^3 + \eta^{-3})$$

$$- (2a - 6b + 20d).$$

Recall that  $\bigoplus_{i\geq 0} H^{2i}(L^{2n+2}(7); Z_7) \simeq Z_7[x]/(x^{2n+3})$  as graded algebras, where  $x=C_1(\eta)$ . Then, we have

$$C(c\alpha) = C(\eta + \eta^{-1})^{a-4b+15d} C(\eta^2 + \eta^{-2})^{b-6d} C(\eta^3 + \eta^{-3})^d$$
$$= (1 - x^2)^{a-4b+15d} (1 - 4x^2)^{b-6d} (1 - 9x^2)^d.$$

Since  $a - 4b + 15d = 7(k - 4l + 15h) + a_1$  with  $k \equiv 1 \mod 7$ , b - 6d = 7(l - 6h) and d = 7h, we have

$$C(c\alpha) = (1 - x^{2})^{a_{1}} ((1 - x^{2})^{7})^{k-4l+15h} ((1 - 4x^{2})^{7})^{l-6h} ((1 - 9x^{2})^{7})^{h}$$

$$= (1 - x^{2})^{a_{1}} (1 - x^{14})^{k-4l+15h} (1 - 4^{7}x^{14})^{l-6h} (1 - 9^{7}x^{14})^{h}$$

$$= (1 - x^{2})^{a_{1}} (1 - (k - 4l + 15h)x^{14}) (1 - 4(l - 6h)x^{14}) (1 - 2hx^{14})$$

$$= (1 - x^{2})^{a_{1}} (1 - (k - 9h)x^{14}) (1 - 2hx^{14})$$

$$= (1 - x^{2})^{a_{1}} (1 - (k - 7h)x^{14})$$

$$= (1 - x^{2})^{a_{1}} (1 - x^{14})$$

$$= (1 - a_{1}x^{2} + \dots + (-1)^{a_{1}+1}x^{14+2a_{1}}.$$



#### 5. Application to stably splitting problem

A splitting (resp. stably splitting) problem of vector bundles can be stated: When is a given k-plane bundle equivalent (resp. stably equivalent) to a sum of k line bundles? Concerning this, the following result is called Schwarzenberger's property.

THEOREM ([1], [2], [9], [10]). Let F = C or R. If a k-dimensional F-vector bundle  $\zeta$  over  $FP^n$  is extendible to  $FP^m$  for every m > n, then  $\zeta$  is stably equivalent to the Whitney sum of k numbers of F-line bundles.

We remark that the theorem is also valid if the condition for extendibility is changed to that for stably extendibility (cf. [8], [4]). Then, some related results are shown as follows:

THEOREM ([4], Theorem B). If a k-dimensional H-vector bundle  $\zeta$  over  $HP^n$  is stably extendible to  $HP^m$  for every m > n and its top non-zero Pontrjagin class is not zero mod 2, then  $\zeta$  is stably equivalent to the Whitney sum of k numbers of H-line bundles provided  $k \leq n$ .

THEOREM ([8], Theorem B). If a k-dimensional vector bundle  $\zeta$  over  $L^n(3)$  is stably extendible to  $L^m(3)$  for every m > n, then  $\zeta$  is stably equivalent to the Whitney sum of  $\left\lceil \frac{k}{2} \right\rceil$  numbers of 2-plane bundles.

We have another answer from Lemma 5.2 in [7], Theorems 2 and 3 and Propositions 4.3 and 4.6.

THEOREM 4. Let p=5 or 7 and  $n \ge 1$ . Then,  $\tau_n(p)$  is stably equivalent to the Whitney sum of  $\left[\frac{2n+1}{2}\right]$  numbers of 2-plane bundles if and only if  $s(\tau_n(p)) = \infty$  holds.

### **6.** Study on $m\tau_n(p)$

Let  $m\tau_n(p)$  be the *m*-times Whitney sum of the tangent bundle  $\tau_n(p)$ . We have the following in the similar way to the proof of Proposition 3.1.

PROPOSITION 6.1. Let 
$$m \ge 1$$
. Then, for any  $n \ge 1$ , we have  $s(m\tau_n(p)) \ge m(2n+1)$  or  $s(m\tau_n(p)) \ge m(2n+1) - 1$ 

if m is an odd or even integer respectively.

PROOF. For any integer  $k \ge 1$ , we have

$$g.\dim(m(n+1)(r\eta_k-2)) \le 2\left[\frac{k}{2}\right] + 1$$

by Theorem 2.3. Thus, there is a  $(2[\frac{k}{2}]+1)$ -dimensional vector bundle  $\beta$  satisfying that  $m(n+1)r\eta_k$  is stably equivalent to  $\beta$ . Let m be an odd (resp. even) integer. When k=m(2n+1) (resp. k=m(2n+1)-1), we have  $2[\frac{k}{2}]+1=m(2n+1)$  (resp. =m(2n+1)-1). Thus,  $m(n+1)r\eta_{m(2n+1)}$  (resp.  $m(n+1)r\eta_{m(2n+1)-1}$ ) is stably equivalent to  $\gamma+m$  for the m(2n+1)-dimensional vector bundle  $\gamma=\beta$  (resp.  $=\beta+1$ ). Then,  $m\tau_n(p)$  is stably equivalent to  $i^*(\gamma)$  since  $m\tau_n(p)+m=m(n+1)r\eta_n$ , and thus we have the required inequality  $s(m\tau_n(p)) \geq m(2n+1)$  (resp.  $s(m\tau_n(p)) \geq m(2n+1)-1$ ).

Now, in order to consider the case when  $s(m\tau_n(p)) = m(2n+1)$  or  $s(m\tau_n(p)) \le m(2n+1) + 1$  holds in Proposition 6.1, we first define an integer  $\varepsilon_p(t,l)$ .

DEFINITION. For a non-negative integer t and a positive integer l, define an integer  $\varepsilon_n(t,l)$  as follows.

$$\varepsilon_p(t,l) = \min \left\{ 2j \left| 2\left[\frac{t}{2}\right] + 1 < 2j \text{ and } \left(\frac{\left[\frac{t}{2}\right] + l}{j}\right) \not\equiv 0 \mod p \right\}.$$

Then, we have  $t < \varepsilon_p(t, l) \le 2\left[\frac{t}{2}\right] + 2l$  and  $\varepsilon_p(t, 1) = 2\left[\frac{t}{2}\right] + 2$ , and the following lemma.

LEMMA 6.2. Let p be an odd prime and  $\zeta$  a t-dimensional vector bundle over  $L^n(p)$ . If there is a positive integer l with  $\varepsilon_p(t,l) \leq n$ , then  $\zeta$  is not stably equivalent to  $\left(\left[\frac{t}{2}\right] + l\right)r\eta$ .

PROOF. We write simply  $\varepsilon(t,l)$  instead of  $\varepsilon_p(t,l)$ . For the Pontrjagin class of  $(\lceil \frac{t}{2} \rceil + l)r\eta$ , we have

$$P_{\varepsilon(t,l)/2}\bigg(\bigg(\bigg[\frac{t}{2}\bigg]+l\bigg)r\eta\bigg)=\bigg(\frac{\big[\frac{t}{2}\big]+l}{\frac{\varepsilon(t,l)}{2}}\bigg)x^{\varepsilon(t,l)}\in H^{2\varepsilon(t,l)}(L^n(p);Z),$$

which is not zero by the definition of  $\varepsilon(t,l)$  and the assumption  $\varepsilon(t,l) \leq n$ . However, since  $\zeta$  is of dimension t and  $\left[\frac{t}{2}\right] < \frac{\varepsilon(t,l)}{2}$ , we have  $P_{\varepsilon(t,l)/2}(\zeta) = 0$ . Thus,  $\zeta$  is not stably equivalent to  $\left(\left[\frac{t}{2}\right] + l\right)r\eta$ , as is required.

The following is also obtained using the calculation in the proof of Theorem 1.1 in [7].

PROPOSITION 6.3. Let p be an odd prime, and  $\zeta$  a t-dimensional vector bundle over  $L^n(p)$ . Assume that there is a positive integer l satisfying

(1) 
$$\zeta$$
 is stably equivalent to  $(\left[\frac{t}{2}\right] + l)r\eta$ , and

(2) 
$$p^{[n/(p-1)]} > \left[\frac{t}{2}\right] + l$$
.

Then,  $s(\zeta) < \varepsilon_p(t, l)$ .

PROOF. Here, we put  $h = \left[\frac{t}{2}\right] + l$ , and write  $\varepsilon(t, l)$  instead of  $\varepsilon_p(t, l)$ . Then, by Lemma 6.2,  $n < \varepsilon(t, l)$ . Now, we suppose that  $\zeta$  is stably extendible to  $L^{\varepsilon(t, l)}(p)$ , and derive a contradiction from the hypothesis. Thus, there exists a t-dimensional vector bundle  $\alpha$  over  $L^{\varepsilon(t, l)}(p)$  satisfying that  $i^*\alpha$  is stably equivalent to  $hr\eta$ .

Now, we apply the same methods used in the proof of Theorem 1.1 in [7]. The integers  $c_i$  used there are  $c_1 = h$  and  $c_i = 0$  for  $2 \le i \le p-1$  in our case. Then, the total Pontrjagin class of  $j^*\alpha$ , where j is the inclusion map  $j: L_0^{\varepsilon(t,l)}(p) \to L^{\varepsilon(t,l)}(p)$ , is given as

$$P(j^*\alpha) = (1+x^2)^h$$
 in  $H^*(L_0^{\epsilon(t,l)}(p); Z)$ .

Here, the following equality is used to calculate the above Pontrjagin class as in [7]:

$$(1+i^2x^2)^{p^{[n/(p-1)]}}=1+i^{2p^{[n/(p-1)]}}x^{2p^{[n/(p-1)]}}=1\qquad \text{in } H^*(L_0^{\varepsilon(t,l)}(p);Z)$$

for  $1 \le i \le \frac{p-1}{2}$ , and it holds because  $p^{[n/(p-1)]} > h$  from the assumption (2) and  $2h \ge \varepsilon(t,l)$  as mentioned above. Then, from the total Pontrjagin class of  $j^*\alpha$  and by the definition of  $\varepsilon(t,l)$ , we have

$$P_{\varepsilon(t,l)/2}(j^*\alpha) = \binom{h}{\frac{\varepsilon(t,l)}{2}} x^{\varepsilon(t,l)} \neq 0 \quad \text{in } H^{2\varepsilon(t,l)}(L_0^{\varepsilon(t,l)}(p); Z),$$

which contradicts that  $j^*\alpha$  is of dimension t and  $t < \varepsilon(t, l)$ . Thus, we have completed the proof.

Then, we have the following.

THEOREM 5. Let  $m \ge 1$  and  $n \ge 1$  be integers.

(1) If m is odd,

$$p^{[n/(p-1)]} > m(n+1) \qquad and \qquad \left(\frac{m(n+1)}{m(n+1) - \frac{m-1}{2}}\right) \not\equiv 0 \mod p,$$

then  $s(m\tau_n(p)) = m(2n + 1)$ .

(2) If m is even,

$$p^{[n/(p-1)]} > m(n+1)$$
 and  $\binom{m(n+1)}{mn+1+\frac{m}{2}} \not\equiv 0 \mod p$ ,

then 
$$s(m\tau_n(p)) = m(2n+1) - 1$$
,  $m(2n+1)$  or  $m(2n+1) + 1$ .

PROOF. First, we assume that m is odd, and prove (1). By Proposition 6.1, we have  $s(m\tau_n(p)) \ge m(2n+1)$ . Thus, we assume further that

$$p^{[n/(p-1)]} > m(n+1) \quad \text{and} \quad \left(\frac{m(n+1)}{\frac{m(2n+1)+1}{2}}\right) = \left(\frac{m(n+1)}{m(n+1) - \frac{m-1}{2}}\right) \not\equiv 0 \mod p,$$

and prove the inequality  $s(m\tau_n(p)) \le m(2n+1)$ . Consider  $\varepsilon_p(m(2n+1), \frac{m+1}{2})$ . Since  $2\left[\frac{m(2n+1)}{2}\right] + 1 < m(2n+1) + 1$ , and by the latter assumption above, we have  $\varepsilon_p(m(2n+1), \frac{m+1}{2}) \le m(2n+1) + 1$ . Hence, by Proposition 6.3, we have  $s(m\tau_n(p)) < \varepsilon_p(m(2n+1), \frac{m+1}{2}) \le m(2n+1) + 1$ , and thus we have proved (1).

Next, we assume that m is even, and prove (2). By Proposition 6.1, we have  $s(m\tau_n(p)) \ge m(2n+1)-1$ . Thus, we further assume that

$$p^{[n/(p-1)]} > m(n+1)$$
 and  $\binom{m(n+1)}{\frac{m(2n+1)+2}{2}} = \binom{m(n+1)}{mn+1+\frac{m}{2}} \not\equiv 0 \mod p$ ,

and prove  $s(m\tau_n(p)) \le m(2n+1)+1$ . Then, since  $2\left[\frac{m(2n+1)}{2}\right]+1 < m(2n+1)+2$ , and by the last assumption above, we have  $\varepsilon_p\left(m(2n+1),\frac{m}{2}\right) \le m(2n+1)+2$ . Hence, by Proposition 6.3,  $s(m\tau_n(p)) < m(2n+1)+2$ , and thus we have proved (2) and completed the proof of Theorem 5.

We illustrate the results of Theorems 5 for p = 5 or 7 and for  $2 \le m \le 5$ .

Example. Let  $n \ge 1$ , and p = 5 or 7.

- (1) If  $n \ge 2p 2$ , then  $s(2\tau_n(p)) = 4n + 1, 4n + 2$  or 4n + 3.
- (2) Assume that

$$\begin{cases} n \ge 3p - 3 \text{ and } n + 1 \not\equiv 0 \mod p & \text{for } p = 5, \\ n = 12, 14, 15 \text{ or } n \ge 3p - 3 \text{ and } n + 1 \not\equiv 0 \mod p & \text{for } p = 7. \end{cases}$$

Then,  $s(3\tau_n(p)) = 6n + 3$ .

- (3) Assume that  $n \ge 3p 3$  and  $n + 1 \not\equiv 0 \mod p$ . Then,  $s(4\tau_n(p)) = 8n + 3, 8n + 4$  or 8n + 5.
- (4) Assume that  $n \ge 3p 3$ . For p = 5, we have no information on  $s(5\tau_n(5))$  from Theorem 5. For p = 7, if  $\frac{1}{2}(5n + 4)(5n + 5) \ne 0$  mod 7, then  $s(5\tau_n(7)) = 10n + 5$ .

#### References

- [1] J. F. Adams and Z. Mahmud, Maps between classifying spaces, Invent. Math. **35** (1976), 1–41.
- [2] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1978.

- [3] D. Husemoller, Fibre Bundles, Second Edition, Graduate texts in Mathematics 20, Springer-Verlag, New York-Heidelberg-Berlin, 1975.
- [4] M. Imaoka and K. Kuwana, Stably extendible vector bundles over the quaternionic projective spaces, Hiroshima Math. J. 29 (1999), 273–279.
- [5] T. Kambe, The structure of  $K_{\Lambda}$ -rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135–146.
- [6] T. Kobayashi and K. Komatsu, Extendibility and stable extendibility of vector bundles over lens spaces mod 3, to appear in Hiroshima Math. J. 35 (2005).
- [7] T. Kobayashi, H. Maki and T. Yoshida, Remarks on extendible vector bundles over lens spaces and real projective spaces, Hiroshima Math. J. 5 (1975), 487–497.
- [8] T. Kobayashi, H. Maki and T. Yoshida, Stably extendible vector bundles over the real projective spaces and the lens spaces, Hiroshima Math. J. 29 (1999), 631–638.
- [9] E. Rees, On submanifolds of projective space, J. London Math. Soc. 19 (1979), 159-162.
- [10] R. L. E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford (2) 17 (1966), 19–21.
- [11] D. Sjerve, Geometric dimension of vector bundles over lens spaces, Trans. Amer. Math. Soc. 134 (1968), 545–557.
- [12] T. Yoshida, A remark on vector fields on lens spaces, J. Sci. Hiroshima Univ. Ser. A-I, 31 (1967), 13-15.

Mitsunori Imaoka

Department of Mathematics Education
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524 Japan
imaoka@hiroshima-u.ac.jp

Hironori Yamasaki
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8526 Japan
hyamasaki@hi.enjoy.ne.jp