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ABSTRACT. We consider the nonlinear fourth order boundary value problem
W (x) = 2f (x,u(x), ' ()
u(0)=u'(0)=u"(1)=u"(1)=0

where f:[0,1] x [0, 00) x [0,00) — (—00,00) is continuous with f(x,u,p) > —M for
some positive constant M. We show the existence and multiplicity of positive solutions
by using a fixed point theorem in cones.

1. Introduction

The deformations of an elastic beam are described by a fourth-order two-
point boundary value problem [6]. The boundary conditions are given accord-
ing to the controls at the ends of the beam. For example, the nonlinear fourth
order problem

u(0)=u'(0)=u"(1)=u"(1)=0 (1.1)

describes the deformations of an elastic beam whose one end fixed and the
other end free.

The existence of solutions of (1.1) has been studied by Gupta [6]. But to
the best of our knowledge, there are no any results concerning the existence of
positive solutions of (1.1). In this paper, we will study the existence and
multiplicity of positive solutions of (1.1).
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We will make the following assumptions:
(A1) f:1]0,1] x [0,00) x [0,00) — (—o00, c0) is continuous and there exists
M >0 such that

fx,u,p)>—M, for (x,u, p) €[0,1] x [0, c0) x [0, c0); (1.2)
(A2) There exists a subinterval [o, ] = (0,1) with « < f such that

lim L0402 (1.3)

p— 0 p

holds uniformly for (x,u) € [o, ] x [0, c0);
(A3)

f(x,u,0) >0, (x,u) €[0,1] x [0, c0). (1.4)

REMARK 1. Tt is easy to see that (A3) implies that there exist two
constants a,b € (0,00) such that

Soup) =b, (x,u,p) €[0,1] x 0,4 x [0, 4],

Very recently, Anuradha, Hai and Shivaji [1] studied the existence of
positive solutions for second order boundary value problem
(p(Ou' (1)) + Af (t,u(t)) =0, r<t<R

au(r) — bp(r)u'(r) = 0, cu(R) + dp(R)u'(R) =0 (1.5)

under some superlinear semipositone conditions when 2 > 0 is small enough.

Motivated by their work, we study the existence and multiplicity of positive

solutions for fourth order problems (1.1). The main results of this paper are
the following

THEOREM 1. Assume (Al) and (A2) hold. Then the problem (1.1) has at
least ome positive solution if 7. > 0 is small enough.

THEOREM 2. Assume (Al), (A2) and (A3) hold. Then the problem (1.1)
has at least two positive solutions if 1 > 0 is small enough.

The proofs of above theorems are based upon the following Guo-
Krasnoselskii fixed point theorem

THEOREM 3. [5] Let E be a Banach space, and let K < E be a cone.
Assume Q1,Q, are open and bounded subsets of E with 0 € Q,, Q| c Q,, and
let

AKQ(Qz\Ql) — K

be a completely continuous operator such that
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(1) || Au|| < ||ull, ue KNy, and ||Aul| = ||u||, ue KNRy; or
(i) || Aul| = ||ull, ue KN Ry, and ||Au|| < ||u|, ue KNOQ,.
Then A has a fixed point in KN (Q2,\Q21).

For the results concerning the existence and multiplicity of positive solu-
tions of fourth-order ordinary differential equations with other different con-
ditions and nonnegative nonlinearities, one may refer, with further references
therein, to Del Pino and Mandsevich [2], Dunninger [3], Graef and Yong [4],
Ma and Wang [7] and Zhang and Kong [10].

2. The preliminary lemmas
To prove Theorem 1 and Theorem 2, we need several preliminary results.
Lemma 1. For ye C[0,1], the problem
u(x) = y(x),  xe(0,1)
u(0) =u'(0) =u"(1) =u"(1) =0 (2.1)

is equivalent to the integral equation

o[ [l e

Moreover, if y >0 on [0,1], then
(i) u(x)=0, xel0,1];
(i) u'(x) >0, xel0,1];
(iii) u”"(x) =0, xe[0,1];
(iv) u"(x) <0, xel0,1].

ProoOF. It is easy to check that (2.1) is equivalent to (2.2).
If y>0 on [0,1], then (2.2) implies ¥ >0 on [0,1]. Moreover

W(x) = L (Jl UI y(t)dt} ds) dr=0,  xel01]

u"(x) = E U: y(l)dl} ds > 0, xe0,1]
and

I
u"(x) = —J y(t)dt <0, x e [0,1].

X

In the following, we will use the Banach space C[0,1] and its sup norm

I+ llo-
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Lemma 2. If ye C[0,1] and y >0, then the unique solution u of the
problem (2.1) satisfies

u'(x) = [ullogq(x),
where
q(x) == x, x € [0,1]. (2.3)

Proor. By Lemma 1, we know that #”’(x) <0 on [0,1]. So, the graph
of u' is concave down. This together with the facts that u’(0) = (u/)'(1) =0
and u” > 0 imply

u'(x) = [[ullpq(x).

LemMma 3. The boundary value problem

u®(x) =1, xe(0,1)

u(0)=u'(0)=u"(1)=u"(1)=0 (2.4)
has a solution
x2oxdx
w(x) = 17 ¢ T (2.5)
Moreover,
w(x) < éq(x), x€[0,1] (2.6)
and
w'(x) < éq(x), x e [0,1]. (2.7)

PrOOF. (2.5) is an immediate consequence of Lemma 1. Since the graph

1
of w is concave upward and ||wl||, = g e know that (2.6) holds. By (2.5), we
have that

2 3
g XXX
w (x)—2 > + ¢ (2.8)
2
W) =g x (29)

and

w”(x)=-1+x<0, xe0,1]. (2.10)
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(2.10) implies that the graph of w’ is concave downward. Therefore w'(x) <

w"”(0)g(x) = %q(x) for x € [0, 1].

3. Proof of the theorems

Set

Cy[0,1] = {u|ue C'[0,1],u(0) = u'(0) = 0}.
We furnish the set C}[0,1] with the norm
[ull = sup{Ju’(x)] = x € [0, 1]} = [[u'[}o,

by which C}[0,1] is a Banach space.

PrROOF OF THEOREM 1. Let

z = AMw (3.1)

where w is defined by (2.5). Then (1.1) has a positive solution u if u+z:=4
is a solution of

u® = Jg(x,u—z,u' —2'), xe(0,1)
u(0)=u'(0)=u"(1)=u"(1)=0 (3.2)

and @’'(x) > z/(x) for x e (0,1), where g:[0,1] x R x R — [0,00) is defined by

flxu,p)+ M, (x,u,p)el0,1] x[0,00) x [0, 00)
)= L0 M, () 0.1 x (o x 0.) O
£(x,0,0)+ M, (x,u,p)e0,1] x (—0,0) x (—o0,0)
Let us denote
K = {ulue C;[0,1],u(x) =0 on [0,1],
uW'(x) >0 on [0,1],u'(x) > |lulg(x)}, (3.4)

where ¢(x) is defined by (2.3). It is obvious that K is a cone in C}[0,1].
For v e K, denote by Av the unique solution of

u® = Jg(x,0—z,0' —2')
u(0) =u'(0) =u"(1) =u"(1) =0, (3.5)

then
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Av(x) = 4 L (L (Jl Ul g(to— 2,0 — z’)dt} ds) dr) dr. (3.6)

By Lemma 2, we know that A(K) < K.

Let
A€ (0,4) (3.7
be fixed, where
(12 1
A= mln{ﬁl,ﬁ} (38)
My =max{g(x,u,p)|0<x<1,0<u<2,0<p<2} (3.9)

Choose Q) = {u e C}[0,1]|||u]| < 2}. Then for u e KN 0L, we have from
(3.8), (3.9), (3.3) and the facts z >0 and z’ > 0 that

(Aw)'(x) = 4 JO (Jl { J 1 gt u—z,u — z’)dt} ds> dr
<M, J; (Jl Ul I dt] ds> dr

N =

< 2. (3.10)
Therefore,
(| Aull < ||ull, ue KNaoQw;.
We note that

min_¢(s) = o. (3.11)

a<s<f
Choose a real number N > 0, such that

Niog|5(B=o) 3 (B~ ) + (B o) 2 1 (3.12)

1 1, 5 1
(We note that E(ﬁ—a)—i(ﬂ —a )+6

_ |
0<a<f<l1). Choose R>2, such that & > ERoc implies

(8> — o) is always positive for all

>N, for (x,u) € [o, f] X (=00, o0), (3.13)
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and
M 1
l—-— > -. 3.14
2R 2 ( )
Let
Q= {ue Cy[0,1]||ull < R}. (3.15)
Then for ue KNoR,, we have that
\ 1 1, u'(s) M
'(s) = AMw' M~ SAM I T ). 1
z'(s) = AMw'(s) < A 2qr(s) < 54 T u'(s) (3.16)
Thus
AM
u'(s) —z'(s) = <1 — 2R)u’(s). (3.17)
Combining (3.17) with (3.14) and (3.11), we conclude that
/ / 1 1 15
W(s) = 2(5) 2 ') = S lullg() = 5 Ra,  selwfl (13)
This together with (3.13) implies
!/ ! / ! Ra
g(x,u—z,u' —z') > N(u —Z)ZNT, s € [a, f]. (3.19)
Thus from (3.12) we get
1/ pippl
(Au)'(1) = }tJ (J U g(t,u—z,u' — z’)dl} ds)dr
0 rLds
By (B /(LT (]
ZZN%J (J U ldt} ds)dr
Ro[1 I I
>IN 3 B0 =3 =) g (8 =)
> R = |ul (3.20)

for ue KN0Q,. Therefore, it follows from the first part of Theorem 3 that A
has a fixed point # in KN (2,\Q;) such that

2 < |lal| <R (3.21)

Moreover, by combining (3.21) with (3.7) and (3.8) and using Lemma 2
and Lemma 3, we know that



24 Ruyun Ma
(%) > ||alg(x) = 24(x) > 22Mq(x) = 22Mw'(x) = 22'(x),
So
W(x) = &(x) — 2 (x) 2 %ﬁ’(x), xe(0,1)
and moreover, since
u(x) = u(x) — z(x)
—ﬁW@—AMﬁ
> %L @' (s)ds
> Oxz'(s)ds >0, xe(0,1)

we get a positive solution u(x) = @(x) — z(x) of (L.1).

xe (0,1).

(3.22)

(3.23)

(3.24)

ProOF OF THEOREM 2. From (3.23), we have that (1.1) has a positive

solution u; satisfying
1.
Jurl| = 5 ) = 1.

To find the second positive solution of (1.1), we set

f(x,u, p), for (x,u,p)el0,1] x [0,a] x
Fup) = f(x,a,p), for (x,u,p)el0,1] x (a,0)
‘ Y f(x,u,a), for (x,u, p)e[0,1] x [0,a] x
f(x,a,a), for (x,u,p)el0,1] x (a, o)

(3.25)

Then f*(x,u, p) = b for (x,u, p) €[0,1] x [0,a] x [0,a], where a,b are given in

Remark 1.
Now, we consider the auxiliary equation

u® = 2f*(x,u,u), xe(0,1)
u(0) =u'(0) =u"(1) =u"(1) = 0.

It is easy to check that (3.27) is equivalent to the fixed point problem

u=Fu

where

(3.27)

(3.28)
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Fu(x) = J L (JO (Jl Ul £ u(e), (1)t ds) dr) dr. (3.29)

It is easy to check that F: K — K is completely continuous and F(K) < K.

Set
H = min{0.9, a}, (3.30)
and
A, = min{jZ,A} (3.31)
and fix
Le(0,4,), (3.32)
where

My, =max{f*(x,u,p)|0<x<1,0<u<H0<p<H} (3.33)

Choose Q3 = {ue C}[0,1]]|jul| < H}. Then for ue KNoQRs;, we have

that
X 1 1
(Fu)'(x) Z/IJ (J “ f*(t,u,u’)dt]ds)dr
0 r K]
1 /1l
< iMzJ (J J ldt} ds)dr
0 r K
<Myt
26
<4 (3.34)
Therefore
|Ful < llull.  we Knogs. (3.35)

From (A3) and Remark 1, we know that

lim L8P _ (3.36)
p—0* V4

uniformly for (x,u)€0,1] x [0,a]. This means that there exists a constant
ro (ro < H), such that

S (x,u,p) =np,  for (x,u,p) e |0,1] x [0,r9] x [0, ro]

where
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1

gz 1. (3.37)

Then for ue K and ||u|| =ry, we have from (3.11) and (3.37) that

1

[ 1f*(t, u, u’)dt] ds) dr

N

=3[
=2),(

U l nu’(z)dt] ds> dr

s

j j o0 s )

\%
>
=
(=] —_
VS

)
> in | ()|l
0
s
= AN —=
g
> [lull. (3.38)

Thus, we may let Q4 = {ue C}[0,1]||u] < ro} so that
|Ful| > |lull, ueKNaoQy. (3.39)

By the second part of Theorem 3, it follows that (3.27) has a positive solution
uy satisfying

rog < Hu2|| < H. (340)

Combining this with (3.26) and (3.30), we find that u; is also a solution of (1.1).
From (3.30), (3.25), (3.31) and (3.40), we know that (1.1) has two distinct
positive solutions u; and wuy for 1€ (0,4;).
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