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Convergence analysis of block Gibbs
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Exploration of the intractable posterior distributions associated with Bayesian versions of the general linear
mixed model is often performed using Markov chain Monte Carlo. In particular, if a conditionally conjugate
prior is used, then there is a simple two-block Gibbs sampler available. Román and Hobert [Linear Algebra
Appl. 473 (2015) 54–77] showed that, when the priors are proper and the X matrix has full column rank,
the Markov chains underlying these Gibbs samplers are nearly always geometrically ergodic. In this paper,
Román and Hobert’s (2015) result is extended by allowing improper priors on the variance components,
and, more importantly, by removing all assumptions on the X matrix. So, not only is X allowed to be
(column) rank deficient, which provides additional flexibility in parameterizing the fixed effects, it is also
allowed to have more columns than rows, which is necessary in the increasingly important situation where
p > N . The full rank assumption on X is at the heart of Román and Hobert’s (2015) proof. Consequently,
the extension to unrestricted X requires a substantially different analysis.

Keywords: conditionally conjugate prior; convergence rate; geometric drift condition; Markov chain;
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1. Introduction

The general linear mixed model (GLMM) is one of the most frequently applied statistical models.
A GLMM with r random factors takes the form

Y = Xβ +
r∑

i=1

Ziui + e,

where Y is an observable N ×1 data vector, X and {Zi}ri=1 are known matrices, β is an unknown
p × 1 vector of regression coefficients, {ui}ri=1 are independent random vectors whose elements
represent the various levels of the random factors in the model, and e ∼ NN(0, λ−1

e I ). Assume
that e and u := (uT

1 uT
2 · · · uT

r )T are independent, and that u ∼ Nq(0,�−1), where ui is
qi × 1, q = q1 + · · · + qr , and � = ⊕r

i=1 λui
Iqi

. Letting Z = (Z1 Z2 · · · Zr), we can write∑r
i=1 Ziui = Zu. Let λ denote the vector of precision parameters, i.e., λ = (λe λu1 · · · λur )

T .
To rule out degenerate cases, we assume throughout that N ≥ 2, and that qi ≥ 2 for each i =
1,2, . . . , r . For a book-length treatment of the GLMM, which is sometimes called the variance
components model, see [15].
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In the Bayesian setting, prior distributions are assigned to the unknown parameters, β and λ.
Unfortunately, the Bayes estimators associated with any non-trivial prior cannot be obtained in
closed form. This is because such estimators take the form of ratios of high-dimensional, in-
tractable integrals. The dimensionality also precludes the use of classical Monte Carlo methods
that require the ability to draw samples directly from the posterior distribution. Instead, the pa-
rameter estimates are typically obtained using Markov chain Monte Carlo (MCMC) methods.
In particular, when (proper or improper) conditionally conjugate priors are adopted for β and λ,
there is a simple block Gibbs sampler that can be used to explore the intractable posterior density.
Let θ = (βT uT )T , and denote the posterior density as π(θ,λ|y), where y denotes the observed
data vector. (Since u is unobservable, it is treated like a parameter.) When the conditionally con-
jugate priors are adopted, it is straightforward to simulate from θ |λ,y, and from λ|θ, y. Indeed,
θ |λ,y is multivariate normal and, given (θ, y), the components of λ are independent gamma vari-
ates. Hence, it is straightforward to simulate a Markov chain, {(θn, λn)}∞n=0, that has π(θ,λ|y)

as its invariant density. Our main results concern the convergence properties of this block Gibbs
sampler. We now provide some background about Markov chains on R

d , which will allow us to
describe our results and their practical importance.

Let V = {Vm}∞m=0 denote a Markov chain with state space V ⊂ R
d and assume the chain is

Harris ergodic; that is, ψ -irreducible, aperiodic and positive Harris recurrent (see [8] for defini-
tions). Assume further that the chain has a Markov transition density (with respect to Lebesgue
measure), k : V × V → [0,∞). Then, for any measurable set A, we have

Pr(Vm+1 ∈ A|Vm = v) =
∫

A

k
(
v′|v)

dv′.

For m ∈ {2,3,4, . . .}, the m-step Markov transition density (Mtd) is defined inductively as fol-
lows

km
(
v′|v) =

∫
V
km−1(v′|u)

k(u|v)du.

Of course, k1 ≡ k, and km(·|v) is the density of Vm conditional on V0 = v. Suppose that the
invariant probability distribution also has a density (with respect to Lebesgue measure), κ : V →
[0,∞). The chain V is geometrically ergodic if there exist M : V → [0,∞) and γ ∈ [0,1) such
that, for all m ∈N, ∫

V

∣∣km
(
v′|v) − κ

(
v′)∣∣dv′ ≤ M(v)γ m. (1)

Of course, the quantity on the left-hand side of (1) is the total variation distance between the
invariant distribution and the distribution of Vm given V0 = v.

There are many important practical and theoretical benefits of using a geometrically ergodic
Markov chain as the basis of one’s MCMC algorithm (see, e.g., [3,6,9]). Perhaps the most im-
portant of these is the ability to construct valid asymptotic standard errors for MCMC-based
estimators. Let h : V → R be a function such that

∫
V |h(v)|κ(v) dv < ∞, and suppose that the

chain V is to serve as the basis of an MCMC algorithm for estimating ω := ∫
V h(v)κ(v) dv < ∞.

Harris ergodicity guarantees that the standard estimator of ω, hm := 1
m

∑m−1
i=0 h(Vi), is strongly

consistent. However, Harris ergodicity is not enough to ensure that hm satisfies a central limit
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theorem (CLT). On the other hand, if V is geometrically ergodic and there exists an ε > 0 such
that

∫
V |h(v)|2+εκ(v) dv < ∞, then hm does indeed satisfy a

√
m-CLT; that is, under these con-

ditions, there exists a positive, finite σ 2 such that, as m → ∞,
√

m(hm − ω)
d→ N(0, σ 2). This is

extremely important from a practical standpoint because all of the standard methods of calculat-
ing valid asymptotic standard errors for hm are based on the existence of this CLT (Flegal, Haran
and Jones [3]).

There have been several studies of the convergence properties of the block Gibbs sampler for
the GLMM (Johnson and Jones [5], Román and Hobert [12,13]). These have resulted in easily-
checked sufficient conditions for geometric ergodicity of the underlying Markov chain. However,
in all of the studies to date, the matrix X has been assumed to have full column rank. In this paper,
we extend the results to the case where X is completely unrestricted. So, not only do we allow for
a rank deficient X, which provides additional flexibility in parameterizing the fixed effects, we
also allow for X with p > N , which is necessary in the increasingly important situation where
there are more predictors than data points. Two different families of conditionally conjugate
priors are considered, one proper and one improper. We now describe our results, beginning with
the results for proper priors.

Assume that β and the components of λ are all a priori independent, and that β ∼ Np(μβ,
β),
λe ∼ Gamma(a0, b0) and, for i = 1, . . . , r , λui

∼ Gamma(ai, bi). Our result for proper priors,
which is a corollary of Proposition 1 from Section 3, is as follows.

Corollary 1. Under a proper prior, the block Gibbs Markov chain, {(λn, θn)}∞n=0, is geometri-
cally ergodic if:

1. a0 > 1
2 (rank(Z) − N + 2), and

2. min{a1 + q1
2 , . . . , ar + qr

2 } > 1
2 (q − rank(Z)) + 1.

The conditions of Corollary 1 are quite weak in the sense that they would nearly always be
satisfied in practice. Indeed, it would typically be the case that rank(Z) − N < −2 (making the
first condition vacuous) and q − rank(Z) is close to zero (making the second condition easily
satisfied). In fact, if q = rank(Z), which is the case for many standard designs, then the second
condition is also vacuous.

Román and Hobert [13] (hereafter R&H15) proved this same result under the restrictive as-
sumption that X has full column rank. Moreover, the rank assumption is at the very heart of
their proof. Indeed, these authors established a geometric drift condition for the marginal chain,
{θn}∞n=0, but their drift (Lyapunov) function is only valid when X has full column rank. Our proof
is significantly different. We analyze the other marginal chain, {λn}∞n=0, using a drift function that
does not involve the matrix X. Generally speaking, minor changes in a drift function often lead
to significant differences in what one is able to prove. Thus, it is somewhat surprising that we are
able to recover exactly the conditions of R&H15. To be fair, we are able to use several of their
matrix bounds, but only after extending them to the case where X is unrestricted.

When X does not have full column rank, a flat prior on β leads to an improper posterior.
Thus, the improper priors that we consider are actually partially proper. In particular, assume
again that β and the components of λ are all a priori independent, and that β ∼ Np(μβ,
β).

But now take the prior on λe to be (proportional to) λ
a0−1
e e−b0λeI(0,∞)(λe), and for i = 1, . . . , r ,
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take the prior on λui
to be λ

ai−1
ui

e−biλui I(0,∞)(λui
). Assume that min{ai, bi} ≤ 0 for at least

one i = 0,1, . . . , r ; otherwise, we are back to the proper priors described above. (See [4] for a
comprehensive discussion about improper priors for variance components.) Let W = (X Z), so
that Wθ = Xβ + Zu, and define SSE = ‖y − Wθ̂‖2, where θ̂ = (WT W)+WT y and superscript
“+” on a matrix denotes Moore–Penrose inverse. Our result for improper priors, which is another
corollary of Proposition 1, is as follows.

Corollary 2. Under an improper prior, the block Gibbs Markov chain, {(λn, θn)}∞n=0, is geomet-
rically ergodic if:

1. 2b0 + SSE > 0,
2. For each i ∈ {1,2, . . . , r}, either bi > 0 or ai < bi = 0,
3. a0 > 1

2 (rank(Z) − N + 2), and
4. min{a1 + q1

2 , . . . , ar + qr

2 } > 1
2 (q − rank(Z)) + 1.

Note that the two conditions of Corollary 1 are exactly the same as the third and fourth condi-
tions of Corollary 2. Furthermore, the first two conditions of Corollary 2 are necessary for pos-
terior propriety [16], and hence for geometric ergodicity. Consequently, the commentary above
regarding the weakness of the conditions of Corollary 1 applies here as well.

Corollary 2 is the first convergence rate result for the block Gibbs sampler for this set of
partially proper priors. Román and Hobert [12] (hereafter R&H12) proved a similar result (see
their Corollary 1) for a different family of improper priors in which our proper multivariate
normal prior on β is replaced by a flat prior. Of course, because they used a flat prior on β , their
results are only relevant in the case where X has full column rank.

The remainder of this paper is organized as follows. A formal definition of the block Gibbs
Markov chain is given in Section 2. Section 3 contains our convergence rate analysis of the block
Gibbs sampler under proper and improper priors. A short discussion concerning an alternative
result for proper priors appears in Section 4. Some technical details are relegated to an Appendix.

2. The block Gibbs sampler

The block Gibbs sampler is driven by the Markov chain {(θn, λn)}∞n=0, which lives on the space
R

p+q ×R
r+1+ , where R+ := (0,∞). The Markov transition density (of the version that updates

θ first) is given by

k(θ̃ , λ̃|θ,λ) = π(λ̃|θ̃ , y)π(θ̃ |λ,y).

We will often suppress dependence on y, as we have in the Markov transition density. The con-
ditional densities, π(λ|θ, y) and π(θ |λ,y), are now described. The following formulas hold for
both sets of priors (proper and improper). The components of λ are conditionally independent
given θ , and we have

λe|θ ∼ Gamma

(
a0 + N

2
, b0 + ‖y − Wθ‖2

2

)
, (2)
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and, for i = 1, . . . , r ,

λui
|θ ∼ Gamma

(
ai + qi

2
, bi + ‖ui‖2

2

)
. (3)

When considering improper priors, we assume that these conditional distributions are all well
defined. In other words, we assume that {ai}ri=0 and {bi}ri=0 are such that all of the shape and rate
parameters in the gamma distributions above are strictly positive. Of course, this is not enough to
guarantee posterior propriety. However, the drift technique that we employ is equally applicable
to positive recurrent (proper posterior) and non-positive recurrent (improper posterior) Markov
chains [11]. Furthermore, geometrically ergodic chains are necessarily positive recurrent, so any
Gibbs Markov chain that we conclude is geometrically ergodic, necessarily corresponds to a
proper posterior. Consequently, there is no need to check for posterior propriety before proceed-
ing with the convergence analysis.

Now define Tλ = λeX
T X + 
−1

β , Mλ = I − λeXT −1
λ XT , and Qλ = λeZ

T MλZ + �. Condi-
tional on λ, θ is multivariate normal with mean

E[θ |λ] =
[

T −1
λ

(
λeX

T y + 
−1
β μβ

) − λ2
eT

−1
λ XT ZQ−1

λ ZT
(
Mλy − XT −1

λ 
−1
β μβ

)
λeQ

−1
λ ZT

(
Mλy − XT −1

λ 
−1
β μβ

)
]

, (4)

and covariance matrix

Var[θ |λ] =
[

T −1
λ + λ2

eT
−1
λ XT ZQ−1

λ ZT XT −1
λ −λeT

−1
λ XT ZQ−1

λ

−λeQ
−1
λ ZT XT −1

λ Q−1
λ

]
. (5)

(A derivation of these conditionals can be found in [1].)
The two marginal sequences, {θn}∞n=0 and {λn}∞n=0, are themselves Markov chains, and it is

easy to establish that (when the posterior is proper) all three chains are Harris ergodic. More-
over, geometric ergodicity is a solidarity property for these three chains, that is, either all three
chains are geometrically ergodic, or none of them is (see, e.g., [2,10,14]). Again, in contrast with
R&H15, who analyzed the θ -chain, {θn}∞n=0, we establish our results by analyzing the λ-chain,
{λn}∞n=0. The Mtd of the λ-chain is given by

kl(λ̃|λ) =
∫
Rp+q

π(λ̃|θ, y)π(θ |λ,y)dθ.

R&H12 also analyzed the λ-chain, and their analysis serves as a road map for ours. In fact, we
use the same drift function as R&H12.

3. Convergence analysis of the block Gibbs sampler

In order to state our main result, we require a couple of definitions. For i = 1,2, . . . , r , let Ri

be the qi × q matrix defined as Ri = [0qi×q1 · · ·0qi×qi−1 Iqi×qi
0qi×qi+1 · · ·0qi×qr ]. Note that
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ui = Riu. Let PZT Z denote the orthogonal projection onto the column space of ZT Z. Finally,
define

s̃ = min

{
a0 + N

2
, a1 + q1

2
, . . . , ar + qr

2

}
.

The following result holds for both sets of priors (proper and improper).

Proposition 1. The block Gibbs sampler Markov chain, {θn,λn}∞n=0, is geometrically ergodic
if:

1. s̃ > 0;
2. 2b0 + SSE > 0;
3. For each i ∈ {1,2, . . . , r}, either bi > 0 or ai < bi = 0; and
4. There exists s ∈ (0,1] ∩ (0, s̃) such that

max

{
�(a0 + N/2 − s)

�(a0 + N/2)

(
rank(Z)

2

)s

,

(6)
r∑

i=1

�(ai + qi/2 − s)

�(ai + qi/2)

(
tr(Ri(I − PZT Z)RT

i )

2

)s
}

< 1.

Remark 1. When the prior is proper, that is, when ai > 0 and bi > 0 for all i ∈ {0,1, . . . , r}, the
first three conditions are automatically satisfied, and s̃ > 1. On the other hand, when the prior is
improper, these three conditions ensure that π(λ|θ, y) is well defined.

Before embarking on our proof of Proposition 1, we quickly demonstrate that Corollaries 1
and 2 follow immediately from it.

Proof of Corollary 1. Since the prior is proper, it is enough to show that the conditions of
Corollary 1 imply that (6) is satisfied for some s ∈ (0,1]. We show that this is indeed the case,
with s = 1. First,

�(a0 + N/2 − 1)

�(a0 + N/2)

rank(Z)

2
= rank(Z)

2a0 + N − 2
,

which yields the first half of (6). Now note that

r∑
i=1

tr
(
Ri(I − PZT Z)RT

i

) = tr

[
(I − PZT Z)

r∑
i=1

RT
i Ri)

]
= tr(I − PZT Z) = q − rank(Z).

Thus,

r∑
i=1

�(ai + qi/2 − 1)

�(ai + qi/2)

tr(Ri(I − PZT Z)RT
i )

2
=

r∑
i=1

tr(Ri(I − PZT Z)RT
i )

2ai + qi − 2

≤ q − rank(Z)

mini=1,...,r (2ai + qi − 2)
,
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which yields the second half of (6). �

Proof of Corollary 2. First note that conditions 3 and 4 of Corollary 2 imply that s̃ > 1. The
rest of the proof is the same as the proof of Corollary 1. �

Our proof of Proposition 1 is based on four lemmas, which are proven in the Appendix. Let
dmax denote the largest singular value of the matrix X̃ = X


1/2
β .

Lemma 1. For each i ∈ {1,2, . . . , r}, we have

tr
(
RiQ

−1
λ RT

i

) ≤ (
d2

max + λ−1
e

)
tr
(
Ri

(
ZT Z

)+
RT

i

) + tr
(
Ri(I − PZT Z)RT

i

) r∑
j=1

λ−1
uj

.

Lemma 2. tr(W Var(θ |λ)WT ) ≤ λ−1
e rank(Z) + d2

max rank(Z) + tr(X
βXT ).

Lemma 3. There exist finite constants K1 and K2, not depending on λ, such that ‖E[Riu|λ]‖ ≤√
qiK1 for i = 1, . . . , r , and ‖y − WE[θ |λ]‖ ≤ K2.

Remark 2. The constants K1 and K2 are defined in the Appendix. They do not have a closed
form.

We will write A � B to mean that B − A is nonnegative definite. Let ψmax denote the largest
eigenvalue of ZT Z.

Lemma 4. For each i ∈ {1,2, . . . , r}, we have (ψmaxλe + λui
)−1Iqi

� RiQ
−1
λ RT

i .

Proof of Proposition 1. Define the drift function as follows

v(λ) = αλc
e + αλ−s

e +
r∑

i=1

λc
ui

+
r∑

i=1

λ−s
ui

,

where α and c are positive constants (that are explicitly constructed in the proof), and s is from
the fourth condition in Proposition 1. We will show that there exist ρ ∈ [0,1) and a finite constant
L such that

E
[
v(λ̃)|λ] =

∫
R

r+1+
v(λ̃)kl(λ̃|λ)dλ̃ ≤ ρv(λ) + L. (7)

Then because the λ-chain is a Feller chain [1] and the function v(·) is unbounded off compact sets
(R&H12), by Meyn and Tweedie’s [8], Lemma 15.2.8, the geometric drift condition (7) implies
that the λ-chain is geometrically ergodic. We now establish (7).
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First, note that

E
[
v(λ̃)|λ] =

∫
Rp+q

[∫
R

r+1+
v(λ̃)π(λ̃|θ, y) dλ̃

]
π(θ |λ,y)dθ = E

[
E
[
v(λ̃)|θ]|λ]

= αE
[
E
[
λ̃c

e|θ
]|λ] + αE

[
E
[
λ̃−s

e |θ]|λ]
+

r∑
i=1

E
[
E
[
λ̃c

ui
|θ]|λ] +

r∑
i=1

E
[
E
[
λ̃−s

ui
|θ]|λ]

.

Using (2) and the fact that 0 < b0 + SSE/2 < b0 + ‖y − Wθ‖2/2, we have

E
[
λ̃c

e|θ
] = �(a0 + N/2 + c)

�(a0 + N/2)

(
b0 + ‖y − Wθ‖2

2

)−c

≤ �(a0 + N/2 + c)

�(a0 + N/2)

(
b0 + SSE

2

)−c

.

(8)

As we shall see, since this upper bound does not depend on θ , it can be absorbed into the constant
term, L, and we will no longer have to deal with this piece of the drift function. Now,

E
[
λ̃−s

e |θ] = �(a0 + N/2 − s)

�(a0 + N/2)

(
b0 + ‖y − Wθ‖2

2

)s

≤ �(a0 + N/2 − s)

�(a0 + N/2)

(
|b0|s +

[‖y − Wθ‖2

2

]s)
,

(9)

where the inequality follows from the fact that (x1 +x2)
ξ ≤ x

ξ
1 +x

ξ
2 for x1, x2 ≥ 0 and ξ ∈ (0,1].

Similarly, using (3), for each i ∈ {1, . . . , r} we have

E
[
λ̃−s

ui
|θ] = �(ai + qi/2 − s)

�(ai + qi/2)

(
bi + ‖ui‖2

2

)s

≤ �(ai + qi/2 − s)

�(ai + qi/2)

(
bs
i +

[‖ui‖2

2

]s)
.

(10)

Now, for each i ∈ {1, . . . , r}, we have

E
[
λ̃c

ui
|θ] = �(ai + qi/2 + c)

�(ai + qi/2)

(
bi + ‖ui‖2

2

)−c

≤ �(ai + qi/2 + c)

�(ai + qi/2)

[(‖ui‖2

2

)−c

I{0}(bi) + b−c
i IR+(bi)

]
.

(11)

Note that when bi > 0 there is a simple upper bound for this term that does not depend on θ .
Therefore, we will first consider the case in which min{b1, . . . , br} > 0, and we will return to the
other (more complicated) case later.
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Assume for the time being that min{b1, . . . , br} > 0. Then combining (8), (9), (10) and (11),
and applying Jensen’s inequality twice yields

E
[
v(λ̃)|λ] ≤ α

2s

�(a0 + N/2 − s)

�(a0 + N/2)
E
[‖y − Wθ‖2|λ]s

(12)

+ 2−s

r∑
i=1

�(ai + qi/2 − s)

�(ai + qi/2)
E
[‖ui‖2|λ]s + K0,

where

K0 = α
�(a0 + N/2 + c)

�(a0 + N/2)

(
b0 + SSE

2

)−c

+ α
�(a0 + N/2 − s)

�(a0 + N/2)
|b0|s

+
r∑

i=1

[
�(ai + qi/2 + c)

�(ai + qi/2)
b−c
i + �(ai + qi/2 − s)

�(ai + qi/2)
bs
i

]
.

It follows from (5) that

E
[‖y − Wθ‖2|λ] = tr

(
W Var(θ |λ)WT

) + ∥∥y − WE[θ |λ]∥∥2
.

Similarly, since ui = Riu, we also have

E
[‖ui‖2|λ] = E

[‖Riu‖2|λ] = tr
(
RiQ

−1
λ RT

i

) + ∥∥E[Riu|λ]∥∥2
.

Now, using Lemmas 2 and 3, we have

E
[‖y − Wθ‖2|λ]s ≤ [

λ−1
e rank(Z) + d2

max rank(Z) + tr
(
X
βXT

) + K2
2

]s
(13)

≤ λ−s
e

(
rank(Z)

)s + [
d2

max rank(Z) + tr
(
X
βXT

) + K2
2

]s
.

Similarly, using Lemmas 1 and 3, we have

E
[‖ui‖2|λ]s ≤

[(
d2

max + λ−1
e

)
tr
(
Ri

(
ZT Z

)+
RT

i

)

+ tr
(
Ri(I − PZT Z)RT

i

) r∑
j=1

λ−1
uj

+ qiK
2
1

]s

(14)

≤ λ−s
e

(
tr
(
Ri

(
ZT Z

)+
RT

i

))s +
r∑

j=1

λ−s
uj

(
tr
(
Ri(I − PZT Z)RT

i

))s

+ [
d2

max tr
(
Ri

(
ZT Z

)+
RT

i

) + qiK
2
1

]s
.
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Define a function δ(·) as follows:

δ(α) = �(a0 + N/2 − s)

�(a0 + N/2)

(
rank(Z)

2

)s

+ 1

α

r∑
i=1

�(ai + qi/2 − s)

�(ai + qi/2)

(
tr(Ri(Z

T Z)+RT
i )

2

)s

.

Combining (12), (13) and (14) yields

E
[
v(λ̃)|λ] ≤ αδ(α)λ−s

e
(15)

+
[

r∑
i=1

�(ai + qi/2 − s)

�(ai + qi/2)

(
tr(Ri(I − PZT Z)RT

i )

2

)s
]

r∑
j=1

λ−s
uj

+ L,

where

L = K0 + α

2s

�(a0 + N/2 − s)

�(a0 + N/2)

[
d2

max rank(Z) + tr
(
X
βXT

) + K2
2

]s

+ 2−s
r∑

i=1

�(ai + qi/2 − s)

�(ai + qi/2)

[
d2

max tr
(
Ri

(
ZT Z

)+
RT

i

) + qiK
2
1

]s
.

Next, defining

ρ(α) := max

{
δ(α),

r∑
i=1

�(ai + qi/2 − s)

�(ai + qi/2)

(
tr(Ri(I − PZT Z)RT

i )

2

)s
}

,

we have from (15) that

E
[
v(λ̃)|λ] ≤ αρ(α)λ−s

e + ρ(α)

r∑
j=1

λ−s
uj

+ L

≤ ρ(α)

(
αλc

e + αλ−s
e +

r∑
j=1

λc
uj

+
r∑

j=1

λ−s
uj

)
+ L

= ρ(α)v(λ) + L.

Hence, all that is left is to demonstrate the existence of an α ∈ (0,∞) such that ρ(α) ∈ [0,1).
By (6), we know that

r∑
i=1

�(ai + qi/2 − s)

�(ai + qi/2)

(
tr(Ri(I − PZT Z)RT

i )

2

)s

< 1.

Therefore, it suffices to show that there exists an α ∈ (0,∞) such that δ(α) < 1. But δ(α) < 1 as
long as

α >

∑r
i=1

�(ai+qi/2−s)
�(ai+qi/2)

(tr(Ri(I − PZT Z)RT
i )/2)s

1 − �(a0+N/2−s)
�(a0+N/2)

(rank(Z)/2)s
, (16)
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which is a well-defined positive number by (6). The result has now been proven for the case in
which min{b1, . . . , br} > 0.

Remark 3. Note that the two terms in the drift function involving c were both absorbed into the
constant in the first step of the iterated expectation. It follows that, at least in the case where
min{b1, . . . , br} > 0, any c > 0 can be used in the drift function.

We now proceed to the case in which there is at least one bi = 0. Let B = {i ∈ {1, . . . , r} : bi =
0}. It follows from the development above that the following holds for any c > 0:

αE
[
λ̃c

e|λ
] + αE

[
λ̃−s

e |λ] +
∑
i /∈B

E
[
λ̃c

ui
|λ] +

r∑
i=1

E
[
λ̃−s

ui
|λ] ≤ ρ(α)

(
αλ−s

e +
r∑

j=1

λ−s
uj

)
+ L. (17)

Of course, if α satisfies (16), then ρ(α) ∈ [0,1). Now suppose we can find c > 0, α satisfying
(16), and ρ ′(α) ∈ [0,1) such that

∑
i∈B

E
[
λ̃c

ui
|λ] ≤ ρ′(α)

(
αλc

e +
∑
i∈B

λc
ui

)
. (18)

Then combining (17) and (18), we would have

E
[
v(λ̃)|λ] ≤ ρ(α)

(
αλ−s

e +
r∑

j=1

λ−s
uj

)
+ L + ρ′(α)

(
αλc

e +
∑
i∈B

λc
ui

)

≤ max
{
ρ(α),ρ′(α)

}
v(λ) + L,

which establishes the drift condition. Therefore, to prove the result when min{b1, . . . , br} = 0, it
suffices to establish (18). If i ∈ B , then

E
[
λ̃c

i |θ
] = �(ai + qi/2 + c)

�(ai + qi/2)

(‖ui‖2

2

)−c

.

It follows from (5) that the conditional distribution of (RiQ
−1
λ RT

i )−1/2ui given λ is multivariate
normal with identity covariance matrix. Thus, uT

i (RiQ
−1
λ RT

i )−1ui has a non-central chi-squared
distribution with qi degrees of freedom. An application of Lemma 4 from R&H12 shows that, if
c ∈ (0,1/2), then

E
[(

uT
i

(
RiQ

−1
λ RT

i

)−1
ui

)−c|λ] ≤ 2−c �(qi/2 − c)

�(qi/2)
.

Putting this together with Lemma 4, we have that, if i ∈ B and c ∈ (0,1/2), then

E
[(‖ui‖2)−c|λ] = (ψmaxλe + λui

)cE
[(

uT
i (ψmaxλe + λui

)Iqi
ui

)−c|λ]
≤ (ψmaxλe + λui

)cE
[(

uT
i

(
RiQ

−1
λ RT

i

)−1
ui

)−c|λ]
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≤ 2−c �(qi/2 − c)

�(qi/2)
(ψmaxλe + λui

)c

≤ 2−c �(qi/2 − c)

�(qi/2)

(
ψc

maxλ
c
e + λc

ui

)
.

Define δ′(·) as follows:

δ′(α) = ψc
max

α

∑
i∈B

�(ai + qi/2 + c)

�(ai + qi/2)

�(qi/2 − c)

�(qi/2)
.

Now we have ∑
i∈B

E
[
λ̃c

ui
|λ] ≤

∑
i∈B

�(ai + qi/2 + c)

�(ai + qi/2)

�(qi/2 − c)

�(qi/2)

(
ψc

maxλ
c
e + λc

ui

)

= αδ′(α)λc
e +

∑
i∈B

�(ai + qi/2 + c)

�(ai + qi/2)

�(qi/2 − c)

�(qi/2)
λc

ui
.

Next, defining

ρ′(α) = max

{
δ′(α),max

i∈B

{
�(ai + qi/2 + c)

�(ai + qi/2)

�(qi/2 − c)

�(qi/2)

}}
,

we have ∑
i∈B

E
[
λ̃c

ui
|λ] ≤ ρ′(α)

(
αλc

e +
∑
i∈B

λc
ui

)
.

Hence, all we have left to do is to prove that there exist c ∈ (0,1/2) and α satisfying (16) such
that ρ′(α) ∈ [0,1). First, define ã = −maxi∈B ai , and note that this quantity is positive. R&H12
show that, if c ∈ (0,1/2) ∩ (0, ã), then

max
i∈B

{
�(ai + qi/2 + c)

�(ai + qi/2)

�(qi/2 − c)

�(qi/2)

}
< 1.

Fix c ∈ (0,1/2) ∩ (0, ã). Now it suffices to show that there exists an α satisfying (16) such that
δ′(α) < 1. But δ′(α) < 1 as long as

α > ψc
max

∑
i∈B

�(ai + qi/2 + c)

�(ai + sqi/2)

�(qi/2 − c)

�(qi/2)
.

So, (18) is satisfied for c ∈ (0,1/2) ∩ (0, ã) and

α > max

{∑r
i=1

�(ai+qi/2−s)
�(ai+qi/2)

(tr(Ri(I − PZT Z)RT
i )/2)s

1 − �(a0+N/2−s)
�(a0+N/2)

(rank(Z)/2)s
,

ψc
max

∑
i∈B

�(ai + qi/2 + c)

�(ai + qi/2)

�(qi/2 − c)

�(qi/2)

}
.

�
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4. Discussion

Our Corollary 1 is a direct generalization of Román and Hobert’s [13] Proposition 1 where we
have removed all restrictions on the matrix X. We now present a related result from [1] that is
established using a different drift function.

Proposition 2. Under a proper prior, the block Gibbs Markov chain, {(λn, θn)}∞n=0, is geometri-
cally ergodic if min{a0, a1, . . . , ar} > 1.

Like Corollary 1, this result holds for any X. Neither result is uniformly better than the other.
That is, there are situations where the conditions of Corollary 1 hold, but those of Proposition 2 do
not, and vice versa. However, the condition min{a0, a1, . . . , ar} > 1 appears to be more restrictive
than the conditions of Corollary 1 in nearly all practical settings. In fact, the only examples we
could find where Proposition 2 is better than Corollary 1 involve models that have more random
effects than observations. On the other hand, we do feel that Proposition 2 is worth mentioning
because its simple form may render it useful to practitioners. For example, in an exploratory
phase where a number of different models are being considered for a given set of data, one could
avoid having to recheck the conditions of Corollary 1 each time the model is changed simply by
taking a0 = a1 = · · · = ar = a > 1 for all models under consideration.

Appendix A: Preliminary results

Let k = rank(X̃) = rank(X) ≤ min{N,p}, and consider a singular value decomposition of X̃

given by UDV T , where U and V are orthogonal matrices of dimension N and p, respectively,
and

D :=
[

D∗ 0k,p−k

0N−k,k 0N−k,p−k

]
,

where D∗ := diag{d1, . . . , dk}. The values d1, . . . , dk are the singular values of X̃, which are
strictly positive. Again, dmax denotes the largest singular value. The following result is an exten-
sion of Lemmas 4 and 5 in R&H15.

Lemma 5. The matrix Mλ can be represented as UHλU
T where Hλ is an N × N diagonal

matrix, Hλ = diag{h1, . . . , hN }, where

hi =
⎧⎨
⎩

1

λed
2
i + 1

, i ∈ {1, . . . , k},
1, i ∈ {k + 1, . . . ,N}.

Furthermore, (λed
2
max + 1)−1I � Mλ � I .

Proof. Using the definitions of T −1
λ and X̃, we have

Mλ = I − λeXT −1
λ XT = I − λeX̃

(
λeX̃

T X̃ + I
)−1

X̃T .
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Now using X̃ = UDV T leads to

Mλ = U
(
I − λeD

(
λeD

T D + I
)−1

DT
)
UT .

The matrix λeD(λeD
T D + I )−1DT is an N × N diagonal matrix whose j th diagonal element

is given by

λed
2
j

λed
2
j + 1

I{1,2,...,k}(j).

Hence, I − λeD(λeD
T D + I )−1DT = Hλ, and Mλ = UHλU

T . To prove the second part, note
that, for j = 1, . . . ,N , 0 < (λed

2
max + 1)−1 ≤ hi ≤ 1. Thus,

(
λed

2
max + 1

)−1
I = U

(
λed

2
max + 1

)−1
UT � UHλU

T � UUT = I. �

Next, we develop an extension of Lemma 2 in R&H15. Define Z̃ = UT Z, ỹ = UT y and
η = V T 


−1/2
β μβ . Also, let z̃i denote the ith column of Z̃T , and let ỹi and ηi represent the ith

components of the vectors ỹ and η, respectively. Let t1, t2, . . . , tN+q be a set of q-vectors defined
as follows. For j = 1, . . . ,N , let tj = z̃j , and let tN+1, . . . , tN+q be the standard basis vectors
in R

q . For i = 1, . . . ,N , define

C∗
i =

[
sup

a∈RN+q
+

tTi

(
ti t

T
i +

∑
j∈{1,2,...,N}\{i}

aj tj t
T
j +

N+q∑
j=N+1

aj tj t
T
j + aiI

)−2

ti

]1/2

.

The C∗
i s are finite by [7], Lemma 3.

Lemma 6. For all λ ∈ R
r+1,

∥∥λeQ
−1
λ ZT Mλy

∥∥ ≤
N∑

j=1

|ỹj |C∗
j < ∞

and

∥∥λeQ
−1
λ ZT XT −1

λ 
−1
β μβ

∥∥ ≤
k∑

j=1

dj |ηj |C∗
j < ∞.

Proof. Even though R&H15 assume X to be full column rank, their argument still works to
establish the first inequality, so we omit this argument. We now establish the second inequality.
First,

UT XT −1
λ = UT X̃

(
λeX̃

T X̃ + I
)−1



1/2
β = D

(
λeD

T D + I
)−1

V T 

1/2
β .
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Define Rλ = D(λeD
T D + I )−1. This is an N × p diagonal matrix, with diagonal elements

r1, r2, . . . , rmin{N,p}. These take the form

rj = dj

λed
2
j + 1

I{1,2,...,k}(j).

Now ∥∥λeQ
−1
λ ZT XT −1

λ 
−1
β μβ

∥∥ = ∥∥λeQ
−1
λ Z̃T RλV

T 

−1/2
β μβ

∥∥
= ∥∥λe

(
λeZ

T MλZ + �
)−1

Z̃T RλV
T 


−1/2
β μβ

∥∥
= ∥∥(

Z̃T HλZ̃ + λ−1
e �

)−1
Z̃T Rλη

∥∥
=

∥∥∥∥∥
k∑

i=1

(
Z̃T HλZ̃ + λ−1

e �
)−1

z̃i riηi

∥∥∥∥∥
≤

k∑
i=1

∥∥(
Z̃T HλZ̃ + λ−1

e �
)−1

z̃i riηi

∥∥

=
k∑

i=1

∥∥∥∥∥
(

N∑
j=1

z̃j z̃
T
j hj + λ−1

e �

)−1

z̃i riηi

∥∥∥∥∥
=

k∑
i=1

∥∥∥∥
(

z̃i z̃
T
i +

∑
j �=i

z̃j z̃
T
j

hj

hi

+ h−1
i λ−1

e �

)−1

z̃i

ri

hi

ηi

∥∥∥∥
=

k∑
i=1

di |ηi |
∥∥∥∥
(

z̃i z̃
T
i +

∑
j �=i

z̃j z̃
T
j

hj

hi

+ h−1
i λ−1

e �

)−1

z̃i

∥∥∥∥,

where, in the last step, we have used the fact that hidi = ri for i = 1, . . . , k. For i = 1,2, . . . , k,
define

Ci(λ) =
∥∥∥∥
(

z̃i z̃
T
i +

∑
j �=i

z̃j z̃
T
j

hj

hi

+ h−1
i λ−1

e �

)−1

z̃i

∥∥∥∥.

Define λ• = ∑r
i=1 λ−1

ui
. Fix i, and note that

C2
i (λ) = z̃T

i

(
z̃i z̃

T
i +

∑
j �=i

z̃j z̃
T
j

hj

hi

+ h−1
i λ−1

e �

)−2

z̃i

= z̃T
i

(
z̃i z̃

T
i +

∑
j �=i

z̃j z̃
T
j

hj

hi

+ h−1
i λ−1

e

(
� − λ−1• I

) + 1

hiλeλ•
I

)−2

z̃i .



474 T. Abrahamsen and J.P. Hobert

Define {wj }N+q

j=1 as follows:

wj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hj

hi

, j = 1, . . . , i − 1, i + 1, . . . ,N ,

1

hiλeλ•
, j = i,

λu1 − λ−1•
hiλe

, j = N + 1, . . . ,N + q1,

λu2 − λ−1•
hiλe

, j = N + q1 + 1, . . . ,N + q1 + q2,

...
...

λur − λ−1•
hiλe

, j = N + q1 + · · · + qr−1 + 1, . . . ,N + q.

(A.1)

Then

C2
i (λ) = tTi

(
ti t

T
i +

∑
j∈{1,2,...,N}\{i}

wj tj t
T
j +

N+q∑
j=N+1

wj tj t
T
j + wiI

)−2

ti .

Clearly, wj > 0 for all j = 1, . . . ,N + q . It follows that

C2
i (λ) ≤ sup

a∈RN+q
+

tTi

(
ti t

T
i +

∑
j∈{1,2,...,N}\{i}

aj tj t
T
j +

N+q∑
j=N+1

aj tj t
T
j + aiI

)−2

ti = (
C∗

i

)2
.

Hence,

∥∥λeQ
−1
λ ZT XT −1

λ 
−1
β μβ

∥∥ ≤
k∑

i=1

di |ηi |C∗
i . �

Appendix B: Proof of Lemma 1

Lemma 1. For each i ∈ {1,2, . . . , r}, we have

tr
(
RiQ

−1
λ RT

i

) ≤ (
d2

max + λ−1
e

)
tr
(
Ri

(
ZT Z

)+
RT

i

) + tr
(
Ri(I − PZT Z)RT

i

) r∑
j=1

λ−1
uj

.

Proof. From Lemma 5 we have

Qλ = λeZ
T MλZ + � � λe

λed2
max + 1

ZT Z + � � λe

λed2
max + 1

ZT Z + λminI,
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where λmin = min{λu1, . . . , λur }. Letting O�OT be the spectral decomposition of ZT Z, we
have

Q−1
λ �

(
λe

λed2
max + 1

ZT Z + λminI

)−1

= O

(
1

d2
max + λ−1

e

� + λminI

)−1

OT . (B.1)

Next, let �+ be a q × q diagonal matrix whose ith diagonal element is

ψ+
i = ψ−1

i

(
1 − I{0}(ψi)

)
.

Now note that, for i = 1, . . . , q , we have

(
ψi

d2
max + λ−1

e

+ λmin

)−1

≤ (
d2

max + λ−1
e

)
ψ+

i + λ−1
minI{0}

(
ψ+

i

)
.

Hence, (
1

d2
max + λ−1

e

� + λminI

)−1

� (
d2

max + λ−1
e

)
�+ + λ−1

min(I − P�), (B.2)

where P� is a q × q diagonal matrix whose ith diagonal entry is 1 − I{0}(ψi). Combining (B.1)
and (B.2) yields

Q−1
λ � (

d2
max + λ−1

e

)
O�+OT + λ−1

minO(I − P�)OT

= (
d2

max + λ−1
e

)(
ZT Z

)+ + λ−1
minO(I − P�)OT .

Let I = {i ∈ {1, . . . , q} : ψi > 0}, and let Õ be the sub-matrix of O consisting of the column
vectors oi where i ∈ I . Then

OP�OT =
∑
i∈I

oio
T
i = ÕÕT .

Since {oi}i∈I forms an orthonormal basis for the column space of ZT Z, it follows that ÕÕT is
the orthogonal projection onto ZT Z. Consequently,

O(I − P�)OT = OOT − OP�OT = I − ÕÕT = I − PZT Z.

Thus,

Q−1
λ � (

d2
max + λ−1

e

)(
ZT Z

)+ + (I − PZT Z)

r∑
i=1

λui
,

and finally,

tr
(
RiQ

−1
λ RT

i

) ≤ (
d2

max + λ−1
e

)
tr
(
Ri

(
ZT Z

)+
RT

i

) + tr
(
Ri(I − PZT Z)RT

i

) r∑
j=1

λ−1
uj

.
�
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Appendix C: Proof of Lemma 2

Lemma 2. tr(W Var(θ |λ)WT ) ≤ λ−1
e rank(Z) + d2

max rank(Z) + tr(X
βXT ).

Proof. R&H15 show that

tr
(
W Var(θ |λ)WT

) = tr
(
ZQ−1

λ ZT
) + tr

(
XT −1

λ XT
) − tr

(
(I − Mλ)ZQ−1

λ ZT (I + Mλ)
)
,

and that tr((I − Mλ)ZQ−1
λ ZT (I + Mλ)) ≥ 0. Hence,

tr
(
W Var(θ |λ)WT

) ≤ tr
(
ZQ−1

λ ZT
) + tr

(
XT −1

λ XT
)
,

Next, note that 
−1
β � λeX

T X + 
−1
β = Tλ. Hence, 
β � T −1

λ , and

tr
(
XT −1

λ XT
) ≤ tr

(
X
βXT

)
.

Now, from Lemma 5, we have

λe

λed2
max + 1

ZT Z + � � λeZ
T MλZ + � = Qλ,

and it follows that

tr
(
ZQ−1

λ ZT
) ≤ tr

(
Z

(
λe

λed2
max + 1

ZT Z + �

)−1

ZT

)
.

Finally, using Lemma 3 from R&H15, we have

tr

(
Z

(
λe

λed2
max + 1

ZT Z + �

)−1

ZT

)
≤

(
λe

λed2
max + 1

)−1

rank(Z)

= λ−1
e rank(Z) + d2

max rank(Z). �

Appendix D: Proof of Lemma 3

Lemma 3. There exist finite constants K1 and K2, not depending on λ, such that ‖E[Riu|λ]‖ ≤√
qiK1 for i = 1, . . . , r , and ‖y − WE[θ |λ]‖ ≤ K2.

Proof. From (4) and Lemma 6, we have∥∥E[u|λ]∥∥ = ∥∥λeQ
−1
λ ZT

(
Mλy − XT −1

λ 
−1
β μβ

)∥∥
≤ (∥∥λeQ

−1
λ ZT Mλy

∥∥ + ∥∥λeQ
−1
λ ZT XT −1

λ 
−1
β μβ

∥∥)

≤
(

N∑
j=1

|yj |C∗
j +

k∑
j=1

dj |ηj |C∗
j

)
:= K1.
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Now, for each i ∈ {1, . . . , q}, we have

∥∥E[Riu|λ]∥∥ ≤ ‖Ri‖K1 =
√

tr
(
RT

i Ri

)
K1 = √

qiK1.

This proves the first part. Now, it follows from page 10 of R&H15 that∥∥y − WE[θ |λ]∥∥ ≤ ‖Mλ‖‖y‖ + ∥∥XT −1
λ 
−1

β μβ

∥∥ + ‖Mλ‖‖Z‖∥∥E[u|λ]∥∥.

Now, using Lemma 5, and the fact that hi ≤ 1, for i = 1, . . . ,N , we have

‖Mλ‖2 = tr
(
MT

λ Mλ

) =
N∑

j=1

h2
i ≤ N.

Recall from the proof of Lemma 6 that UT XT −1
λ = RλV

T 

1/2
β , and note that

‖Rλ‖2 = tr
(
RT

λ Rλ

) =
k∑

j=1

r2
i ≤ kd2

max.

Therefore, ∥∥XT −1
λ 
−1

β μβ

∥∥ = ∥∥UUT XT −1
λ 
−1

β μβ

∥∥
= ∥∥URλV

T 

−1/2
β μβ

∥∥
≤ ‖U‖‖Rλ‖

∥∥V T 

−1/2
β μβ

∥∥
≤ √

N
√

kdmax
∥∥V T 


−1/2
β μβ

∥∥.

Putting all of this together, we have∥∥y − WE[θ |λ]∥∥ ≤ ‖Mλ‖‖y‖ + ∥∥XT −1
λ 
−1

β μβ

∥∥ + ‖Mλ‖‖Z‖∥∥E[u|λ]∥∥
≤ √

N‖y‖ + √
N

√
kdmax

∥∥V T 

−1/2
β μβ

∥∥ + √
N‖Z‖K1. �

Appendix E: Proof of Lemma 4

Lemma 4. For each i ∈ {1,2, . . . , r}, we have (ψmaxλe + λui
)−1Iqi

� RiQ
−1
λ RT

i .

Proof. Lemma 5 implies that ZT MλZ � ZT Z. It follows that

Qλ = λeZ
T MλZ + � � λeZ

T Z + � � λeψmaxI + �.

Thus,

(λeψmax + λui
)−1I = Ri(λeψmaxI + �)−1RT

i � RiQ
−1
λ RT

i . �
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