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This paper is concerned with Crump–Mode–Jagers branching processes, describing spread of an epidemic
depending on the proportion of the population that is vaccinated. Births in the branching process are
aborted independently with a time-dependent probability given by the fraction of the population vacci-
nated. Stochastic monotonicity and continuity results for a wide class of functions (e.g., extinction time
and total number of births over all time) defined on such a branching process are proved using coupling
arguments, leading to optimal vaccination schemes to control corresponding functions (e.g., duration and
final size) of epidemic outbreaks. The theory is illustrated by applications to the control of the duration of
mumps outbreaks in Bulgaria.
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1. Introduction

Branching processes have been applied widely to model epidemic spread (see, e.g., the mono-
graphs by Andersson and Britton [2], Daley and Gani [9] and Mode and Sleeman [23], and
the review by Pakes [24]). The process describing the number of infectious individuals in an
epidemic model may be well approximated by a branching process if the population is homo-
geneously mixing and the number of infectious individuals is small in relation to the total size
of the susceptible population, since under these circumstances the probability that an infectious
contact is with a previously infected individual is negligible (see, e.g., Isham [16]). Such an ap-
proximation dates back to the pioneering works of Bartlett [8] and Kendall [18], and can be made
mathematically precise by showing convergence of the epidemic process to a limiting branching
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process as the number of susceptibles tends to infinity (see Ball [5], Ball and Donnelly [7] and
Metz [22]). The approximation may also be extended to epidemics in populations that are not
homogeneously mixing, for example, those containing small mixing units such as households
and workplaces (see Pellis et al. [25]).

Before proceeding we give outline descriptions of some common branching process models
(see, e.g., Jagers [17] for further details), which describe the evolution of a single-type popula-
tion. In all of these models, individuals have independent and identically distributed reproduction
processes. In a Bienaymé–Galton–Watson branching process, each individual lives for one unit
of time and then has a random number of children, distributed according to a random variable,
ζ say. In a Bellman–Harris branching process (BHBP), each individual lives until a random age,
distributed according to a random variable I say, and then has a random number of children,
distributed according to ζ , where I and ζ are independent. The Sevast’yanov branching process
(SBP) is defined similarly, except I and ζ may be dependent, so the number of children an in-
dividual has is correlated with that individual’s lifetime. Finally, in a general branching process,
also called a Crump–Mode–Jagers (CMJ) branching process, each individual lives until a ran-
dom age, distributed according to I , and reproduces at ages according to a point process ξ . More
precisely, if an individual, i say having reproduction variables (Ii, ξi), is born at time bi and
0 ≤ τi1 ≤ τi2 ≤ · · · ≤ Ii denote the points of ξi , then individual i has one child at each of times
bi + τi1, bi + τi2, . . . .

This paper is primarily concerned with models for epidemics of diseases, such as measles,
mumps and avian influenza, which follow the so-called SIR (Susceptible → Infective → Re-
moved) scheme in a closed, homogeneously mixing population or some of its extensions. A key
epidemiological parameter for such an epidemic model is the basic reproduction number R0 (see
Heesterbeek and Dietz [15]), which in the present setting is given by the mean of the offspring
distribution of the approximating branching process. In particular a major outbreak (i.e., one
whose size is of the same order as the population size) occurs with nonzero probability if and
only if R0 > 1. Suppose that R0 > 1 and a fraction c of the population is vaccinated with a per-
fect vaccine in advance of an epidemic. Then R0 is reduced to (1 − c)R0, since a proportion c

of infectious contacts is with vaccinated individuals. It follows that a major outbreak is almost
surely prevented if and only if c ≥ 1 −R−1

0 . This well-known result, which gives the critical vac-
cination coverage to prevent a major outbreak and goes back at least to 1964 (e.g., Smith [26]),
is widely used to inform public health authorities.

As a consequence of the above result, many analyses of vaccination strategies in the epidemic
modelling literature have focussed on reducing R0 to its critical value of one. However, if the
population is large, both the total size and the duration of an outbreak may still be appreciable.
Indeed, in the limit as the population size tends to infinity, when R0 = 1, both of these quantities
have infinite expectation under any plausible modelling assumptions. In practice, there may be
a cost associated with an individual contracting the disease being modelled, in which case it is
of interest to determine vaccination strategies which reduce the expected value of the total cost
of an outbreak to an acceptable level. Alternatively, it may be desired to control the duration of
an outbreak, for example, if the presence of an outbreak means that restrictions are placed on
the population within which it is spreading. Clearly, for large populations, both of these aims
necessitate that R0 is reduced to somewhat less than one. The above remarks pertain to the
common situation of controlling an epidemic that is in its increasing phase. A different situation
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arises with diseases, such as measles and mumps, which are controlled by mass vaccination but
small outbreaks still occur among unvaccinated individuals. Supplementary vaccination may be
used to reduce the size or duration of such outbreaks (as in the illustrative example of mumps
in Bulgaria in Section 4 of this paper). A similar phenomenon occurs with pathogens, such as
monkeypox virus, which primarily affect animals but spill over into human populations giving
stuttering chains of human-to-human transmission (Lloyd-Smith et al. [20]). In at least some
of the above scenarios, it may be the case that a specific vaccination level cannot be achieved
immediately but rather the fraction of the population that is vaccinated will be time-dependent.
The aim of this paper is to develop a methodology based on branching processes for addressing
the above issues in a unified fashion.

González et al. [13,14] studied properties of the time to extinction of an epidemic given that a
fraction c of individuals is vaccinated, when the number of infectious individuals in the popula-
tion is modelled by a continuous-time BHBP and a (more general) continuous-time SBP, respec-
tively. In an earlier work, De Serres et al. [10] used a discrete-time Bienaymé–Galton–Watson
branching process to study the spread of an infectious disease under various control measures,
specifically to estimate the effective (i.e., post-control) value of R0 from observations on size
and durations of small outbreaks. The main objective in González et al. [13,14] was to deter-
mine the optimal proportion of susceptible individuals which has to be vaccinated so that the
mean (or given quantile of the) extinction time of the disease is less than some specified value.
To that end, stochastic monotonicity and continuity properties of the distribution function and
mean of the time that the infection survives, depending on the vaccination coverage rate were
first determined.

In the present paper, we extend the results in González et al. [13,14] in several directions that
are both practically and theoretically important. First, we assume that the spread of infection is
modelled as a CMJ branching process. The CMJ branching process is appropriate for modelling
the early stages of a very wide variety of SIR epidemics, and includes both BHBP and SBP as
special cases. Second, we consider more general vaccination processes. In González et al. [13,
14] it was assumed that the fraction of the population that is vaccinated remained constant with
time. We now allow this fraction to be an arbitrary but specified function of time, thus capturing
for example the setting in which people are vaccinated as the disease spreads. Third, we consider
the control of more general functions of the epidemic process. González et al. [13,14] focused
on controlling the duration of the epidemic. The methods developed in this paper are applicable
to a wide class of functions of the epidemic process. In addition to the duration of an outbreak,
this class includes, for example, the total number of people infected and the maximum number
of infected people present during the epidemic.

The methodology of the paper is very different from that of González et al. [13,14]. The
key stochastic monotonicity and continuity results in these papers were obtained by analysis of
integral equations governing properties of the time to extinction of the branching process. In
the present paper, a main tool is coupling and, in particular, a pruning method of constructing
a realisation of a vaccinated process from that of the corresponding unvaccinated process. As
indicated in Section 5, this methodology is very powerful and applicable to a broad range of
processes.

The remainder of the paper is organised as follows. In Section 2, we describe a very general
model for an SIR epidemic in a closed, homogeneously mixing community and explain why its
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early spread may be approximated by a CMJ branching process. We introduce a very general
vaccination process and give the basic coupling construction for obtaining a realisation of the
vaccinated epidemic process from that of the unvaccinated process. The theoretical results of the
paper are given in Section 3. In Section 3.1, we introduce functions of a realisation of a CMJ
branching process that are monotonically decreasing with pruning. Examples of such functions
include the extinction time, the maximum population size over all time and the total number of
births over all time. Then we prove in general, that is, independently of the function, monotonic-
ity and continuity properties of the mean (Section 3.2), distribution function (Section 3.3) and
quantiles (Section 3.4) of such functions. In Section 3.5, we use the previous results to define
optimal vaccination policies based on mean and quantiles. The theory is then specialised in Sec-
tion 3.6 to the extinction time of an outbreak. The methodology is illustrated in Section 4 with
applications to mumps in Bulgaria, where vaccination is targeted at reducing the duration of an
outbreak. The paper ends with some concluding comments in Section 5.

2. Model and coupling construction

Consider first the following model for the spread of an epidemic in a closed, homogeneously
mixing population. Initially there are a infectives and N susceptibles. Infectious individuals have
independent and identically distributed life histories H = (I, ξ), where I is the time elapsing
between an individual’s infection and his/her eventual removal or death and ξ is a point process
of times, relative to an individual’s infection, at which infectious contacts are made. Each contact
is with an individual chosen independently and uniformly from the population. If a contact is with
an individual who is susceptible, then that individual becomes infected and itself makes contacts
according to its life history. If a contact is with an individual who is not susceptible, then nothing
happens. The epidemic ceases as soon as there is no infective present in the population. Note
that, for simplicity, we assume that every infectious contact with a susceptible necessarily leads
to that susceptible becoming infected. The model is easily extended to the situation when each
contact with a susceptible is successful (i.e., leads to infection) independently with probability p

by letting H = (I, ξ ′), where ξ ′ is a suitable thinning of ξ .
The above model is essentially that introduced by Ball and Donnelly [7], who noted that it

included as special cases a range of specific models that had hitherto received considerable at-
tention in the literature. For example, SIR and SEIR (Susceptible → Exposed (i.e., latent) →
Infective → Removed) models come under the above framework. The only difference between
the above model and that in Ball and Donnelly [7] is that, in the latter, each contact is with
an individual chosen independently and uniformly from the N initial susceptibles (rather than
from the entire population of N + a individuals). In Ball and Donnelly [7], a coupling argument
(which also holds for the present model) is used to prove strong convergence, as the number of
initial susceptibles N → ∞ (with the number of initial infectives a held fixed), of the process
of infectives in the epidemic model to a CMJ branching process (see Jagers [17]), in which a
typical individual lives until age I and reproduces at ages according to ξ . Thus for large N , the
epidemic may be approximated by the CMJ branching process. The approximation assumes that
every contact is with a susceptible individual. The proof in Ball and Donnelly [7] may be ex-
tended to epidemics other than SIR, for example, SIS (Susceptible → Infective → Susceptible)
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and SIRS (Susceptible → Infective → Removed → Susceptible), by suitably generalizing the
life history H to allow for removed individuals to become susceptible again (see, e.g., Ball [6]
in the context of epidemics among a population partitioned into households). Indeed, for a very
broad class of homogeneously mixing epidemic models, that covers all of the common stochastic
formulations of infectious disease spread, the early stages of an epidemic in a large population
with few initial infectives may be approximated by a CMJ branching process.

This paper is concerned with the use of vaccination schemes to control an epidemic, for exam-
ple, in terms of its duration or of the total number of individuals infected. We are thus interested
in the short-term behaviour of the epidemic, so we model the epidemic as a CMJ branching
process, Z = {Z(t) : t ≥ 0}, where Z(t) denotes the number of infected individuals at time t .
Thus Z(0), which we assume to be fixed, represents the number of infected individuals at the
beginning of the outbreak.

We model the vaccination process by a function α : [0,∞) → [0,1], such that α(t) is the
proportion of the population that are immune at time t (t ≥ 0). Thus, the probability that a contact
at time t is with a susceptible (i.e., non-immune) individual is 1 − α(t). If the vaccine is perfect,
that is, it confers immunity immediately with probability one, then α(t) is given by the proportion
of the population that has been vaccinated by time t . If the vaccine is imperfect then that is
implicitly included in the function α. For example, if the vaccine is all-or-nothing (i.e., it renders
the vaccinee completely immune with probability ε, otherwise it has no effect), then α(t) =
εα̃(t), where α̃(t) is the proportion of the population that has been vaccinated by time t . Note
that if the immunity conferred by vaccination does not wane then α is nondecreasing in t . We
denote by Zα = {Zα(t) : t ≥ 0} the vaccination version of Z, in which each birth in Z is aborted
independently, with probability α(t) if the birth time is at time t .

Let A be the space of all functions α : [0,∞) → [0,1]. We construct coupled realizations of
Z and Zα (α ∈ A) on a common probability space (�,F ,P ) as follows. Let (�1,F1,P1) be a
probability space on which are defined independent life histories H1,H2, . . . , each distributed
as H, which are pieced together in the obvious fashion to construct a realization of Z. More
specifically, the life histories H1,H2, . . . ,Ha are assigned to the a initial infectives and, for
i = 1,2, . . . , the ith individual born in Z is assigned the life history Ha+i . Note that with this
construction Z may be viewed as a tree, which is augmented with birth and death times of
branches. Let (�2,F2,P2) be a probability space on which is defined a sequence U1,U2, . . .

of independent random variables, each uniformly distributed on (0,1). Let (�,F ,P ) = (�1 ×
�2,F1 × F2,P1 × P2). Then, for α ∈ A, a realization of Zα is constructed on (�,F ,P ) as
follows. For i = 1,2, . . . , let bi denote the time of the ith birth in Z, if such a birth occurs. Then
this birth is deleted in Zα if and only if Ui ≤ α(bi). If a birth is deleted in Zα , then none of the
descendants of that individual in Z occurs in Zα . Thus, if the j th birth in Z is such a descendant
then Uj is redundant in the construction of Zα . With the tree setting in mind, the process of
deleting an individual and all of its descendants is called pruning. For a previous use of pruning
in a branching process framework see, for example, Aldous and Pitman [1].

Finally, we give some notation concerned with functions in A, which will be used throughout
the paper. For α,α′ ∈ A, write α ≺ α′ if α(t) ≤ α′(t) for all t ∈ [0,∞). Also, for any c ∈ [0,1]
and any t0 ≥ 0, define the function α

t0
c ∈A by

αt0
c (t) =

{
0 if t < t0,
c if t ≥ t0.
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Thus, for example, α0
c denotes the constant function equal to c and α0

0 denotes the constant
function equal to 0.

3. Monotonicity and continuity properties depending on
vaccination function α

3.1. Functions f (Zα) monotone to pruning

Let f (Z) be any nonnegative function of Z taking values in the extended real line R∪ {∞} and,
for α ∈ A, let μ

f
α = E[f (Zα)]. Again with the tree setting in mind, we say that f is monotoni-

cally decreasing with pruning, and write f ∈ P , if f (ZP ) ≤ f (Z) almost surely whenever ZP

is obtained from Z by pruning. For an event, E say, let 1E denote the indicator function of E.
Examples of functions that are monotonically decreasing with pruning include:

(i) the extinction time T = inf{t ≥ 0 :Z(t) = 0} and 1{T >t}, where t ∈ [0,∞) is fixed;
(ii) the maximum population size (number of infected individuals in the epidemic context)

over all time, M = supt≥0 Z(t) and 1{M>x}, where x ∈ [0,∞) is fixed;
(iii) N(t), the total number of births (new infections in the epidemic context) in (0, t], where

t ∈ [0,∞) is fixed, and the total number of births over all time (outbreak total size in
the epidemic context) N(∞) = limt→∞ N(t), together with the corresponding indicator
functions 1{N(t)>x} and 1{N(∞)>x}, where x ∈ [0,∞) is fixed.

Throughout the paper, we assume that Z is non-explosive, that is, that P(N(t) < ∞) = 1 for
any t ∈ (0,∞). Conditions which guarantee this property may be found in Jagers [17], Sec-
tion 6.2.

3.2. Monotonicity and continuity of mean of f (Zα)

In this subsection, we derive monotonicity and continuity properties of E[f (Zα)], when viewed
as a function of the vaccination process α, for functions f that are monotonically decreasing
with pruning.

Theorem 3.1. If α,α′ ∈A satisfy α ≺ α′ and f ∈ P , then μ
f
α ≥ μ

f

α′ .

Proof. The result follows immediately from the above construction of Z and Zα , α ∈ A, on
(�,F ,P ), since f is monotonically decreasing with pruning and Zα′ may be obtained from Zα

by successive prunings. �

We now give conditions under which μ
f
α is continuous in α. For α,α′ ∈ A, let ‖α − α′‖ =

supt∈[0,∞) |α(t) − α′(t)| and, for t > 0, let ‖α − α′‖t = sups∈[0,t] |α(s) − α′(s)|. For t > 0, write
f ∈ Pt if f ∈ P and f (Z) depends on Z only through {Z(s) : 0 ≤ s ≤ t}. Let m be the offspring
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mean for Z. For c ∈ [0,1], let mc denote the offspring mean of Zα0
c
, so mc = (1 − c)m. Further,

let cinf = max(0,1 − m−1) and note that mcinf ≤ 1. For t0 ≥ 0 and c ∈ [0,1], let

A(c, t0) = {
α ∈A :α(t) ≥ c for all t ≥ t0

}
.

Theorem 3.2.

(a) Fix t > 0, let f ∈ Pt and suppose that there exists a non-negative real-valued function f̂ ,
with E[f̂ (Z)] < ∞, such that, for P -almost all ω ∈ �,

f
(
Zα(ω)

) ≤ f̂
(
Z(ω)

)
for all α ∈A. (3.1)

Then, for each ε > 0, there exists η = η(ε) > 0 such that for all α,α′ ∈ A satisfying
‖α − α′‖t ≤ η, ∣∣μf

α − μ
f

α′
∣∣ ≤ ε. (3.2)

(b) Suppose that m < ∞. Let f ∈ P and t0 ≥ 0, and suppose that there exists a non-negative
real-valued function f̂ (Z

α
t0
cinf

), with E[f̂ (Z
α

t0
cinf

)] < ∞, such that, for P -almost all ω ∈ �,

f
(
Zα(ω)

) ≤ f̂
(
Z

α
t0
cinf

(ω)
)

for all α ∈A(cinf, t0). (3.3)

Then, for each ε > 0, there exists η = η(ε) > 0 such that (3.2) holds for all α,α′ ∈
A(cinf, t0) satisfying ‖α − α′‖ ≤ η.

Proof. (a) For n = 1,2, . . . and α,α′ ∈A, let

Bn

(
α,α′) =

n⋂
i=1

{
ω ∈ � :Ui(ω) /∈ (

min
(
α(bi), α

′(bi)
)
,max

(
α(bi), α

′(bi)
)]}

,

and let B0(α,α′) = �. Now P(N(t) < ∞) = 1, since Z is non-explosive. Observe that if ω ∈
BN(t)(α,α′) then, by construction, Zα(s,ω) = Zα′(s,ω) for all s ∈ [0, t], whence f (Zα(ω)) =
f (Zα′(ω)) since f ∈Pt . Now, for any α ∈A,

μf
α = E

[
f (Zα)1BN(t)(α,α′)

] + E
[
f (Zα)1Bc

N(t)
(α,α′)

]
,

where Bc
N(t)(α,α′) = � \ BN(t)(α,α′). Thus, for any α,α′ ∈ A,

μf
α − μ

f

α′ = E
[
f (Zα)1Bc

N(t)
(α,α′)

] − E
[
f (Zα′)1Bc

N(t)
(α,α′)

]
,

whence, since f is nonnegative,∣∣μf
α − μ

f

α′
∣∣ ≤ E

[
f̂ (Z)1Bc

N(t)
(α,α′)

]
.

Now

E
[
f̂ (Z)1Bc

N(t)
(α,α′)

] = E
[
f̂ (Z)E[1Bc

N(t)
(α,α′)|Z]].
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Further, (i) Z determines N(t) and (ii) (U1,U2, . . .) is independent of Z, so, P -almost surely,

E[1Bc
N(t)

(α,α′)|Z] = 1 −
N(t)∏
i=1

(
1 − ∣∣α(bi) − α′(bi)

∣∣)
≤ 1 − (1 − δ)N(t),

where δ = ‖α − α′‖t . Hence, P -almost surely,

E[1Bc
N(t)

(α,α′)|Z] ≤ E[1Bc
N(t)

(α0
0 ,α0

δ )|Z],

whence, for α,α′ ∈A, ∣∣μf
α − μ

f

α′
∣∣ ≤ E

[
f̂ (Z)1Bc

N(t)
(α0

0 ,α0
δ )

]
(3.4)

= μ̂t (δ) say.

Now P(N(t) < ∞) = 1, so P -almost surely,

f̂ (Z)1Bc
N(t)

(α0
0 ,α0

δ ) → 0 as δ ↓ 0

(in fact f̂ (Z)1Bc
N(t)

(α0
0 ,α0

δ ) = 0 for all δ ∈ [0, δ∗), where δ∗ = min(U1,U2, . . . ,UN(t))), so by the

dominated convergence theorem μ̂t (δ) → 0 as δ ↓ 0. Thus, given ε > 0, there exists η such that
μ̂t (δ) ≤ ε for all δ ∈ (0, η) and the theorem follows using (3.4).

(b) For α ∈ A(cinf, t0), the process Zα can be viewed as a vaccinated version of the process
Z

α
t0
cinf

with vaccination function α̃ given by

α̃(t) =
{

α(t) if t < t0,
α(t)

1 − cinf
if t ≥ t0.

Note that Z
α

t0
cinf

has offspring mean m until time t0, and mcinf ≤ 1 after time t0. Thus, since

Z is non-explosive (so P(Z(t0) < ∞) = 1), the total number of births over all time in Z
α

t0
cinf

(i.e., N
α

t0
cinf

(∞)) is finite almost surely. Also, ‖α̃ − α̃′‖ ≤ (1 − cinf)
−1‖α − α′‖. The proof then

proceeds as in part (a), but with Z and N(t) replaced by Z
α

t0
cinf

and N
α

t0
cinf

(∞), respectively, and

α,α′ replaced by α̃, α̃′. �

Remark 3.1.

(a) Suppose that m ≤ 1. Then cinf = 0 and it follows that Z
α

t0
cinf

= Z and A(cinf, t0) =A. Thus,

for any f ∈ P , Theorem 3.2(b) implies that, for any ε > 0, there exists η = η(ε) > 0 such
that (3.2) holds for all α,α′ ∈ A satisfying ‖α − α′‖ ≤ η.
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(b) Suppose that m > 1 and f ∈ P . Then the argument used to prove Theorem 3.2(b) breaks
down since P(Z(∞) < ∞) < 1. Thus, with our argument we can prove continuity in α

of μ
f
α for f ∈ Pt , for any t > 0, but not for f ∈ P . However, this is no restriction from

a practical viewpoint since t in Theorem 3.2(a), or t0 in Theorem 3.2(b), can be made
arbitrarily large. For example, in any real life-setting there will be a maximum time frame
over which it is of interest to evaluate the performance of a vaccination process and t or t0
can be chosen accordingly.

3.3. Monotonicity and continuity of distribution function of f (Zα)

Using the previous results, we establish in this subsection monotonicity and continuity properties
of the distribution function of f (Zα). For f ∈P and α ∈A, let

vf
α (x) = P

(
f (Zα) ≤ x

) = 1 − E[1{f (Zα)>x}], x ≥ 0,

be the distribution function of the random variable f (Zα).
For α ∈ A and t ∈ [0,∞], let φNα(t)(s) = E[sNα(t)] (0 ≤ s ≤ 1) denote the probability gener-

ating function of Nα(t). Suppose that P(Nα(t) < ∞) = 1. Then φNα(t)(1−) = 1 and φ−1
Nα(t)(u)

is well defined for all u ∈ [uα,t ,1], where uα,t = P(Nα(t) = 0). Extend the domain of φ−1
Nα(t)

by

defining φ−1
Nα(t)(u) = 0 for u ∈ [0, uα,t ). Define the function δα,t : [0,1] → [0,1] by

δα,t (ε) = 1 − φ−1
Nα(t)(1 − ε), 0 ≤ ε ≤ 1. (3.5)

Note that δα,t (ε) > 0 if ε > 0 and limε↓0 δα,t (ε) = 0.

Theorem 3.3.

(a) Suppose that f ∈ P and α,α′ ∈A satisfy α ≺ α′. Then

vf
α (x) ≤ v

f

α′(x) for all 0 ≤ x ≤ ∞. (3.6)

(b) Fix t > 0 and suppose that f ∈Pt . Then, for any ε > 0,

sup
0≤x<∞

∣∣vf
α (x) − v

f

α′(x)
∣∣ ≤ ε (3.7)

for all α,α′ ∈ A satisfying ‖α − α′‖t ≤ δα0
0 ,t (ε).

(c) Suppose that f ∈ P . Then, for any ε > 0, (3.7) holds for all α,α′ ∈ A(cinf, t0) satisfying
‖α − α′‖ ≤ δ

α
t0
cinf ,∞

(ε).

Proof. (a) Fix x ∈ [0,∞) and let f̃x be the function of Z given by f̃x(Z) = 1{f (Z)>x}. Then

f̃x ∈ P and (3.6) follows from Theorem 3.1, since v
f
α (x) = 1 − E[f̃x(Zα)].
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(b) For each x ∈ [0,∞),∣∣vf
α (x) − v

f

α′(x)
∣∣ = ∣∣E[

f̃x(Zα)
] − E

[
f̃x(Zα′)

]∣∣
and f̃x(Zα(ω)) ≤ 1 for all α ∈ A and all ω ∈ �. Fix t > 0 and note that f̃x ∈ Pt , since f ∈ Pt .
It then follows from (3.4), taking f̂ (Z) = 1, that, for x ∈ [0,∞) and α,α′ ∈ A,∣∣vf

α (x) − v
f

α′(x)
∣∣ ≤ μ̂t

(∥∥α − α′∥∥
t

)
, (3.8)

where, for δ ∈ [0,1],
μ̂t (δ) = P

(
Bc

N(t)

(
α0

0, α0
δ

)) = 1 − E
[
(1 − δ)N(t)

] = 1 − φN(t)(1 − δ).

Recall that N(t) = Nα0
0
(t) and note that P(Nα0

0
(t) < ∞) = 1 since Z is non-explosive. Thus,

φ−1
N

α0
0
(t)(u) is well defined for all u ∈ [0,1] and, since 1 − φN

α0
0
(t)(1 − δα0

0 ,t (ε)) ≤ ε, the theorem

follows.
(c) The proof is similar to part (b) but with Nα0

0
(t) replaced by N

α
t0
cinf

(∞). �

Remark 3.2.

(a) Observe that the function δα0
0 ,t , defined using (3.5), is independent of both f and x, so

the uniform continuity of v
f
α (x), with respect to α, holds uniformly over all f ∈ P and all

x ∈ [0,∞).
(b) Similar to Remark 3.1(a), Theorem 3.3(c) shows that if m ≤ 1 (so P(N(∞) < ∞) = 1)

and f ∈P then, for any ε > 0, (3.7) holds for all α,α′ ∈ A satisfying ‖α−α′‖ ≤ δα0
0 ,∞(ε).

3.4. Monotonicity and continuity of quantiles of f (Zα)

In applications, we wish to control the quantiles of f (Zα), so we now derive related monotonicity
and continuity properties. Fix f ∈P and α ∈ A, and define, for 0 < p < 1,

x
f
α,p = inf

{
x :vf

α (x) ≥ p
}
,

with the convention that x
f
α,p = ∞ if v

f
α (x) < p for all x ∈ [0,∞). Thus, x

f
α,p is the quantile of

order p of the random variable f (Zα). For α ∈A, let A+(α) = {α′ ∈A :α ≺ α′}. For a sequence
{αn} and α in A, we define limn→∞ αn = α to mean limn→∞ ‖αn − α‖ = 0.

Theorem 3.4. Suppose that f ∈ P and p ∈ (0,1).

(a) If α,α′ ∈ A satisfy α ≺ α′, then x
f

α′,p ≤ x
f
α,p .

(b) Suppose further that f ∈Pt for some t > 0 and α ∈ A is such that x
f
α,p < ∞. Let {αn} be

any sequence in A satisfying limn→∞ αn = α. Then limn→∞ x
f
αn,p = x

f
α,p in each of the

following cases:
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(i) αn ∈A+(α) for all n;
(ii) v

f
α is continuous and strictly increasing at x

f
α,p .

Proof. (a) By Theorem 3.3(a), {x :vf
α (x) ≥ p} ⊆ {x :vf

α′(x) ≥ p}, which implies x
f

α′,p ≤ x
f
α,p .

(b) Choose t > 0 such that f ∈ Pt . Suppose that (i) holds. Let xsup = lim supn→∞ x
f
αn,p and

xinf = lim infn→∞ x
f
αn,p . Then by part (a), xsup ≤ x

f
α,p . Fix ε > 0. Then, since limn→∞ αn = α

and ‖αn − α‖t ≤ ‖αn − α‖, there exists n0 such that ‖αn − α‖t ≤ δα0
0 ,t (ε) for all n ≥ n0, where

δα0
0 ,t (ε) is defined at (3.5) – recall that N(t) = Nα0

0
(t). Now, α ≺ αn, hence, by Theorem 3.3(a)

and (b), v
f
αn(x) − v

f
α (x) ≤ ε, for all x ≥ 0 and for all n ≥ n0. In particular, setting x = x

f
αn,p and

noting that v
f
αn(x

f
αn,p) ≥ p since v

f
αn is right-continuous, yields that v

f
α (x

f
αn,p) ≥ p − ε for all

n ≥ n0. Hence, v
f
α (xinf) ≥ p − ε, since v

f
α is increasing and right-continuous. This holds for all

ε > 0, so v
f
α (xinf) ≥ p, whence xinf ≥ x

f
α,p . Thus, xinf = xsup = x

f
α,p , so limn→∞ x

f
αn,p = x

f
α,p ,

as required.
Suppose that (ii) holds. First, we assume that αn ≺ α for all n. Then, by part (a), xinf ≥ x

f
α,p .

Note that v
f
α (x

f
α,p) = p, since v

f
α is continuous at x

f
α,p , and v

f
α (x) > p for all x > x

f
α,p , since

v
f
α is strictly increasing at x

f
α,p . Fix x > x

f
α,p and let ε = v

f
α (x) − p, so ε > 0. As before, there

exists n0 such that ‖αn − α‖t ≤ δα0
0 ,t (ε) for all n ≥ n0. It then follows from Theorem 3.3 that

vf
α (x) − vf

αn
(x) ≤ ε = vf

α (x) − p for all n ≥ n0.

Thus v
f
αn(x) ≥ p for all n ≥ n0, whence x

f
αn,p ≤ x for all n ≥ n0, which implies that xsup ≤ x.

Since this holds for any x > x
f
α,p , it follows that xsup ≤ x

f
α,p , which combined with xinf ≥ x

f
α,p

yields the required result.
Now, we consider an arbitrary sequence {αn} that converges to α. For q = 1,2, . . . , define

functions α+
q and α−

q by α+
q (s) = min{α(s) + 1

q
,1} and α−

q (s) = max{α(s) − 1
q
,0} (s ≥ 0).

Then limq→∞ α+
q = limq→∞ α−

q = α. Further, α−
q ≺ α ≺ α+

q for each q = 1,2, . . . . Hence, by

part (i) and the above, limq→∞ x
f

α+
q ,p

= limq→∞ x
f

α−
q ,p

= x
f
α,p . For any fixed q ∈N, αn ≺ α+

q for

all sufficiently large n, so Theorem 3.4(a) implies that lim infn→∞ x
f
αn,p ≥ x

f

α+
q ,p

. Letting q → ∞
then yields that xinf ≥ x

f
α,p . A similar argument using the sequence {α−

q } shows that xsup ≤ x
f
α,p ,

whence limn→∞ x
f
αn,p = x

f
α,p , as required. �

Remark 3.3.

(a) It is straightforward to extend Theorem 3.4(b) to a family of vaccination processes
with a continuous index set, for example, {αs : s ∈ I}, where I is a connected sub-
set of R

d for some d ∈ N. Theorem 3.4(b) implies that, under appropriate conditions,
lims→s∗ x

f
αs,p = x

f
αs∗ ,p . We use this extension when studying optimal vaccination policies

in the next subsection.
(b) Invoking Remark 3.2(b) shows that if m ≤ 1 then Theorem 3.4(b) holds with Pt replaced

by P .
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3.5. Optimal vaccination policies based on mean and quantiles

From the above monotonicity and continuity properties of mean and quantiles, we propose next
how to choose optimal αs, that is, optimal vaccination policies in a sense that is made clear below,
from a subset A∗ of A. Fix f ∈ P , b > 0 and 0 < p < 1, and let Af

b = {α ∈ A∗ :μf
α ≤ b} and

Af
p,b = {α ∈ A∗ :xf

α,p ≤ b}. Notice that if, for example, f is the time to extinction, then Af
b and

Af
p,b comprise those vaccination policies in A∗ for which the mean and the quantile of order p,

respectively, of the time to extinction is less than or equal to some bound b. Then it is of interest
to search for optimal vaccination policies which satisfy these properties.

Then, if they exist, optimal vaccination policies based on the mean are

argmax
α∈Af

b

μf
α

and optimal vaccination policies based on the quantiles are

argmax
α∈Af

p,b

x
f
α,p.

We notice that the sets Af
b and Af

p,b can be empty. If they are not empty, optimal vaccination

policies may not be unique when a total order is not defined on the sets Af
b and Af

p,b . Otherwise,
provided the conditions of Theorems 3.1, 3.2 and 3.4 are satisfied, the monotonicity and conti-
nuity properties of mean and quantiles of f (Zα) proved in those theorems imply that there exist
unique α

f
opt,b ∈Af

b and α
f
opt,p,b ∈ Af

p,b such that

μ
f

α
f
opt,b

= max
α∈Af

b

μf
α and x

f

α
f
opt,p,b,p

= max
α∈Af

p,b

x
f
α,p.

Intuitively, α
f
opt,b and α

f
opt,p,b are the smallest vaccination policies in A∗ such that the mean and

the pth quantile, respectively, of f (Z
α

f
opt,b

) and f (Z
α

f
opt,p,b

) are less than or equal to b. Before

giving some simple examples of A∗, we discuss briefly conditions that ensure the existence and
uniqueness of optimal policies.

For fixed f ∈ P , define the binary relation ≺f on A by α ≺f α′ if and only if μ
f
α ≤ μ

f

α′ .
Observe that, if α ≺ α′ then, by Theorem 3.1, α′ ≺f α for any f ∈ P . The relation ≺f is not

an ordering, because α ≺f α′ and α′ ≺f α imply only that μ
f
α = μ

f

α′ (and not that α = α′).
However, we can consider the equivalence relation ∼f on A defined by α ∼f α′ if and only if

μ
f
α = μ

f

α′ . Then ≺f is a total ordering on the quotient set A/ ∼f , that is, the set of all possible
equivalence classes, using the obvious definition of ≺f on A/ ∼f .

Given a subset A∗ of A, a simple condition that ensures the existence of argmax
α∈Af

b

μ
f
α

for any fixed b > 0 is that the set of real numbers {μf
α :α ∈ A∗} is closed. More precisely, this

ensures the existence of an equivalence class on which the maximum is attained. To obtain a
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unique maximum requires that ≺f is a total ordering on A∗ (or at least on Af
b for fixed b). Note

that even if ≺ is a total ordering on A∗, Theorem 3.1 does not ensure that ≺f is a total ordering

on A∗. For the latter, we require that μ
f
α > μ

f

α′ for all α,α′ ∈ A∗ satisfying α ≺ α′ and α �= α′.
The coupling argument in Section 2 can be used to show that this holds for any practically useful
f and it is assumed implicitly in the sequel. Similar arguments to the above pertain for optimal
vaccination policies based on quantiles.

A simple example of A∗ is the set of constant functions, that is, A∗ = {α0
c : 0 ≤ c ≤ 1}. On

this set, the total order is defined by the order of the real numbers. Another example is the set
A∗ = {αM,tv,p0 :M ≥ 0,0 ≤ p0 ≤ 1,0 ≤ tv ≤ p−1

0 }, where, for s ≥ 0,

αM,tv,p0(s) =
{0 if s ≤ M ,

p0(s − M) if M < s ≤ M + tv ,
tvp0 if M + tv < s.

(3.9)

For fixed M , tv and p0, the function αM,tv,p0 describes the proportion of immune individuals
in the population when the vaccination process starts at time M , takes tv time units and the
proportion of individuals vaccinated per unit time is p0. We notice that a total order on A∗
is not possible. However, in practice, M and p0 are usually known before vaccination begins,
and therefore, the functions can be parameterized through tv alone. For fixed M and p0, denote
αtv = αM,tv,p0 and A∗ = {αtv : cinfp

−1
0 ≤ tv ≤ p−1

0 }. Then ≺f is a total ordering on A∗ and

Theorem 3.2(b) ensures that {μf
α :α ∈ A∗} is closed, so, provided Af

b is non-empty, the optimal
vaccination policy exists and is unique. Moreover, it and the corresponding optimal policies
based on the mean and quantiles are given by α

t
f
opt,μ

and α
t
f
opt,p

, with

t
f
opt,μ = inf

{
tv :μf

αtv
≤ b

}
and t

f
opt,p = inf

{
tv :xf

αtv ,p ≤ b
}
,

respectively.
Finally, we notice that, usually, μ

f
α and x

f
α,p cannot be derived in a closed form. Therefore,

in order to obtain optimal vaccination policies, we need to approximate them. The coupling
construction can be used to give a Monte-Carlo based estimation. Suppose, for simplicity of
argument, that m ≤ 1. Fix n ≥ 1, for i = 1, . . . , n, one can simulate a realization Z(i) of Z and
U

(i)
j of Uj , for j = 1,2, . . . ,N(i)(∞), where N(i)(∞) is the total number of births in Z(i). For

each α ∈ A∗, we obtain a realization f (Z
(i)
α ) of f (Zα), for i = 1, . . . , n. From these realizations,

we estimate μ
f
α and x

f
α,p .

3.6. Time to extinction

We specialise the preceding results to the case when evaluation of a vaccination strategy α is
based on the associated distribution of the time to extinction of the virus in an outbreak. To this
end, for z ∈ N, we denote by Tα,z the time to extinction of the process Zα when Z(0) = z, that
is,

Tα,z = inf
{
t ≥ 0 :Zα(t) = 0

}
.
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Thus, Tα,z is the maximal time that the infection survives in the population in an outbreak when
the time-dependent proportion of immune individuals is given by α and the number of infected
individuals at the beginning of the outbreak is z. Now individuals infect independently of each
other, so we have that

Tα,z = max
{
T

(1)
α,1 , T

(2)
α,1 , . . . , T

(z)
α,1

}
,

where T
(i)
α,1 are independent random variables with the same distribution as Tα,1. Hence

P(Tα,z ≤ t) = (
vα(t)

)z
,

where vα(t) = P(Tα,1 ≤ t). Therefore, to analyze the behaviour of Tα,z, for any z, it is sufficient
to study Tα,1 through vα . From now on, we denote Tα,1 by Tα .

We first use the results of Sections 3 to derive some continuity and monotonicity properties
of the distribution function vα . When every individual is immune, that is, α(t) = 1 for all t > 0,
the infectious disease does not spread to any susceptible individual and then the extinction time
is given by the survival time of the initial infected individual. It stands to reason that if there
are non-immune individuals in the population, then it is probable that the infectious disease
takes more time to become extinct. In the following result, which is an immediate application of
Theorem 3.3(a) with f = T , we show this fact investigating the behaviour of vα depending on
the function α.

Corollary 3.1. Suppose that α,α′ ∈A satisfy α ≺ α′. Then vα(t) ≤ vα′(t), for all t ≥ 0.

Intuitively, it is clear that the greater the proportion of immune individuals, the more likely it
is that the infectious disease disappears quickly. Consequently, for any α ∈ A, the distribution
function vα is bounded above by vα0

1
, the distribution function of the survival time of the initial

infected individual, and bounded below by vα0
0
, which is not necessarily a proper distribution

function. Moreover, we obtain that minor changes in the proportion of the immune individu-
als generate minor changes in the distribution of outbreak duration. The following result is an
immediate application of Theorem 3.3(b), (c) with f = T .

Corollary 3.2.

(a) Fix t > 0. Then, for each ε > 0,

sup
0≤u≤t

∣∣vα(u) − vα′(u)
∣∣ ≤ ε,

for all α,α′ ∈A satisfying ‖α − α′‖t ≤ δα0
0 ,t (ε).

(b) Fix t0 ≥ 0. Then, for each ε > 0,

sup
0≤t<∞

∣∣vα(t) − vα′(t)
∣∣ ≤ ε,

for all α,α′ ∈A(cinf, t0) satisfying ‖α − α′‖ ≤ δ
α

t0
cinf ,∞

(ε).
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Finally, we consider the quantiles of Tα . For α ∈A and 0 < p < 1, let tα,p = inf{t :vα(t) ≥ p}
be the quantile of order p of Tα .

Corollary 3.3.

(a) If α,α′ ∈A satisfy α ≺ α′, then tα′,p ≤ tα,p for every 0 < p < 1.
(b) Suppose that α ∈ A and 0 < p < 1 are such that tα,p < ∞ and vα is continuous and

strictly increasing at tα,p . Then limn→∞ tαn,p = tα,p , for any sequence {αn} in A satisfying
limn→∞ αn = α.

Proof.

(a) The result follows directly from Theorem 3.4(a), on setting f = T .
(b) Let t = tα,p + 1 and f = min{T , t}, so f ∈ Pt . The conditions on tα,p and vα ensure that

tα,p = x
f
α,p for all α ∈A. The result then follows immediately from Theorem 3.4(b). �

Corollary 3.3 can be extended to a family of vaccination processes with a continuous index
set; cf. Remark 3.3(b). In order to apply Corollary 3.3, we need to determine conditions which
guarantee that vα is both continuous and strictly increasing.

Theorem 3.5. Suppose that the lifetime random variable I is continuous. Then, for any α ∈ A,
vα is a continuous distribution function.

Proof. Let B0 = 0 and, for n = 1,2, . . . , let Bn denote the time of the nth birth in Z, with
the convention that Bn = ∞ if N(∞) < n. For n = 0,1, . . . ,N(∞), let In and Dn = Bn + In

denote respectively, the lifetime and time of death of the nth individual born in Z. Let D =
{D0,D1, . . . ,DN(∞)} denote the random set of all death-times in Z. Observe that, for any t > 0
and any α ∈ A, Tα = t only if t ∈ D. Thus, it is sufficient to show that P(t ∈ D) = 0 for any
t > 0.

Fix t > 0 and define Dn = ∞ for n > N(∞). Then, since P(N(t) < ∞) = 1,

P(t ∈ D) = P

( ∞⋃
n=0

{Dn = t}
)

≤
∞∑

n=0

P(Dn = t). (3.10)

Further, for n = 0,1, . . . ,

P(Dn = t) = P
(
N(t) ≥ n

)
P
(
Dn = t |N(t) ≥ n

)
= P

(
N(t) ≥ n

)
EBn|N(t)≥n

[
P
(
Dn = t |Bn,N(t) ≥ n

)]
= P

(
N(t) ≥ n

)
EBn|N(t)≥n

[
P
(
In = t − Bn|Bn,N(t) ≥ n

)]
= P

(
N(t) ≥ n

)
EBn|N(t)≥n

[
P(In = t − Bn)

]
= 0,

since In is independent of both Bn and {N(t) ≥ n}, and I is continuous. It then follows from
(3.10) that P(t ∈ D) = 0, which completes the proof. �
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We notice that under weak conditions, the function vα is strictly increasing. Indeed, let R be
the number of points of ξ in [0, I ], so R is a random variable giving the number of offspring of a
typical individual in the CMJ branching process Z. Suppose that P(R = 0) > 0 and that I |R = 0
is an absolutely continuous random variable, having density fI |R=0 satisfying fI |R=0(t) > 0 for
all t ∈ (0,∞). Then it is easily seen that, for any α ∈A, vα is strictly increasing on (0,∞), since,
for any open interval (a, b) in (0,∞), the probability that the initial individual has no offspring
and dies in (a, b) is strictly positive. It is straightforward to give conditions under which vα is
strictly increasing on (0,∞) when I has bounded support. For example, suppose that P(R = 0)

and P(R = 1) are both strictly positive, and I |R = 0 and B|R = 1 are both absolutely continuous
with densities that are strictly positive on (0, tI ), for some tI > 0. Here, B is the age that a typical
individual has his/her first child. Then, given any interval (a, b) ⊂ (0,∞), there exists n0 ∈ N

such that with strictly positive probability (i) each of the first n0 individuals in Z has precisely
one child, (ii) the (n0 + 1)th individual in Z has no children and (iii) T ∈ (a, b). It then follows
that P(Tα ∈ (a, b)) > 0, provided α(t) < 1 for all t > 0.

4. Illustrative example: Analyzing the control measures for
mumps in Bulgaria

As an illustration of how to apply our theoretical results and to show their usefulness, we analyze
a mumps data set from Bulgaria. In Bulgaria, an increasing number of new cases of individuals
infected with mumps has been observed in recent years (see Figure 1). This may be a result of a
poor immunization of birth cohorts 1982–1992 (see Kojouharova et al. [19]). In such a situation,
it is necessary to provide supplementary doses of mumps, measles and rubella (MMR) vaccine
targeted at those cohorts in order to shorten the duration of the outbreaks. Thus our objective is
to determine, using the observed data, optimal vaccination levels based on the time to extinction
that guarantee, with a high probability, that the outbreak durations will be less than some suitable

Figure 1. Numbers of new infected individuals weekly reported.
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bound. As an example, we determine the percentage of the target cohort that must be vaccinated
to guarantee that only primary and first-generation cases will be observed in at least 90% of
outbreaks.

In order to apply our results, we model the spread of mumps by a CMJ branching process.
This is reasonable since mumps is an infectious disease which follows the SEIR scheme, and
in general, the early stages of outbreaks following this scheme can be approximated by a CMJ
branching process. Although this is the general situation, a deeper discussion is needed in the
case of mumps. This disease concerns predominantly young people in schools and universities,
which means small separate populations and population-dependent propagation. Hence, the ap-
proximation of mumps outbreaks in these populations by CMJ processes is valid only when
outbreaks are very short, which is the case for the outbreaks we study as we show later.

The data we analyze (reported by the Bulgarian Ministry of Health) are the total number of
new cases of infected individuals with mumps observed weekly in each province of Bulgaria
from 2005 to 2008, whose birth cohorts were poorly immunized. Notice that we do not observe
outbreak durations, so, first, we describe the procedure to derive the outbreak durations from
these data. Then, taking into account the main features of mumps transmission, we select an
appropriate general branching process to describe the evolution of infected individuals in an
outbreak and estimate its main parameters from the data set. Finally, once the model is fitted, we
propose optimal vaccination levels based on the quantiles of the outbreak duration.

4.1. Deriving the outbreak duration

Our first task is to determine the behaviour of mumps outbreak durations in Bulgaria from 2005
to 2008, since our optimal vaccination level is based on outbreak duration. However, outbreak
durations have not been registered; only the total number of new cases of infected individuals
with mumps in each province has been observed (see Figure 2). Thus, instead, we derive the
outbreak durations from this data set, taking into account the main features of mumps transmis-
sion. Mumps is a viral infectious disease of humans and spreads from person to person through
the air. The period between someone being transmitted mumps and that person first showing

Figure 2. Numbers of new infected individuals per week for the provinces of Bulgaria with the highest
incidence of mumps.
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Figure 3. Left: Schematic representation of an outbreak. Zt denotes the underlying branching process and
Z̄n the number of new cases in the nth week. Right: Durations for outbreaks started with one infected
individual.

symptoms of mumps is called the incubation period for mumps. This incubation period can be
12 to 25 days and the average is 16 to 18 days. The infectious period (i.e., when an individual is
able to transmit the mumps virus to others) starts about 2 days before the onset of symptoms and
usually, an individual with mumps symptoms is immediately isolated from the population (see
http://kidshealth.org). In view of the range of the incubation period, we consider that an outbreak
is formed by the cases that appear in a province in a sequence of weeks with no more than three
consecutive weeks without cases. That is, when we observe more than three weeks without cases
we consider that the outbreak has become extinct, with the next outbreak starting in the first sub-
sequent week in which there is at least one new case. Applying this procedure for each province,
we have obtained 262 outbreaks. The left plot in Figure 3 could represent one such outbreak
initiated by one infected individual. In this schematic representation, we have considered that the
infectious period is negligible due to the fact that infected individuals are immediately isolated
when they show symptoms. The variable Zt denotes the underlying branching process, which is
not observed. The segments over/under Zt indicates the lengths of time for which Zt takes the
corresponding values. The tick marks on the axis represent weeks, and Z̄n the number of new
cases observed during the nth week. Indeed, Z̄n, n ≥ 0, are the variables that are observed. In
this context, by outbreak duration we mean the time elapsing between the appearance of the first
case until isolation of the last one, that is the time to extinction of the branching process minus
the incubation period of the first individual. Thus, a more accurate way to approximate outbreak
duration from the observed data is by the total number of weeks until extinction of the virus (giv-
ing an error, due to discretization, of at most one week), yielding seven weeks in the outbreak of
Figure 3 (left).

For each of the 262 outbreaks, we calculated the total number of weeks until extinction of the
virus (and, also, the outbreak size, i.e., total number of infected individuals). We noticed that
the behaviour of these outbreak durations depends on the initial number of infected individu-
als. Hence, we have considered only those outbreaks which started with one infected individual,
a total of 144. We checked that both outbreak duration and outbreak size were homogeneous
between provinces (Kruskal–Wallis test: p-values 0.4763 and 0.4782, resp.) and consequently

http://kidshealth.org


2094 Ball, González, Martínez and Slavtchova-Bojkova

Figure 4. Left: Durations for outbreaks started with one infected individual without overlapping. Right:
Simulated durations from a BHBP for outbreaks started with one infected individual.

assumed that disease propagation in the different provinces are independent replications of the
same process. Thus, the right plot in Figure 3 shows the histogram of outbreak durations for all
144 outbreaks started with one infected individual. We observe two different groups, outbreaks
for which their duration is less than 10 weeks (comprising 134 outbreaks) and another group
where the outbreak duration is greater than 10 weeks (comprising the remaining ten outbreaks).
Possibly, this happens because some cases observed in a week could not come from cases of
previous weeks, and then new outbreaks could have appeared overlapping in time. Hence, we
consider that the outbreaks corresponding to durations of this last group may have been initiated
no more than 10 weeks before. Thus, outbreak durations greater than 10 weeks have been re-
moved from our study, and only durations less than 10 weeks have been considered in order not
to overestimate the duration of the outbreaks. Nevertheless, an outbreak with apparent duration
less than 10 weeks could actually be the superposition of two or more separate outbreaks, but we
cannot determine this.

The left plot of Figure 4 shows the durations of the 134 outbreaks considered. We notice that
83% of these outbreaks have only one infected individual, so their outbreak durations are 0. The
remaining 17% of outbreaks seem to have a cyclical behaviour with period given by the mean of
the incubation period (approximately 2.5 weeks).

4.2. Modelling mumps transmission

As noted above, mumps is a contagious disease of humans that is spread from person to per-
son through the air. The most common method of transmission is through coughing or sneezing,
which can spread droplets of saliva and mucus infected with the mumps virus. Hence, when an
infected person coughs or sneezes, the droplets atomize and can enter the eyes, nose, or mouth
of another person. Following mumps transmission, a person does not immediately become sick.
Once the virus enters the body, it travels to the back of the throat, nose and lymph glands in
the neck, where it begins to multiply. As indicated previously, this period between mumps trans-
mission and the beginning of mumps symptoms is the incubation period for mumps. People who
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have mumps are most contagious from 2 days before symptoms begin to 6 days after they end and
transmission may occur at anytime in that period. Since an individual with mumps symptoms is
immediately isolated from the population, the infectious period is very short in comparison with
the incubation period, so, as indicated previously, we assume that transmission occurs only at
the end point of an individual’s incubation period. This assumption simplifies the mathematical
model and does not influence strongly outbreak duration. As the end of the incubation period
means that an individual’s viral load has reached a given threshold to produce clinical signs, we
assume that the mean number of individuals infected by an infected individual is constant and
does not depend on the length of his/her incubation period.

An earlier analysis of these mumps data using Bienaymé–Galton–Watson branching processes
is given in Angelov and Slavtchova–Bojkova [3]. However, the above observations imply that
the Bellman–Harris branching process (BHBP) (see Athreya and Ney [4]) is a more appropri-
ate model for mumps transmission and indeed it provides an improved fit to these data. Recall
that a BHBP is a CMJ branching process, in which an individual reproduces only at the end of
his/her life-time, according to an offspring law which is the same for all the individuals. In the
epidemiological context, age is the incubation period and the reproduction law is the contagion
distribution.

Next, we describe the incubation period and contagion distributions used to model mumps
transmission in each outbreak in Bulgaria by means of the same BHBP (recall that we did not
find any difference in the behaviour of the outbreaks in different provinces). We assume that the
incubation period I follows a gamma distribution, with shape parameter r > 0 and rate γ > 0,
so I has mean rγ −1 and probability density function

fI (u) = γ rur−1 exp(−γ u)


(r)
, u > 0,

where 
 is the gamma function, and that the contagion distribution follows a Poisson distribution
with mean m. These distributions are appropriate for the incubation period and the number of
infections, respectively (see, e.g., Daley and Gani [9], Farrington and Grant [11], Farrington et
al. [12] or Mode and Sleeman [23]). Intuitively, m, the mean number of individuals infected by
an infected individual, represents the power of the virus. Taking into account that the incubation
period is estimated between 12 and 25 days and the average is 16 to 18 days, we consider the
gamma distribution with mean 17 and r = 50, which implies that the incubation period in 98.7%
of individuals is between 12 and 25 days. To estimate m, we consider the maximum likelihood
estimator (MLE) based on the total number of births in independent extinct realisations of a
BHBP. The total number of births in a BHBP has the same distribution as that in a Bienaymé–
Galton–Watson branching process with the same offspring distribution. In our application, the
offspring distribution is Poisson and it follows that the total number of births N(∞) (excluding
the initial a individuals) follows a Borel–Tanner distribution with probability mass function

P
(
N(∞) = k

) = amk(a + k)k−1e−(a+k)m

k! , k = 0,1, . . . .

(Note that, for l = 1,2, . . . , the mean number of births in the lth generation is aml , so the ex-
pectation of this Borel–Tanner distribution is E[N(∞)] = a(m + m2 + . . .) = am(1 − m)−1,
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when m < 1.) It follows that the MLE of the offspring mean m, based on L independent real-
isations, is given by m̂ = (

∑L
i=1 n(i))(

∑L
i=1 a(i) + n(i))−1, where, for i = 1,2, . . . ,L, a(i) and

n(i) are respectively the initial number of individuals and the total number of births in the ith
realisation (for details see Farrington et al. [12]). In our case L = 134,

∑L
i=1 a(i) = 134 and∑L

i=1 n(i) = 62, whence m̂ = 0.3163. Note that inference based on duration of outbreaks is less
sensitive to underreporting than that based on the total number of births. However, estimating the
offspring law based on the time to extinction of each outbreak turns into a difficult problem in
branching processes theory, even for the simplest model (see, e.g., Farrington et al. [12]).

Applying the general theory of branching processes, since the estimated value of m is less
than 1, we deduce that mumps transmission can still occur in Bulgaria, but such spread cannot
lead to a large-scale epidemic. This fact is consistent with the Figures 1 and 2. Although the
epidemic becomes extinct, it can have different levels of severity. One measure of severity is
the mean size of an outbreak, excluding the initial case, viz. m(1 − m)−1, which in our case is
estimated by 0.463. However, we are concerned with the problem of how to shorten outbreak
durations by vaccination. To this end, we analyze the random variable Tα0

cinf
, the time to extinc-

tion of a BHBP with incubation period and contagion distributions as described above. Note that
cinf = 0, as m ≤ 1, so here Tα0

cinf
is the extinction time when there is no supplementary vacci-

nation. The variable Tα0
cinf

includes the incubation period of the initial individual, which is not

observed in practice. Thus, from now on, we use the random variable T̃α0
cinf

, the difference be-

tween Tα0
cinf

and the incubation period of the initial individual (i.e., the definition of outbreak

duration given in the previous subsection) to model mumps outbreak duration in Bulgaria. The
right plot in Figure 4 shows a histogram of 10 000 simulated durations of outbreaks (rounded up
to the nearest integer), each initiated by one infected individual and modelled by a BHBP with
the above parameters. We notice that in 72.9% of these simulated outbreaks the initial infected
individual does not infect any new individual (recall 83% for real data). Moreover, the simulated
outbreak durations show the same cyclical behaviour as seen in the real data.

Comparing real and simulated durations, we deduce that mumps outbreak durations in Bul-
garia can be modelled by the variable T̃α0

cinf
(Pearson’s chi-squared test: p-value 0.2951, grouping

the tail for values greater than 8).

4.3. Determining the optimal vaccination levels

Once we have fitted the model, in order to apply our theoretical results we have assumed that the
proportion of immune individuals is constant with time, since, generally, vaccination is applied
when an individual is a child and the disease spreads when he/she is a teenager. In the particu-
lar case of supplementary vaccination for Bulgarian mumps, for simplicity we assume that this
vaccination process occurs simultaneously across the country (e.g., in secondary schools at the
same specific time). To determine the optimal vaccination levels, we denote by T̃α0

c
the difference

between Tα0
c

and the incubation period of the initial individual, when the proportion of immune
individuals in the population is c, with 0 ≤ c ≤ 1. In the same way as was proved for Tα0

c
(see

Corollary 3.3), we deduce that T̃α0
c

has the same quantile properties depending on c as Tα0
c

(notice
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that T̃α0
c

is monotonically decreasing with pruning). Therefore, next we propose vaccination poli-

cies based on the quantiles of T̃α0
c
, with 0 ≤ c ≤ 1. Specifically, for fixed p and t , with 0 < p < 1

and t > 0, we seek vaccination policies which guarantee that the mumps virus becomes extinct in
each outbreak, with probability greater than or equal to p, not later than time t after the outbreak
has been detected with z initial infected individuals, that is

copt = copt(z,p, t) = inf
{
c : 0 ≤ c ≤ 1, xT̃

α0
c ,p1/z ≤ t

}
,

where xT̃
α0

c ,p1/z denotes the quantile of order p1/z of the variable T̃α0
c
.

As an illustration, we take z = 5, p = 0.9 and t = 3, being the time measured in weeks. First
we justify these values. Consider the value of z. Since the number of infected individuals at the
beginning of an outbreak is unknown, we bound it by the greatest number of individuals infected
by one infected individual. Taking into account that the contagion distribution is Poisson and
the estimate of m, we obtain the upper bound to be 5, and therefore we take z = 5. Moreover,
we select t = 3, which, taking into account the features of the incubation period, guarantees that
only primary and first-generation cases will be observed. Since in our situation the estimated
value of m is less than 1, to approximate copt, we need to obtain the empirical distribution of
T̃α0

c
, for 0 ≤ c ≤ 1, using the Monte-Carlo method described in Section 3.5. To this end, for

each c = 0.01k, with k = 0, . . . ,100, 100 000 processes have been simulated and their duration
calculated. The left plot in Figure 5 shows the behaviour of the empirical distribution function
of T̃α0

c
for several values of c. Notice that as c increases, the outbreak duration decreases in a

continuous way, in accordance with Corollaries 3.1 and 3.2. The right plot in Figure 5 shows
the behaviour of xT̃

α0
c ,0.91/5 depending on c, which is in accordance with Corollary 3.3. Since

xT̃
α0

cinf
,0.91/5 = 6.97, our model estimates that the duration of 90% of outbreaks in Bulgaria is less

than 6.97 weeks, if vaccination is not applied (in our real data 97% of outbreaks have durations
less than 6 weeks). In order to shorten the outbreak duration, from our study, we deduce that
copt(5,0.9,3) = 0.6 (see right plot in Figure 5). Therefore, vaccinating a proportion of 60% of

Figure 5. Left: Behaviour of the distribution function of T̃α0
c

for c = 0,0.4,0.8. Right: Behaviour of

xT̃
α0

c ,0.91/5 depending on c, with 0 ≤ c ≤ 1.
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Table 1. Sensitivity analysis on the mean and shape parameter of the gamma incubation distribution

Mean Shape parameter r

30 40 50 60 70

16 % Coverage 92.2 95.3 97.1 98.8 98.8
copt(5,0.9,3) 0.60 0.57 0.56 0.54 0.54

16.5 % Coverage 93.0 96.6 98.1 98.9 99.4
copt(5,0.9,3) 0.63 0.60 0.58 0.56 0.55

17 % Coverage 94.9 95.5 98.7 99.3 99.6
copt(5,0.9,3) 0.66 0.64 0.60 0.58 0.57

17.5 % Coverage 95.4 97.9 99.0 99.5 99.8
copt(5,0.9,3) 0.70 0.67 0.65 0.62 0.61

18 % Coverage 95.3 97.8 99.0 99.5 99.8
copt(5,0.9,3) 0.73 0.71 0.68 0.65 0.64

susceptible individuals in the target cohort, guarantees that in at least 90% of outbreaks of mumps
in Bulgaria only primary and first-generation cases will be observed after the vaccination. Finally,
we notice that copt(5,0.9,0) = 0.94, that is, to guarantee that at least the 90% of outbreaks do
not spread after vaccination, the vaccination level should be 94% of susceptible individuals in
the target cohort.

The parameters of the gamma distribution used to model the incubation period have been de-
rived from knowledge of mumps transmission rather than estimated from data. Thus we have
performed a sensitivity analysis of their influence on the optimal vaccination level. We have con-
sidered gamma distributions with mean and shape parameter r taking values in a grid (giving
different probabilities for the incubation period belonging to range 12–25, which we denote as
percentages of coverage), yielding the results shown in Table 1. One can observe that increasing
the mean (holding r fixed) clearly increases the duration of the epidemic leading to higher values
of copt. Moreover, increasing the shape parameter r (holding the mean fixed) decreases the vari-
ance of lifetimes and hence also the chance of long outbreak duration, leading to lower values
of copt. The optimal vaccination level copt(5,0.9,3) is fairly stable in the vicinity of the chosen
values of 17 and 50 for the mean and shape parameter r , respectively.

Remark 4.1. From a computational point of view it is interesting to note that to find optimal
vaccination policies, the simulation method based on pruning, described at the end of Sec-
tion 3.5, has proved to be at least 17% faster than those in González et al. [13,14], which are
also simulation-based methods but work directly with the distribution of the extinction time.
For the BHBP there exist other methods to approximate the distribution function of the time
to extinction based on solving numerically an associated integral equation (see Martínez and
Slavtchova-Bojkova [21], which includes comparison with simulation-based methods). Unlike
the latter approach, the Monte-Carlo method proposed in Section 3.5 is easily extended to time-
dependent vaccination processes. All the computations and simulations have been made with the
statistical computing and graphics language and environment R (“GNU S”, see [27]).
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5. Concluding comments

The coupled pruning technique for proving monotonicity and continuity properties of functions
defined on CMJ branching processes depending on the vaccination function α is both simple and
powerful. It is clear that the proofs generalise easily to more general branching processes, such
as multitype CMJ branching processes, time-inhomogeneous branching processes and branching
processes in a random environment. The function α does not have to represent vaccination. It
could represent any control of disease propagation that has the effect of reducing either the num-
ber of susceptibles or the probability that a contacted susceptible becomes infected. However, for
the coupled pruning technique to work it is necessary that, in the branching process setting, the
control affects only the probability that a birth is aborted and not the intrinsic reproduction law
of the branching process. Thus, for example, the method cannot be applied to density-dependent
processes, such as population size dependent branching processes, if the density dependence
relates to the size of the unvaccinated population rather than the total population size.

Given that the results in the Bulgarian mumps illustration are based on simulation alone, it
may seem more appropriate to use an epidemic model rather than a branching process that ap-
proximates such a model. However, there are several advantages in using the simpler branch-
ing process formulation. First, branching process models can be fitted directly to the data more
easily; in particular they do not require knowledge of the size of the population in which the
outbreaks are occurring. Second, the coupled pruning technique enables the monotonicity and
continuity properties pertaining to vaccination functions to be proved easily. Third, the coupled
pruning technique yields an associated Monte-Carlo method for determining optimal vaccination
processes.

The framework for optimal vaccination policies studied in Section 3.5 can be extended to
include alternative formulations of optimal policies. For example, one may define a cost c(α)

associated with each vaccination process α ∈ A and then seek vaccination processes from a
subset A∗ of A which either (i) minimise c(α) subject to μ

f
α ≤ b or (ii) minimise μ

f
α subject

to c(α) ≤ c0, where c0 is specified. Provided the cost function, c(α) is suitably monotonic and
continuous in α and A∗ is totally ordered, Theorems 3.1 and 3.2 imply the existence of unique
such optimal vaccination processes and it should be possible to extend the Monte-Carlo algorithm
at the end of Section 3.5 to estimate the optimal vaccination processes. Optimal vaccination
policies that permit vaccination costs to be taken into account are especially relevant in animal
vaccination.
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