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ABSTRACT. In this paper, we prove existence results for solutions of multi-point bound-
ary value problems at resonance (Theorems 2.1-2.4) and for positive solutions at non-
resonance (Theorems 2.5 and 2.6) for a 2n-th order differential equation. Our method
is based upon the coincidence degree theory of Mawhin. The interesting is that the
degree of some variables among xo, X1, ..., X2, in the function f(z,x0,X1,...,X21)
are allowable to be greater than 1. The results obtained are new.

1. Introduction

In this paper, we investigate the existence of solutions and positive
solutions of the multi-point boundary value problems for 2n-th order differ-
ential equations

(=)' = £t x(0), X' (), ... .x>D(0), 1€ (0,1), (1)
subject to one of following boundary value conditions

X(Zi—l)(o) =0, i=1,...,n,
x@ D)y =0, i=1,...,n—1, (2)
x(1) = X0 Bix(E),

and

x(21_1)(0):07 izl,...,n,
X (1) =0, i=1,...,n—1, 3)
x(0) =321, Bix (&),

where f:[0,1] x R* — R is a continuous function, n>1 an integer,
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0<é<--<é,<1 and B;eR for i=1,...,m. Our purpose here is to
provide sufficient conditions for the existence of solutions of boundary value
problem (1) and (2) and boundary value problem (1) and (3) at resonance and
at non-resonance. These will be done by applying the well known coincidence
degree theory and Schauder fixed point theorem.

The motivation for this paper is as follows: There were many papers
concerned with the solvability of the second-order differential equations

x"(0) + f(t,x(0),x"(1)) =0, 1€(0,1), (4)
subject to two-point boundary conditions
2x(0) — f'(0) = dx(1) + 7x'(1) = 0,

or the different multi-point boundary conditions at resonance or at non-
resonance, we refer the readers to [1-8] and the references therein. For
example, in [6], Liu and Yu studied the solvability of equation (4) subject to
boundary conditions

m

x'(0) =0, x(1) = Zoc,—x(éi),
i1

where > o; = 1, which shows that such a problem is a resonance problem.
They proved that under some assumptions it has at least one solution, one of
the main assumptions is as follows:

£ (&, x, )| < a(@)lx| + (o) y| + p(D)lxl” + q() ¥ + (), (%)

where a, b, p, ¢ are non-negative continuous functions and r is a continuous
function. To the best of our knowledge, the existence of solutions of multi-
point boundary value problems at resonance for higher order differential equations
were not investigated till now. The question is that under what conditions
above problems have solutions if (x) is not valid and under what conditions
BVP(1) and (2), BVP(1) and (3) have positive solutions?

On the other hand, the solvability of fourth-order differential equations

xW (1) = (1, x(1), —x" (1)), re(0,1), (5)
or
x<4)(t) = f(t,x(1)), 1e(0,1), (6)

subject to different boundary conditions have been studied by many authors,
please see [16-21]. However, the solvability problems of equations (5) or (6)
subject to one of following boundary value conditions

x(0) = x'(0) = x"(1) = x"(0) = 0,
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and

have not been studied.
Very recently, Chyan and Henderson, in [14], studied the following 2m -
order differential equation

X0 = £, x(0),x"(1),..., x> V(1),  0<r<], (7)
with either the Lidstone boundary value condition
x20) =x®)(1)=0  for i=0,1,....,m—1, (8)
or the focal boundary value condition
x2D0) =x®(1)=0  for i=0,1,...,m— 1. 9)

They proved the existence of at least one positive solution in the case either f is
super-linear or f is sub-linear.

The similar problems were also investigated in [15] by Palamides by using
an analysis of the corresponding field on the face-plane and the well known
Sperner’s Lemma. The method there is different from that in [10-14]. In the
papers mentioned above, the nonlinearity f depends on x,x”,...,x2=1),

For BVP(1) and (2) or BVP(1) and (3), the corresponding linear differential

equation is
(=) 'x® =0, 1e(0,1). (10)

It is easy to know that equation (10) subject to boundary conditions (2) or (3)
has nontrivial solutions x(7) = ¢ if >, f; =1, where c€ R. As usual, we
say that BVP(1) and (2) and BVP(1l) and (3) are resonance problems. The
problem appears naturally considering these boundary value problems:

(P). Under what conditions problem (1) and (2) and problem (1) and (3)
has at least one positive solution?

In this paper, we will solve above problems, please see theorem 2.1-
2.6. The results obtained are new.

By the way, in a recent paper [22], the authors studied the following BVPs
which consist of the equation

(=1)" ' = £(1,x(0), X' (1),..., x> V(0),  1e(0,1),
and one of the following boundary value conditions

{x<2">(0):0, i=0,1,...,n—1,
x%(1)=0, i=0,1,...,n—1,
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and

{x<2f>(o)o7 i=0,1..n—1,
xZD(1) =0, i=0,1,...,n—1.

They established some new existence results for the solutions of above BVPs.

2. Main results

In this section, we establish sufficient conditions for the existence of at least
one solution of BVP(1)-(2) and BVP(1) and (3). For convenience, we first
introduce some notations and an abstract existence thecorem by Gaines and
Mawhin [9], which can be see in [5-8].

Let X and Y be Banach spaces, L:dom L <« X — Y be a Fredholm
operator of index zero, P: X — X, Q: Y — Y be projectors such that

ImP=KerlL, KerQ=ImL X=KerL®KerP, Y=ImLPImOQ.
It follows that

Lljominkerp i dom LNKer P — Im L

is invertible, we denote the inverse of that map by K,.

If Q is an open bounded subset of X, dom LNQ # ¢, the map
N:X — Y will be called L-compact on Q if QN(Q) is bounded and
K,(I - Q)N : Q — X is compact.

THEOREM GM[9]. Let L be a Fredholm operator of index zero and let N be
L-compact on Q. Assume that the following conditions are satisfied:

(i) Lx # ANx for every (x,2) € [(dom L/Ker L)NadQ] x (0,1);

(i) Nx¢Im L for every x e Ker LN 0Q;

(iii) deg(AOQN|ker, R2NKer L,0) #0, where A:Y/Im L — Ker L is an
isomorphism.

Then the equation Lx = Nx has at least one solution in dom LN Q.

We use the classical Banach space CK[0,1], let X = C*7![0,1] and
Y =C%0,1]. Y is endowed with the norm [y||,, =max,cp y|»(r)], X is
endowed with the norm ||x|| = max{||x||, |x'[l..,---, [x?*"~V|,}. Define the
linear operator L and the nonlinear operator N by

L:XNdomL— Y, Lx(t)=(-1)""'x®(r) for xe XNdom L,
N:X—Y Nx(1) = f(t,x(2),x'(1), ..., x?=V (1)), for xe X,

respectively, where



Solvability of multi-point BVPs 5
dom L = {x e C"10,1], x#D(0) =0 = x® V(1) for i=1,...,n—1

xD(0) = 0,x(1) = Ziﬂilﬁ"x(gi)}'

Let Gy(z,s) be the Green’s function of problem

for some o, let

1
Gilt,s) = J Golt.7)Gr 1 (v, 8)dr,  h=1,....n—1.
0
LEMMA 2.1.  For problem (1) and (2), let Y.", f; = 1. Suppose there is
nonnegative integer k such that

0Jo 0 0

1 ¢l T m & ol T
4= J J Gya(s,7) J u® dudrds — Zﬁ,J J Gya(s,7) J u® dudrds # 0.
i—1 0 JO

Then the following results hold.

(i) Ker L={x(t) =c¢,te0,1],c e R},

() ImL— {y v, Jo Jo Guals,7) fgvy(lu)dudrds }

=Y B o o Gaea(s,7) [y y(u)dudzds

(i) L is a Fredholm operator of index zero;

(iv) There are projectors P:X — X and Q:Y — Y such that
Ker L =1Im P and Ker Q =Im L. Furthermore, let Q = X be an open bounded
subset with QNdom L # @, then N is L-compact on Q;

(v)  x(¢) is a solution of BVP(1) and (2) if and only if x is a solution of the
operator equation Lx = Nx in dom L.

ProoF. (i) The proof is easy and is omitted.
(i) If yelm L, then

(1) = (), 1€ (0, 1),
X200y = X2 (1) = 0, i=1,...,n—1, (11)
x(2n*1)(0) =0, x(1) = Z:il/?,-x(fi)-

This implies x>V (¢) = (=1)""" [J p(u)du since x**~1(0) =0. We get

T

1
X213 () = (1) L Go(1,7) L y(u)dudr,
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Similarly, we get

T

X(f) = Jl Gyoa(t, T)J »(u)dud.

0 0

So

x(t) =c+ JI J] Gy—2(s,7) JT y(u)dudrds. (12)

0J0 0

It follows from x(1) =>"", f;x(&;) that

T

J1J1Gn_2(S,T)J y(u dudrds—ZﬁJ Jl (s, T)J y(u)dudtds. (13)

0Jo 0

On the other hand, assume (13) holds. Let
t rl T
x(1) = C"‘J J Guoa(s, ‘C)J y(u)dudds.
0Jo 0

Then x(z) satisfies (11). Hence (ii) is complete.
(iii) From (i), dimKer L =1. On the other hand, for ye Y, let

kol gl .
J/O—y—tz<J J Gp-a(s, ‘L')J y(u)dudzds

0

Zl lﬂ,J J n-2(8,7) J;y(u)dudfds).

It is easy to check that ypeIm L. Let
R={ct*:1€[0,1],ce R}.

We get Y =R+1ImL. Again, RNImL=1{0}, so Y =R@®Im L. Hence
dim Y/Im L =1. On the other hand, f is continuous and Im L is closed. So
L is a Fredholm operator of index zero.

(iv) Define the projectors P: X — X and Q: Y — Y by

Px(t) = x(0) for xe X,

Oy(t) = ;—k(ﬂ Jl Gy-2(s,7) JT y(u)dudzds

0 0

_Zl | ,J J w—2(8,7) J; y(u)dudrds) for yeY.
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It is easy to check that Ker L =Im P and Im L = Ker Q. The generalized
inverse Kp:Im L — dom LNKer P of L can be written by

trl T
Kpy(1) :J J G-a(s, T)J y(u)dudzds.
0Jo 0

(v) The proof is easy and is omitted.

m

THEOREM 2.1. Suppose > ", p; =1 and the following conditions hold.
(A1) There are a continuous function e(t) and nonnegative functions g;(t,x)
(i=0,1,...,2n— 1) such that f satisfies

2n—1

£t X0, x1, o xaumt)| < e(0) + ) gilt,x;)
i=0
for all te|0,1] and (xo,x1,...,X2m_1) € R*" and
. i(Z, .
lim supM:n, for i=0,1,... 2n—1
[XI=0 re0,1] |x|

with r; >0 for i=0,1,....2n—1;
(42) There exist constants L >0, o>0 and o0, >0 (i=1,...,2n—2)
such that
2n—2
|f (2, x0,x = 1,  X201)| = atfxo| — Z % xi| — L
i=1

for all te(0,1] and (xo,x1,...,X3, 1) € R*".
(A3) There is a constant M > 0 such that

f(t¢0,...,0)>0
for te[0,1] and ¢ > M or
f(t,c,0,...,0) <0

for te0,1] and ¢ < —M;
Then BVP(1) and (2) has at least one solution provided

2n-2 2n—1
; ; 1
(l +7Z’:oi al) o+ Y ri< 5 (14)

Proor. To apply Theorem GM, we should define an open bounded
subset Q of X so that (i), (ii) and (iii) of Theorem GM hold. It is based upon
three steps to obtain Q. The proof of this theorem is divide into four steps.
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Step 1. Let

Q) ={xedom L/Ker L, Lx = ANx for some le (0,1)}.

We prove Q; is bounded. For x € 2y, it is easy to show that there is &; € [0, 1]
such that x®)(&) =0 for i=1,2,...,n—1 and

&
XD+ j X1 (5)ds

t

1
2 (1) = < j 1) (5)] s,

0

t
Ix=3) (1) = x@=3)(0) +J ¥ (5)ds

0

1 1
< | el < | e

(O] < | 10 (s)lds, (15)
0

Since x € dom L, it follows that Nx eIm L, so

Jl Jl Gua(s,7) Jff(u, x(u), x'(u), ..., x*"V(u))dudrds

0Jo 0

&
0

m ! ‘ ) n—1)
= E o ﬂlJ Jo Gpa(s,7) Jo flu,x(u),x"(u),...,x (u))dud-ds.
Le.

gl:ﬂf Jl J] Gu-2(s,7) Jrf(u,x(u),x'(u), -, XD () dudds = 0.

& J0 0
Since f; > 0 for i = 1,...,m, this inequality implies that that there is ¢ € (0, 1)
such that f(& x(&),x'(&),...,x?=D(£)) =0. By (4,) and (15), we see that

2n—2

L 1 ;
Za - 15D
MOl < S D wh )

L l 2n—2 1
—+- o J |x®=1) (s)|ds.
* i=1 0

IA

Hence
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th’(s)ds

¢

L 1 2n=2 ! (2n—1) d ! (2n—1) d
<Ea IS [ s+ [ el

()] < [x(&)] +

0
1
:A(MA}whW”K@>m, (16)
0
ZZW—Zo"
where 4 =1 +:Tl and M =L It suffices to prove there is a constant
B > 0 such that
[l = max{[|x[|,, ¥l e, - [V} < B.

We divide this step into two sub-steps.

Sus-sTEP 1.1. We prove that there is a constant M > 0 such that
T —
J|#HmngM
0

For x € 2, we have

(=" (0) = Af (1, x(0), X' (0), .., X0 (0)). (17)

It is easy to know that there is # € [0,1] such that

1
|, 1o = 15D

Multiplying two side of (17) by x**~1(¢) and integrating from 0 to #, using
(4r), we get

1
%JO |x(2n71)(s)|2ds
1 (2n—1) 2
= S K y)
1 1,
= SR~ S )

= r(— D" (s, x(8), x'(s), ..., x@ V() x> (5)ds
0



10 Yuji Liu and Weigao GE

n

£ (5,205, % (), -, XD (9))[ [ (s) s

0
n—1 1 1

J gi(s, X (5))x>"D (s )dS+J le(s)] [x2"=1(s) s
0 J0

IA
—

IA
[

i=l

[
=

1

IA

1
\gl(s X0 ()] [x 1>(S)\ds—|—||e||%J | (s)ds
0

=0

1/2

[
=
—_

1
-5
—0 J0

Let ¢ > 0 satisfy

1
5, £ ) + el ([ 1620
0

\S]

1 _211—2 ; 2n—1
=> (1 +Z'%‘la>(ro+a)+ Z(ri—ks).

=1
For such a ¢ > 0, we find from (4;) that there is a constant > M such that
for every i=0,1,...,2n—1,

lgi(t,x)| < (r; +¢&)|x]| uniformly for 7€ [0,1] and |x| > ¢.
Let, for i=0,1,...,2n—1

A ={t:1e0,1],]xV (1) <6},
Ay ={t:1€10,1],|x(z)] > o},

gs,i = MaX; (0,1, |x <519 (¢, X)|-

Then
1 1 2n—1
,J |x(2” 1) | ds < ZJ |gi (s, xU ||x2" 1)(s)|ds
2 0 i=0 Y41
2n—1
FX |l )
i=0 J 4

1/2

¥ ||%(j0 (o)

2n
ngj (s)|ds + Z ri+e) J XD ()] [x2=V (s)|ds

1/2

1
el (L |x(2"1><s>|2ds)
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Again using (15) and (16), we get

1 1
|x(s)|ds < A<M+J |x=D (s )|ds>

0 0

(I 1
KOs < | 152

0 0

1 | | (18)
6 < (34 [ W0l | 0l

0 0 0

| 1 2
0(5) ]2 5) s < (j x<2"”<s>|ds) L=l
0 0
So from
1 1 1/2
J |x(2"71)(s)|ds§ (J |x(2nl)(s)|2ds> 7
0 0
we get

1
%J |x<2n1>(s)|2dsgg5,oA<M+J| el |ds) Zg&,J =1 (5)|ds
0

T+ )4 (M " j |x<2”“<s>|ds) J; 22D ()l ds

2

ol 00

12

1
el (j x<2"“<s>|2ds)
0
1 1/2
M+ (J |x(2”1)(s)|2ds) 1
0
2n—1 1 1/2
+ Z g‘“(J |X(2”_1>(S)|2ds>
i=1 0
1 1/2
M(J |x<2"1>(s)|2ds>
0
2n—1 1

3 4 J; XD (5)2ds + ||€||m(JO

i=1

1

+(rop—1 +¢) J |x(2"71)(s)|2ds
0

< gs,04

+ (ro+¢)4

! 2n1
+JO| )l ds]

1/2

K )

1.e.
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(% —A(rg+¢) — i(” + 8)) L |x=D () |*ds

i=1

12
< g(S,OA

1 1/2 2n—
M+ (J x2n= 1 2ds> + gs ,(J x=Ds 2ds>
| Ejs X1 )
1/2 !
+ndm(jﬂ””M@Pw)
0

1
+ (VO + E)AM (J |x(2n—1>(s)|2ds)
0
From the definition of & we find that §— A(ro +¢) — 22” "(ri+¢€ >0 and
that there is a constant M > 0 such that

1/2

I
J XV (5)|*ds < M.
0

SuB-sTEP 1.2. Prove there is B > 0 such that ||x|| < B.
From sub-step 1.1, we have

ol < (34 [ i)

<A <M + (J: |x<2"1)(s)2ds>1/2>

A(M + M'?).

IA

1

X (s)|ds
0

X7l <

—

1/2

(ﬂwm“@wﬁ)

<M, i=1,...,n—2.

IA

Multiplying two side of (17) by x?"~1(¢), integrating them from 0 to ¢, using
(A1), we get
1

§|x(2”_1>(1)|2 = AJ (=)' (5, x(s), X'(5), . . ., x@ D ()= (5)ds
0

1
= J £ (s, (), X (5), -, 27D ()220 ()] 627D (5) s

1

1
< J gi(s,xm(S))lx(z”_”(S)ldS+J le(s)] [x" (s) s
i 0 0
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IA

1 ' 1
j lgi(s, X ()] X s) ds + [lel, j x20) (s) ds
0 0

i=0

1/2

§ (Ll (s s

[
T
-

1
< J 1gi(s, 2 (5))] x> s)
0

i

Il
<)

Similarly to step 1.1, we can get

1 . 2}171 .
BEIOE < 3| ol 2O R0l
=0 J4ui
2n—1 1 1/2
S Tt 1><s>|ds+||e||w(jo X ) ds)
i=0 2.i
2n
Zg(;,J (s)|ds + Z ri+e) J Ix@ ()] [x2=V (s)|ds
1 1/2
el (j |x<2"-‘><s>|2ds)
0
Using (18), we get
1 1
SO < good (M4 [ 1606 as) + Zgolj (X1 (5) s
0
1
—I-(rg—l—s)A(M—i-J |x2" 1)(s)|ds>J |x(2”_1)(s)\ds
0
2 1/2

a ([rore)

+2i"2_12<n+e> (j =5 )

1
+ (r2n—l +£)J |x<2n71)(s)|2ds
0

1/2 1/2

+ Z i (j (o) s

1
M + (J |xn=( 2a’s>
0
1/2

1
M(J |x<2"1>(s)|2ds>
0
1/2

2n—1 1
+ rite) @=1 () ds + |le]|. (J x@= g 2ds)
> j Pt el | 1)

< gs, OA

+ (ro+¢)4

! 2n1
+L| () ds]
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. 2n—1 .

< go0A(M + M)+ g5 ;M

i=1

2n—1
+ (ro+e)AMM'? + M)+ (r; + &) M + ||e|| ., M.
i=1

So there is Mj >0 such that |x®"~V(s)| < Mj. Tt follows from above dis-
cussion that there is B > 0 such that

lx] < B.
Hence Q; is bounded. This completes the step 1.
Step 2. Let
2, ={xeKer L, NxeIm L}.

We prove £, is bounded. Suppose xe,, then x(¢) =ce R, we prove
le] < M. In fact, if ¢ > M, then (A3) implies f(¢,¢,0,...,0) > 0, then

Jl Jl Gua(s,7) Jrf(u,x(u),x'(u)7 - X2 (w))dudeds
& ol T
] N R O R O O

- Zﬁijl Jl Gn2(s,7) J;f(u, c,0,...,0)dudrds > 0.

i=1 & Jo

Similarly, if ¢ < —M, then (A43) implies f(¢,¢,0,...,0) <0, we have

Jl Jl Gu-a(s,7) Jrf (u, x(u), X' (w), ..., x>~V (w))dudrds

0Jo 0

1

m & ol T
_ ﬁiJ J Gua(s,7) J S, x(u), X' (), ..., x>V (u))dudrds
— Jo Jo 0

1
i=1 & Jo

m 1 T
= Z iJ J Gy (s, T)J f(u,c,0,...,0)dudrds < 0.
4 0

On the other hand, if x e Ker L and NxelIm L, we have QNx =0, i.e.
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Jl Jl Goa(s,7) Jorf(u,x(u),x'(u)’ o 22D () dudeds

0Jo

m

& ool T
] N R O R O O

i=1

m 1 ¢l T
= Z'B,J J Gy2(s,7) J f(u,c,0,...,0)dudrds =0
- 3 0

i= ¢iJo
This is a contradiction. So |¢| < M. This shows that ©, is bounded.
Step 3. Let
Q3 ={xeKer Lsgn(d)Arx+ (1 —-2)QONx=0,1€[0,1]},

where A:Ker L — Im Q is the linear isomorphism given by A(c) = ct* for
all ce R. Now we show that Q3 is bounded. Suppose x,(f) = ¢, € Q3 and
|¢a] — 400 as n tends to infinity. Then there exist 4, € [0,1] such that

1 -2,
sgn(A4) Ayc, + y (

Jl J] Gy a(s,7) Jff(u, x(u), x'(u), ..., x?=V(u))dudzds
0

0Jo

Zl’nlﬁzj J n— 2(SaT)J;f(u,x(u),x'(u),...,x(z”1)(u))dudrds>

T

= sgn(4) e, + Zl lﬁlj J -2 (s, T)J f(u,c,0,...,0)dudrds =0

& 0

So

m 1 pl T
sgn(M)Adc, = —(1 — 4y) Z[)’, J J Gyo(s,7) Jof(u, ¢,0,...,0)dudzds.

i=1 i 0

It is easy to see that 4, has a convergent subsequence, without loss of
generality, suppose 4, — 49. Again, since |c,| — +o0, there two cases to be
considered, i.e. there is subsequence of ¢, that tends to +oo (without loss of
generality suppose ¢, — +0o0) or there is subsequence of ¢, that tends to —oo
(without loss of generality suppose ¢, — —o0). If ¢, — 400 as n tends to
infinity. Then for sufficiently large n, we have ¢, > M. Hence, using (43),
we see

sen(A)Alpct = —(1 — 2y)cn zm:ﬁijl Jl Gy2(s,7) J;ﬁ(u)dudrds
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a contradiction, where f.(u) =f(u,¢c,0,...,0). If ¢, — —co, then for suffi-
ciently large n, ¢, < —M. Hence using (A3), we see

m 1 pl T
sen(A)Alnct = —(1 — Ay)en Zﬁij J G,_o(s, ‘L')J Se(u)dudzds
= JeJo 0
<0,
a contradiction. So Q3 is bounded.

In the following, we shall show that all conditions of Theorem GM are
satisfied. Set Q be a open bounded subset of X such that Q o Ule Q;. By
Lemma 2.1, L is a Fredholm operator of index zero and N is L-compact on
Q. By the definition of Q, we have

(@) Lx # ANx for x e (dom L/Ker L)N0Q2 and A€ (0,1);

(b) Nx¢Im L for x e Ker LNoQ.

Step 4. We prove

(c) deg(ON|gerr,2NKer L,0) #0.

In fact, let H(x,A) = AAnx+ (1 —2)ONx. According the definition of £,
we know H(x, 4) # 0 for x € 02 N Ker L, thus by homotopy property of degree,

deg(QN |Ker L,QNKer L,0) = deg(H(-,0),2NKer L,0)
=deg(H(-,1),2NKer L,0)
=deg(/,2NKer L,0) # 0.
Thus by Theorem GM, Lx = Nx has at least one solution in dom L N Q, which
is a solution of BVP(1)-(2). The proof is complete.

m

THEOREM 2.2.  Suppose > ", f; =1 and all conditions of Theorem 2.1, i.e.
(A)—(A43), hold. Then BVP(1) and (3) has at least one solution provided (14)

holds.

Proor. The proof is similar to that of Theorem 2.1 and is omitted.

m

THEOREM 2.3. Suppose > ", ;=1 and the following conditions hold.

(A7) There are continuous functions h(t,xo,X1,...,X_1), e(t) and non-
negative functions g¢;(t,x) (i=0,1,...,2n—1) and positive numbers f and m
such that f satisfies

2n—1
(_1)n71f(l7x07x1) ... 7x2n71) = e(l) + h(l7-x07-x1) ... 7x2n71) + Z gi([a xi>7
i=0

and also that h satisfies

x2n—lh(l7 X0, X1+ -0 in_l) < _ﬂ|x2”—l |m+1
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for all te|0,1] and (xo,x1,...,X2m_1) € R and
. i, .
lim sup l9:( ,,)f)‘:ri, for i=0,1,...,2n—1
I¥l—o0 te0, 1) ||

with r; >0 for i=0,1,...,2n—1;
Furthermore, (Ay) and (A3) of Theorem 2.1 hold. Then BVP(1) and (2)
has at least one solution provided

221172 oL m 2n—1
<1+’—1’> o+ Y ri<pB. (19)
i=1

o

Proor. To apply Theorem GM, we should define an open bounded
subset Q of X so that (i), (ii) and (iii) of Theorem GM hold. It is based upon
three steps to obtain Q. The proof of this theorem is divide into four steps.

Step 1. Let
Q; ={xedom L/Ker L, Lx = ANx for some Ae (0,1)}.

We prove Q) is bounded. Similar to Step 1 of Theorem 2.1, we have (15) and
(16). It suffices to prove there is a constant B > 0 such that

oo I g X3V} < B.

[l ]| = max{]|x
We divide this step into two sub-steps.

Sus-sTeP 1.1. We prove that there is a constant M > 0 such that
T —
J XD ()" ds < M.
0

For x € 2, we have
(=1)"'X (1) = 2 (1, x(2), x' (1), . .., xZD(2)). (20)

Multiplying two side of (20) by x*~V(z) and integrating from 0 to 1, using
(4]), we get
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Thus, from the second part of (A7),
1 1
A,BJ XD ()" ds < —/lj (s, x(s),x"(s), ..., x¥ VD (5)x®D(s)ds
0 0

2n—1 o1 1
= Z J gi(s, X0 () x>V (s)ds + AJ e(s)x? =V (s)ds

i=0 70 0

2n—1

<3 [ e o

+AJ le(s)] X~ (s)]ds.
0
Hence

2n—1

1
BJ |x(2n 1) m+lds< ZJ |gl sx ||x2n ]>(s)|ds
0

1
+meuW“%mm
0

Let & > 0 satisfy

i=1

-2\ 2n—1
p> (l +i_()1%> (ro+e) + Z(Vﬁ—a).

By the conditions of theorem, we see ¢ > 0. For such a ¢ >0, we find from
(47) that there is a constant 6 > M such that for every i=0,1,...,2n—1,

lgi(, x)| < (ri +&)|x|™ uniformly for 7€ [0,1] and |x| > 4.
Let, for i=0,1,...,2n— 1,
Ay ={r:1e0,1],[x(1)] <6},
Ay ={t:1e(0,1],|xV(z)| > o},
gs,i = MaX,eo,1),x <5 |9i (£, X)|.

Then

1
lBJ |x2n 1) m+lds ZJ |gl s, x ||x2n 1)(s)|ds

0 —

£ j 191G, (5))] |x1) )| ds
i=0 J a2

1
+] el b Volas

0



Solvability of multi-point BVPs 19

2n—1 1
< z(;gaj 10 (s)ds
2n—1
+Z<rl+s>j 19 (5) |1 s) s
i=0 Ay, i
j ()] [ (s)]ds

Z (;ZJ (s)|ds + Z ri+e) J X ()] " |x2=V () | ds

o [ Te s

0
Again
1 1 m .1
J |x(s)m|x<2"1>(s)ds£A’”<M+J |x<2"1>(s)|ds) J 1) () s,
0 0 0
and
1
[, 1171 s
0
1 m ]
s(J |x<2"—1>(s)|ds> J Ix®=D(s)|ds, i=1,...,2n—2.
0 0
So

1 1 m 1
ﬁj |x(2n71)(s)|m+1ds <A™ (M + J |x(2n1)(s)|ds> (ro + €) J |x(2n—1)(s)|ds
0 0

0
2n—1 1 m T
I (j |x<2"1><s>|ds) | e e
i=1 0 0
2n—

1
+j le(s)] ]xD) |ds+2g(> J x9 (5) s

0

(M e >|ds)m<ro+e> L X ()]s

2n—2 m .1
+ ) (ri+e) (J (2n— 1()|ds> J |x=1) (s)|ds
1 0

i=

1 1
+(rzn71+e)J Ix(z”*”(S)l'”“dHHeH@J [ (s)lds
0 0



20 Yuji Liu and Weigao GE

1
+ ZQ@;J |ds+gaoj |x(s)|ds

~ A’"(M + L w20 (s )|ds)m(ro +é) L 20 (s) s

2n—2

o]

i=1
1

+ (rm-1 +¢) J

0

+ Zg& J =1 ()| ds + gs. 0A(M+J |x<2"1>(s)|ds).
0

We claim that there is a constant ¢ € (0,1), independent of A, such that
(1+x)"<1+@m+1)x for all xe(0,0). In fact, let g(x)=(1+x)"—
(14 (n+1)x), we see ¢(0) =0, and ¢’(0) = —1 < 0, so the claim is valid. To
obtain [, [xV(s)|"*'ds < M, we consider two cases.

Case 1. [ [x2(s)|ds < M.

1
D) s+ el | D (olds
0

So
1 my 1 my
(M—i—J |x(2"_]>(s)|ds> < M’”(l +—> :
0 g
Since
1 1 1/(m+1)
J ‘X<2”71>(s)|ds < (J |x(2n1)(s)|m+lds> 7
0 0
we get

m

1
1
Bl e s < (1 + —)
0 ag

1/(m+1)

(ro +¢) (L: XD ()" dS>

+ Z V,+8 J (2n— 1)( )|m+1ds
1 1/(m+1)
M+ <J x(2nl)(s)|m+lds) ]
0
1 1/(m+1)
el (], )
0

-1 1/(m+1)
+Zg(sl(j SO

+¢gs,04
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ie.

2n—1 1
(ﬂ DI +s>> || e epas

i=1 0

1 m 1 1/(m+1)
< [A’”M’”(lJr) (ro+e)+||e||w] (J |x<2"1>(s)|'”“ds>
a 0

2n—1 1/(m+1)
3] o)

1 1/(m+1)
M + (J |x(2n—1)(s)|m+lds> ‘|
0

From the definition of &, we find that # — 327" (r; +&) > 0 and that there is a
constant M| > 0 such that

+ gs,04

1
L XD ()" ds < M.
Cast 2. [ [xV(s)|ds > M

In this case, 0 <——%—<g. Using (1+x)" <1+ (m+1)x for
€ (0,0), we have Sy X0 (s)lds

X
m 1 m m
(M+J |x (= l)(s)ds> = < . |xn=1) ()|ds> (14—%)
o lx s)|ds
. D ()lds " (m+1)M
(e ()

- 0 X)) |ds)m o+ 1 jo K as)

m

ﬁj XD (5) " ds < Ay + 2) j XD () s m (s

IA

m—1

Thus

0

(TN

-2 1 m+1
+Zr’+8<J (2nl |dS>

0

1

1
(ran_ 1+sj 2D ()] s 4 el j 1) (5)]ds
0

0
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1/(m+1)

2n—1 1
+ Z 9o.i (J |x(2nl)(s)|m+lds>
i=1 0

1 1/(m+1)
M + (J x(z"_l)(s)|m+]ds> 1
0

m+1

— Ay +2) (j; K5

2m—2 1 ( : m+1
+ ri+e x=D(s ds)
> (], et

1

+ gs,04

+ A" (ro + &) (m + I)M(J0

|x(2”_1) (s) |ds>

1

1
+ (s +e>j 10 )" s+ ||e||mj X210 s)ds
0

0
2n—1
+ Z gs,i (J
i=1

0

1 1/(m+1)
M+ (J x(2nl)(s)|m+lds> ]
0

2n—2 1
< (A'"(Vo +e)+ > (r +g)> J 127D ()| ™+ s
0

i=1

1/(mt1)

1
|x(2n1)(s)|m+lds)

+ gs,04

1
+(r2n—l +8)J |x<2n71)(s)|m+lds
0

! m/(m-+1)
+ A" (rg 4+ &)(m + I)M(J |x(2n1)(s)|m+1ds>
0

| 1)
el (], )
0
2n—1 1/(m+1)
+ Z gs,i <J
i=1

|x(2n1)(s)|m+1ds)
0

1 1/(m+1)
M + <J x(2n—1)(s)|m+lds> ]
0

1

+ gs,04

Hence
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i=1

2n—1 1
<ﬂ —A"(ro+¢) — Z(ri + g)) J |X(2”_1)(s)|'"“ds
0
1 m/(m+1)
< Am(l + m)(ro + 6)M<J |x(2l’l—1)(s)|m+lds)
0

1 | 1/(m+1)  2p—1 I 1 1/(m+1)
+ ||€||x <J0 |x(2”71)(5‘)|m+ dS> + Z g57[<J0 |x(1)(s)|nﬁL dS>
i=1

1 1/(m+1)
M+ (J |x<2"—1>(s)|'”“ds) ]
0

From the definition of &, we find that there is M, > 0 such that

+ g(S,OA

1
J, e wr s < agg
Thus we obtain from Case 1 and 2 that
1 —_
L 2D ()" ds < max{ M], M} —: M.

Sus-sTep 1.2. Prove there is B > 0 such that ||x| < B.
From sub-step 1.1, we have

1
x|, <4 (M +J |x<2”-1>(s)ds)

0

1 1/(m+1)
<A| M+ <J |x<2"1>(s)|m“ds) )

1 1/(m+1)
J |x(2n—1)<s>|m+lds)

< MVmh, i=1,...,n—=2.

Multiplying two side of (20) by x(*"~1)(¢), integrating it from 0 to ¢, using (A4}),
we get
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;l (2n— 1)( )l _AJ( 1)1171f(svx(s)7x/(s),.'.7x(2n—l)(s))x(2n—l)(s)ds

0

= /ljth(s, x(5), x'(s), ..., xP D (5))x® =V (5)ds

0
2n—1 pt )
—|—AZJ gi(s, x0 (5))x> (s )ds—i—ij e(s)x =V (s)ds
i=0 70 0
t
< —Aﬁj X1 (5)| " s
0
2n—1 pt )
+AZJ gi(s, x (s)) x>~ 1()ds+ij e(s)x® =V (s)ds
i=0 70 0

2n—1 t
<A J gi(s, ¥V (5)) x>~V (5)ds + lJ e(s)x D (s)ds
i=0 0 0

IA

2n—1 ¢1 1
| s OO s + | )] (9l

2n—1

< J 191G, 39 (5))] [ (s) s

i=0 Jaui
2n—1 ) 1

+ j 191G, 39 (5))] [ (s)|ds +j le(s)] |x 1) (s) [ ds
i—0 Y42 0

[
=
—_

< ga,ij |ds+2r,+sj 1340 ()21 ) s

i—=1 Ay

1 1
+J le(s)] |x(2”*1>(s)|ds+g57oJ 1x(s)| .
0

0

Similarly to step 1.1, we can get

1 1/(m+1)
| (2n— 1 Z 9. (J (2n— 1)( )m+1ds>
2 i

2n—1

1
3 (4o J 0 (5)] 1D (5))ds
0

i=0

1

1
+ J le(s)] \x(z”_l)(s)|ds + gs.0A4 (M + J |x(2”_1)(s)ds>
0 0
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1/(m+1)

2n—1 1
Z g&,i(J |x(2nl)(s)|m+lds>
i=1 0

IA

2n—1 1 m+1
30 a(] W)
i=1 0

1 | 1/(m+1)
el (L w1 () ds)
1/(m+1)‘|

1
+g(5,0A M + (J |x(2n1)(s)|m+1ds>
0

1

m ]
+(ro+8)Am<M+J |x(2”1)(s)|ds> J |x<2”*1>(s)|ds
0 0

1/(m+1)

2n—1 1
Z gs.i <J |x(2nl)(s)|m+lds>
i=1

0

IA

2n—1 1

+ Z (ri +¢) J x>0 (5)| " ds
i=1 0

1 | 1/(m+1)
Tl <j0 w21 () ds)

| 1/(m+1)7 ™
+ (ro+e)A™ | M + (J |x(2”1>(s)’”+1ds> ]

0

! 1)
% <J |x(2n1)(s)|m+1ds>
0

2n—1
I

IA

> (rit )M + lef] /Y

2n—1 .
Z g&,iMl/(nH_l) +
i—1 =1

4 (VO + E)Am[M + M1/<m+1>]lnM1/(l11+l) + gaoA(M 4 Ml/(m+l))'

So there is Mj >0 such that |x>"~V(f)] < Mj. It follows from above dis-
cussion that there is B > 0 such that

x| < B.

Hence Q) is bounded. This completes the step 1.
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Step 2. Let
Q,={xeKer L, NxeIm L}.

It is similar to that of Step 2 of the proof of Theorem 2.1 to prove that Q; is
bounded.

Step 3. Let
Q3 ={xeKer L, sgn(d)irx+(1—-21)QONx =0, 1€[0,1]},

where A : Ker L — Im Q is the linear isomorphism given by A(c) = ct¥ for all
ce R. 1Tt is similar to that of proof of Theorem 2.1 to show that Q3 is
bounded.

In the following, we shall show that all conditions of Theorem GM are
satisfied. Set © be a open bounded subset of X such that Q o Uf:l Q;. By
Lemma 2.1, L is a Fredholm operator of index zero and N is L-compact on
Q. By the definition of @, we have

(@) Lx # ANx for x e (dom L/Ker L)NJQ and e (0,1);

(b) Nx¢Im L for x e Ker LNoQ.

Step 4. We prove

(c) deg(ON|gerr, 2NKer L,0) #0.

In fact, let H(x,42) = AAax+ (1 —2)ONx. According the definition of @,
we know H(x, ) # 0 for x e 32 N Ker L, thus by homotopy property of degree,

deg(ON |Ker L, Q2N Ker L,0) = deg(H(-,0),2NKer L,0)
=deg(H(-,1),2NKer L,0)
=deg(l,2NKer L,0) # 0.

Thus by Theorem GM, Lx = Nx has at least one solution in dom L N, which
is a solution of BVP(1)—(2). The proof is complete.

Similarly, we can prove the following theorem and its proof is omitted.

m

THEOREM 2.4.  Suppose Y ", f; =1 and the conditions of Theorem 2.2, i.e.
(A1), (A2), (A3), hold.  Then BVP(1) and (3) has at least one solution provided

(19) holds.

ReEMaRK 1. In Theorems 2.1 and 2.2, the degree of the variables
X0, X1,---,X,—1 in function f may be different from each other.
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Now, we suppose

f:ﬁ,» #1.
i=1

In this case, problems (1) and (2), problem (1) and (3) are non-resonance
boundary value problems. We have the following results.

THEOREM 2.5. Suppose f3; >0, S0 B # 1 and (=1)""'f(t,x0,. .., x2_1)
>0 for all te[0,1] and (xo,...,X2,1) € R* and the conditions of Theorem 2.1,
(A1)—(A3), hold.  Then BVP(1) and (2) and BVP(1) and (3) have at least one
positive solution, respectively, provided (14) holds.

Proor. For problem (1) and (2), from (12) together with x(1)=
Yot Bix(&), we get

c= Z,llﬁ—l (Jl JOI Gpo(s,7) J; y(u)dudzds

Y lﬂj j 200 |

0

y(u)dud rds) .

Define an operator 7' by

Tx(1) = : e T / @~ (u))dudrd
(1) = o J J n,z(s,r)Jof(u,x(u),x(u),...,x (u))dudvds

i=1Fi 0Jo

Z, 1'BJ J n-2(8,7) Jorf(u, x(u),x’(u),...,x<2”U(u))dudrds)

+ t lanz(s,r) Tf(u,x(u),x'(u),...,x<2”’1>(u))dudrds
JOJO JO

for every x e C"1[0,1].
Consider the set 2 = {xe C"![0,1],x = Tx}. For xe Q, we have

(=D)" XNy = £(2,x(0), X'(0), ..., x>V (2)).

Similar to the step 1 of the proof of Theorem 2.1, we can prove that there is a
constant B > 0 such that ||x|| < B for every x € Q. Then by Schauder fixed
point theorem, T has at least one fixed point, which is a solution of BVP(1)
and (2) since



28 Yuji Liu and Weigao GE

—; [ S, T ' u, x(u x®D () dudzds
o) = s g |, ], Grats0) || F0x. oY )t

m

& ol T
ey L L Gy (5,7) L Ly x(@), -, ¥ () dudeds
pa
trl T
+ L Jo Gy a(s,7) Jo £ (u, x(u), X" (w), . .., XV (u))dudzds

m I rl T
= Z[))ZJ L Gya(s,7) Jo 1@, x(u), X' (w), . .., ¥V (u))dudrds

i—1 &

t el T
—&—J J Gua(s, T)J £, x(u), X" (w), . .., XV (u))dudzds
0Jo 0

> 0.

For BVP(1) and (3), the proof is similar and is omitted.
THEOREM 2.6.  Suppose f3; >0, S i # 1 and (=1)""'f(t,x0,. .., X2_1)

i=

>0 for all te[0,1] and (xo,...,X2,_1) € R* and the conditions of Theorem 2.1,
(41), (42), (A43), hold.  Then BVP(1) and (2) and BVP(1) and (3) have at least
one positive solution, respectively, provided (19) holds.

Proor. The proof is similar to that of Theorem 2.5 and is omitted.
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