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The objective of this paper is to study the Gibbs sampling for computing the mean of observable in very high
dimension – a powerful Markov chain Monte Carlo method. Under the Dobrushin’s uniqueness condition,
we establish some explicit and sharp estimate of the exponential convergence rate and prove some Gaussian
concentration inequalities for the empirical mean.
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1. Introduction

Let μ be a Gibbs probability measure on EN with dimension N very big, that is,

μ
(
dx1, . . . ,dxN

)= e−V (x1,...,xN )∫ · · ·∫
EN e−V (x1,...,xN )π(dx1) · · ·π(dxN)

π
(
dx1) · · ·π(dxN

)
,

where π is some σ -finite reference measure on E. Our purpose is to study the Gibbs sampling –
a Markov chain Monte Carlo method (MCMC in short) for approximating μ. In fact, even for the
simplest case where E = {+,−}, as the denominator contains an exponential number of terms
and each of them may be very big or small for high dimension, it is very difficult to model μ.

Let μi(·|x) (x = (x1, . . . , xN) ∈ EN) be the regular conditional distribution of xi knowing
(xj , j �= i) under μ; and μ̄i(dy|x) = (

∏
j �=i δxj (dyj )) ⊗ μi(dyi |x) (product measure), where δ·

is the Dirac measure at the point ·. We see that

μi

(
dxi |x)= e−V (x1,...,xN )∫

E
e−V (x1,...,xN )π(dxi)

π
(
dxi
)
,

which is a one-dimensional measure, easy to be realized in practice.
The idea of the Gibbs sampling consists in approximating μ via iterations of the one-

dimensional conditional distributions μi, i = 1, . . . ,N . It is described as follows. Given a start-
ing configuration x0 = (x1

0 , . . . , xN
0 ) ∈ EN , let (Xn;n ≥ 0) be a non-homogeneous Markov chain
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defined on some probability space (�,F ,Px0), such that

X0 = x0 a.s.,

and given

XkN+i−1 = x = (x1, . . . , xN
) ∈ EN (k ∈ N,1 ≤ i ≤ N),

then X
j
kN+i = xj for j �= i and the conditional law of Xi

kN+i is μi(dyi |x). In other words, the
transition probability at step kN + i is:

(1) P(XkN+i ∈ dy|XkN+i−1 = x) = μ̄i(dy|x).

Therefore,

(2) P(XkN ∈ dy|X(k−1)N = x) = (μ̄1 · · · μ̄N )(x,dy) =: P(x,dy).

Finally, the Gibbs sampling is the time-homogeneous Markov chain (Zk = XkN, k = 0,1, . . .),
whose transition probability is P .

This MCMC algorithm is known sometimes as Gibbs sampler in the literature (see Win-
kler [31], Chapters 5 and 6). It is actively used in statistical physics, chemistry, biology and
throughout the Bayesian statistics (a sentence taken from [3]). It was used by Zegarlinski [34]
as a tool for proving the logarithmic Sobolev inequality for Gibbs measures, see also the second
named author [33] for a continuous time MCMC.

Our purpose is two-fold:

(1) the convergence rate of P k to μ;
(2) the concentration inequality for P( 1

n

∑n
k=1 f (Zk) − μ(f ) ≥ t), t > 0.

Question (1) is a classic subject. Earlier works by Meyn and Tweedie [21] and Rosenthal
[25,26] are based on the Harris ergodicity theorem (minorization condition together with the
drift condition in the non-compact case). Quantitative estimates in the Harris ergodic theorem
are obtained more recently by Rosenthal [27] and Hairer and Mattingly [11]. But as indicated
by Diaconis, Khare and Saloff-Coste [2,3], theoretical results obtained from the Harris theorem
are very far (even too far) from the convergence rate of numerical simulations in high dimension
(e.g., N = 100). That is why Diaconis, Khare and Saloff-Coste [2,3] use new methods and tools
(orthogonal polynomials, stochastic monotonicity and coupling) for obtaining sharp estimates of
‖νP k − μ‖TV (total variation norm) for several special models in Bayesian statistics, with EN

replaced by E × �, a space of two different components.
For the question (1), our tool will be the Dobrushin interdependence coefficients (very natural

and widely used in statistical physics), instead of the minorization condition in the Harris theorem
or the special tools in [2,3]. Our main idea consists in constructing an appropriate coupling well
adapted to the Dobrushin interdependence coefficients, close to that of Marton [20].

To the second question, we will apply the recent theory on transport inequalities (see Mar-
ton [17], Ledoux [13,14], Villani [30], Gozlan and Léonard [10] and references therein), and
our approach is inspired from Marton [18,20] and Djellout, Guillin and Wu [4] for dependent
tensorization of transport inequalities.

See [8,24,31] for Monte Carlo algorithms and diverse applications, and [12] for concentration
inequalities of general MCMC under the positive curvature condition.
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This paper is organized as follows. The main results are stated in the next section, and we
prove them in Section 3.

2. Main results

Throughout the paper, E is a Polish space with the Borel σ -field B, and d is a metric on E such
that d(x, y) is lower semi-continuous on E2 (so d does not necessarily generate the topology
of E). On the product space we consider the L1-metric

dL1(x, y) :=
N∑

i=1

d
(
xi, yi

)
, x, y ∈ EN.

If d(xi, yi) = 1xi �=yi is the discrete metric on E, dL1 becomes the Hamming distance on EN , a
good metric for concentration in high dimension as shown by Marton [17,18].

2.1. Dobrushin’s interdependence coefficient

Let M1(E) be the space of probability measures on E and

Md
1(E) :=

{
ν ∈M1(E);

∫
E

d(x0, x)ν(dx) < ∞
}

(x0 ∈ E is some fixed point). Given ν1, ν2 ∈ Md
1(E), the L1-Wasserstein distance between ν1, ν2

is given by

W1,d (ν1, ν2) := inf
π

∫ ∫
E×E

d(x, y)π(dx,dy), (2.1)

where the infimum is taken over all probability measures π on E × E such that its marginal
distributions are, respectively, ν1 and ν2 (coupling of ν1 and ν2, say). When d(x, y) = 1x �=y (the
discrete metric), it is well known that

W1,d (ν1, ν2) = sup
A∈B

∣∣ν1(A) − ν2(A)
∣∣= 1

2
‖ν1 − ν2‖TV (total variation).

Recall the Kantorovich–Rubinstein duality relation [30]

W1,d (ν1, ν2) = sup
‖f ‖Lip≤1

∫
E

f d(ν1 − ν2), ‖f ‖Lip := sup
x �=y

|f (x) − f (y)|
d(x, y)

.

Let μi(dxi |x) be the given regular conditional distribution of xi knowing (xj , j �= i).
Throughout the paper, we assume that

∫
EN d(yi, xi

0)dμ(y) < ∞, μi(·|x) ∈ Md
1(E) for all

i = 1, . . . ,N and x ∈ EN , where x0 is some fixed point of EN , and x → μi(·|x) is Lipschitzian
from (EN,dL1) to (Md

1(E),W1,d ).
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Define the matrix of the d-Dobrushin interdependence coefficients C := (cij )i,j=1,...,N

cij := sup
x=y off j

W1,d (μi(·|x),μi(·|y))

d(xj , yj )
, i, j = 1, . . . ,N. (2.2)

Obviously cii = 0. Then the well-known Dobrushin uniqueness condition (see [5,6]) is read as

(H1) r := ‖C‖∞ := max
1≤i≤N

N∑
j=1

cij < 1

or

(H2) r1 := ‖C‖1 := max
1≤j≤N

N∑
i=1

cij < 1.

By the triangular inequality for the metric W1,d ,

W1,d

(
μi(·|x),μi(·|y)

)≤ N∑
j=1

cij d
(
xj , yj

)
, 1 ≤ i ≤ N. (2.3)

2.2. Transport inequality and Bobkov–Götze’s criterion

When μ,ν are probability measures, the Kullback information (or relative entropy) of ν with
respect to μ is defined as

H(ν|μ) =
⎧⎨
⎩
∫

log
dν

dμ
dν, if ν 
 μ,

+∞, otherwise.
(2.4)

We say that the probability measure μ satisfies the L1-transport-entropy inequality on (E,d)

with some constant C > 0, if

W1,d (μ, ν) ≤√2CH(ν|μ), ν ∈ M1(E). (2.5)

To be short, we write μ ∈ T1(C) for this relation. This inequality, related to the phenomenon of
measure concentration, was introduced and studied by Marton [17,18], developed subsequently
by Talagrand [29], Bobkov and Götze [1], Djellout, Guillin and Wu [4] and amply explored by
Ledoux [13,14], Villani [30] and Gozlan-Léonard [10]. Let us mention the following Bobkov–
Götze’s criterion.

Lemma 2.1 ([1]). A probability measure μ satisfies the L1-transport-entropy inequality on
(E,d) with constant C > 0, that is, μ ∈ T1(C), if and only if for any Lipschitzian function
F : (E,d) → R, F is μ-integrable and∫

E

eλ(F−〈F 〉μ) dμ ≤ exp

{
λ2

2
C‖F‖2

Lip

}
∀λ ∈ R,
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where 〈F 〉μ = μ(F) = ∫
E

F dμ. In that case,

μ
(
F − 〈F 〉μ ≥ t

)≤ exp

{
− t2

2C‖F‖2
Lip

}
, t > 0.

Another necessary and sufficient condition for T1(C) is the Gaussian integrability of μ, see
Djellout, Guillin and Wu [4]. For further results and recent progresses see Gozlan and Léonard
[9,10].

Remark 2.2. Recall also that w.r.t. the discrete metric d(x, y) = 1x �=y , any probability measure
μ satisfies T1(C) with the sharp constant C = 1/4 (the well known CKP inequality).

2.3. Main results

For any function f :EN →R, let

δi(f ) := sup
x=y off i

|f (x) − f (y)|
d(xi, yi)

be the Lipschitzian coefficient w.r.t. the ith coordinate xi . It is easy to see that

‖f ‖Lip(d
L1 ) = max

1≤i≤N
δi(f ).

Theorem 2.3 (Convergence rate). Under the Dobrushin uniqueness condition (H1), we have:

(a) For any Lipschitzian function f on EN and two initial distributions ν1, ν2 on EN ,

∣∣ν1P
kf − ν2P

kf
∣∣≤ rk max

1≤i≤N
Ed
(
Zi

0(1),Zi
0(2)

) N∑
i=1

δi(f ), k ≥ 1, (2.6)

where (Z0(1),Z0(2)) is a coupling of (ν1, ν2), that is, the law of Z0(j) is νj for j = 1,2.
(b) In particular for any initial distribution ν on EN ,

W1,d
L1

(
νP k,μ

)≤ Nrk max
1≤i≤N

Ed
(
Zi

0(1),Zi
0(2)

)
,

where (Z0(1),Z0(2)) is a coupling of (ν,μ).

By part (b) above μ is the unique invariant measure of P under the Dobrushin uniqueness
condition, and P k(x, ·) converges exponentially rapidly to μ in the metric W1,d

L1 , showing the-
oretically why the numerical simulations by the Gibbs sampling are very rapid.

Remark 2.4. Let us compare Theorem 2.3 with the known results in [2,3,21,25,26] on the con-
vergence rate of the Gibbs sampling.
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At first the convergence rate in those known works is in the total variation norm, not in the
metric W1,d

L1 . When d is the discrete metric, we have by part (b) of Theorem 2.3

1
2

∥∥νP k − μ
∥∥

TV ≤ W1,d
L1

(
νP k,μ

)≤ Nrk ∀ν,∀k ≥ 1.

Next, let us explain once again why the minorization condition in the Harris theorem does
not yield accurate estimates in high dimension (see Diaconis et al. [2,3] for similar discussions
based on concrete examples). Indeed assume that E is finite, then under reasonable assumption
on V (x1, . . . , xN), there are constant c > 0 and a probability measure ν(dy) such that

P(x,dy) ≥ e−cNν(dy)

(i.e., almost the best minorization that one can obtain in the dependent case). Hence by the
Doeblin theorem (the ancestor of the Harris theorem),

1

2
sup

x∈EN

∥∥P k(x, ·) − μ
∥∥

TV ≤ (1 − e−cN
)k

.

So one requires at least an exponential number ecN of steps for the right-hand side becoming
small. Our estimate of the convergence rate is much better in high dimension, that is the good
point of Theorem 2.3.

The weak point of Theorem 2.3 is that our result depends on the Dobrushin uniqueness con-
dition, even in low dimension. If N is small, the results in [21,25,26] are already good enough.
Particularly the estimates of Diaconis, Khare and Saloff-Coste [2,3] for the special space of two
different components in Bayesian statistics are sharp.

We should indicate that the Dobrushin uniqueness condition is quite natural for the exponential
convergence of P k to μ with the rate r independent of N as in this theorem, since the Dobrushin
uniqueness condition is well known to be sharp for the phase transition of mean field models
[5–7].

Finally, our tool (Dobrushin’s interdependence coefficients) is completely different from those
in the known works.

Remark 2.5. As indicated by a referee, it would be very interesting to investigate the conver-
gence rate problem under the more flexible Dobrushin–Shlosman analyticity condition (i.e., box
version of Dobrushin uniqueness condition, reference [7]), but in that case we feel that we should
change the algorithm: instead of μi , one uses the conditional distribution μI (dxI |x) of xI know-
ing (xj , j /∈ I ) where I is a box containing i.

Remark 2.6. A much more classical topic is Glauber dynamics associated with the Gibbs mea-
sures in finite or infinite volume. We are content here to mention only Zegarlinski [34], Martinelli
and Olivieri [16], and the lecture notes of Martinelli [15] for a great number of references.

The convergence rate estimate above will be our starting point for computing the mean μ(f ),
that is, to approximate μ(f ) by the empirical mean 1

n

∑n
k=1 f (Zk).
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Theorem 2.7. Assume

r1 := ‖C‖1 = max
1≤j≤N

N∑
i=1

cij <
1

2

and for some constant C1 > 0,

(H3) ∀i = 1, . . . ,N,∀x ∈ EN μi(·|x) ∈ T1(C1).

(Recall that C1 = 1/4 for the discrete metric d(x, y) = 1x �=y .) Then for any Lipschitzian function
f on EN with ‖f ‖Lip(d

L1 ) ≤ α, we have:

(a)

Px

(
1

n

n∑
k=1

f (Zk) − 1

n

n∑
k=1

P kf (x) ≥ t

)
≤ exp

{
− t2(1 − 2r1)

2n

2C1α2N

}
∀t > 0, n ≥ 1;

(2.7)
(b) furthermore if (H1) holds,

Px

(
1

n

n∑
k=1

f (Zk) − μ(f ) ≥ M

n
+ t

)
(2.8)

≤ exp

{
− t2(1 − 2r1)

2n

2C1α2N

}
∀t > 0, n ≥ 1,

where

M = r

1 − r
max

1≤i≤N

∫
EN

d
(
xi, yi

)
dμ(y) ·

N∑
i=1

δi(f ).

In conclusion under the conditions of this theorem, when n � N , the empirical means
1
n

∑n
k=1 f (Zk) will approximate to μ(f ) exponentially rapidly in probability with the speed

n/N , with the bias not greater than M/n. The speed n/N is the correct one, as will be shown in
the remark below.

We do not know whether the concentration inequality with the speed n/N still holds under the
more natural Dobrushin’s uniqueness condition r1 = ‖C‖1 < 1. We know only that r1 < 1 does
not imply that P is contracting in the metric W1,d

L1 , see the example in Remark 3.3.

Remark 2.8. Consider f (x) = 1
N

∑N
i=1 g(xi) where g :E → R is d-Lipschitzian with ‖g‖Lip =

α (the observable of this type is often used in statistical mechanics). Since ‖f ‖Lip(d
L1 ) = α

N
, the

inequality (2.7) implies for all t > 0, n ≥ 1,

Px

(
1

nN

n∑
k=1

N∑
i=1

g
(
Zi

k

)−Ex

1

nN

n∑
k=1

N∑
i=1

g
(
Zi

k

)≥ t

)
≤ exp

{
− t2(1 − 2r1)

2nN

2C1α2

}
, (2.9)
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which is of speed nN .
Let us show that the concentration inequality (2.7) is sharp. In fact in the free case, that is,

μi(dxi |x) = β(dxi) does not depend upon (xj )j �=i and i, and μ is the product measure β⊗N . In
this case P(x,dy) = μ(dy), in other words (Zk)k≥1 is a sequence of independent and identically
distributed (i.i.d. in short) random variables valued in EN , of common law μ. Since r1 = 0 in
the free case, the concentration inequality (2.9) is equivalent to the transport inequality (H3) for
μi = β , by Gozlan-Léonard [9]. That shows also the speed n/N in Theorem 2.7 is the correct
one.

Remark 2.9. We explain now why we do not apply directly the nice concentration results of
Joulin and Ollivier [12] for general MCMC. In fact under the condition that r1 < 1/2, we can
prove that

W1,d
L1

(
P(x, ·),P (y, ·))≤ r1

1 − r1
dL1(x, y)

(by Lemma 3.2). In other words the Ricci curvature in [12] is bounded from below by

κ := 1 − sup
x �=y

W1,d
L1 (P (x, ·),P (y, ·))

dL1(x, y)
≥ 1 − r1

1 − r1
= 1 − 2r1

1 − r1
.

Unfortunately we cannot show that the Ricci curvature κ is positive in the case where r1 ∈
[1/2,1).

If (E,d) is unbounded, the results of [12], Theorems 4 and 5, do not apply here, because their
granularity constant

σ∞ = 1

2
sup

x∈EN

Diam
(
supp

(
P(x, ·)))

explodes.
Assume now that (E,d) is bounded. If we apply the results ([12], Theorems 4 and 5) and their

notations, their coarse diffusion constant

σ(x)2 = 1

2

∫ ∫
dL1(y, z)2P(x,dy)P (x,dz)

is of order N2; and their local dimension

nx = inf
f :‖f ‖Lip(d

L1 )=1

σ(x)2

VarP(x,·)(f )

is of order N (by Lemma 3.4 below), and their granularity constant σ∞ is of order N . Setting

V 2 = 1

κn
sup

x∈EN

σ(x)2

nxκ
; rmax = 4V 2κn

3σ∞
.
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Theorem 4 in [12] says that if ‖f ‖Lip(d
L1 ) = 1,

Px

(∣∣∣∣∣1n
n∑

k=1

f (Zk) − 1

n

n∑
k=1

P kf (x)

∣∣∣∣∣≥ t

)
≤

⎧⎪⎪⎨
⎪⎪⎩

2 exp

(
− t2

16V 2

)
, t ∈ (0, rmax),

2 exp

(
− κnt

12σ∞

)
, t ≥ rmax,

for all n ≥ 1 and t > 0. So for small deviation t , their result yields the same order Gaussian
concentration inequality, but for large deviation t , their estimate is only exponential, not Gaussian
as one may expect in this bounded case. In [12], Theorem 5, they get a same type Gaussian-
exponential concentration inequality with V 2, rmax depending upon the starting point x.

Anyway the key lemmas in this paper are necessary for applying the results of [12] to this
particular model.

Remark 2.10. For the Gibbs measure μ on R
N , Marton [20] established the Talagrand transport

inequality T2 on R
N equipped with the Euclidean metric, under the Dobrushin–Shlosman ana-

lyticity type condition. The second named author [33] proved T1(C) for μ on EN equipped with
the metric dL1 , under (H1). But those transport inequalities are for the equilibrium distribution μ,
not for the Gibbs sampling which is a Markov chain with μ as invariant measure. However our
coupling is very close to that of K. Marton.

Remark 2.11. For φ-mixing sequence of dependent random variables, Rio [23] and Samson
[28] established accurate concentration inequalities, see also Djellout, Guillin and Wu [4] and
the recent works by Paulin [22] and Wintenberger [32] for generalizations and improvements.
In the Markov chain case φ-mixing means the Doeblin uniform ergodicity. If one applies the
results in [23,28] to the Gibbs sampling, one obtains the concentration inequalities with the
speed n/(NS2), where

S =
∞∑

k=0

sup
x∈EN

∥∥νP k − μ
∥∥

TV.

When (H1) holds with the discrete metric d , S is actually finite but it is of order N by Theo-
rem 2.3 (and its remarks). The concentration inequalities so obtained from [23,28] are of speed
n/N3, very far from the correct speed n/N .

Remark 2.12. When f depends on a very small number of variables, since ‖f ‖Lip(d
L1 ) =

maxi δi(f ) does not reflect the nature of such observable, one can imagine that our concen-
tration inequalities do not yield the correct speed. In fact in the free case and for f (x) = g(x1),
the correct speed must be n, not n/N . For this type of observable, one may use the metric dL2

which reflects much better the number of variables in such observable. The ideas in Marton [19,
20] should be helpful. That will be another history.
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3. Proofs of the main results

3.1. The construction of the coupling

Given any two initial distributions ν1 and ν2 on EN , we begin by constructing our coupled non-
homogeneous Markov chain (Xi, Yi)i≥0, which is quite close to the coupling by Marton [20].

Let (X0, Y0) be a coupling of (ν1, ν2). And given

(XkN+i−1, YkN+i−1) = (x, y) ∈ EN × EN, k ∈ N,1 ≤ i ≤ N,

then

X
j
kN+i = xj , Y

j
kN+i = yj , j �= i,

and

P
((

Xi
kN+i , Y

i
kN+i

) ∈ ·|(Xkn+i−1, Ykn+i−1) = (x, y)
)= π(·|x, y),

where π(·|x, y) is an optimal coupling of μi(·|x) and μi(·|y) such that∫ ∫
E2

d(x̃, ỹ)π(dx̃,dỹ|x, y) = W1,d

(
μi(·|x),μi(·|y)

)
.

Define the partial order on R
N by a ≤ b if and only if ai ≤ bi, i = 1, . . . ,N . Then, by (2.3), we

have for ∀k ∈N,1 ≤ i ≤ N ,⎛
⎜⎜⎜⎝
E
[
d
(
X1

kN+i , Y
1
kN+i

)|XkN+i−1, YkN+i−1
]

...

...

E
[
d
(
XN

kN+i , Y
N
kN+i

)|XkN+i−1, YkN+i−1
]

⎞
⎟⎟⎟⎠≤ Bi

⎛
⎜⎜⎜⎝

d
(
X1

kN+i−1, Y
1
kN+i−1

)
...
...

d
(
XN

kN+i−1, Y
N
kN+i−1

)

⎞
⎟⎟⎟⎠ ,

where

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
ci1 ci2 · · · · · · · · · ciN

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(the blank in the matrix means 0).

Therefore by iterations, we have⎛
⎜⎜⎜⎝

Ed
(
X1

N,Y 1
N

)
...
...

Ed
(
XN

N ,YN
N

)

⎞
⎟⎟⎟⎠≤ BNBN−1 · · ·B1

⎛
⎜⎜⎜⎝

Ed
(
X1

0, Y
1
0

)
...
...

Ed
(
XN

0 , YN
0

)

⎞
⎟⎟⎟⎠ . (3.1)
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Let

Q := BNBN−1 · · ·B1. (3.2)

Then we have the following lemma.

Lemma 3.1. Under (H1), ‖Q‖∞ := max1≤i≤N

∑N
j=1 Qij ≤ r .

Proof. We use the probabilistic method. Under (H1) we can construct Markov chain
{ξ0, . . . , ξN }, taking values in {1, . . . ,N}�� where � is an extra point representing the cemetery,
and write as follows:

ξ0
BN→ ξ1

BN−1→ ·· · B1→ ξN ,

where the transition matrix from ξi to ξi+1 is BN−i , more precisely for ∀k = 1, . . . ,N ,

P
(
ξk = j |ξk−1 = N − (k − 1)

) = cN−(k−1),j ,

P
(
ξk = �|ξk−1 = N − (k − 1)

) = 1 −
N∑

j=1

cN−(k−1),j ,

P(ξk = j |ξk−1 = i) = δij , i �= N − (k − 1),

P(ξk = �|ξk−1 = �) = 1.

Here δij = 1 if i = j and 0 otherwise (Kronecker’s symbol). Then

‖Q‖∞ = max
1≤i≤N

P(ξN �= �|ξ0 = i).

For any i = 1, . . . ,N , when ξ0 = i, we have ξ0 = ξ1 = · · · = ξN−i = i. Therefore,

P(ξN−i+1 �= �|ξ0 = i) =
N∑

j=1

cij ≤ r

and thus

P(ξN �= �|ξ0 = i) ≤ P(ξN−1 �= �|ξ0 = i) ≤ · · · ≤ P(ξN−i+1 �= �|ξ0 = i) ≤ r.

So ‖Q‖∞ ≤ r . �
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3.2. Proof of Theorem 2.3

By (3.1) above, Markov property and iterations,⎛
⎜⎜⎜⎝
Ed
(
X1

kN ,Y 1
kN

)
...
...

Ed
(
XN

kN,YN
kN

)

⎞
⎟⎟⎟⎠≤ Qk

⎛
⎜⎜⎜⎝

Ed
(
X1

0, Y
1
0

)
...
...

Ed
(
XN

0 , YN
0

)

⎞
⎟⎟⎟⎠ . (3.3)

Let Zk(1) = XkN,Zk(2) = YkN , k ≥ 0, then by Lemma 3.1

max
1≤i≤N

Ed
(
Zi

k(1),Zi
k(2)

)≤ rk max
1≤i≤N

Ed
(
Zi

0(1),Zi
0(2)

)
. (3.4)

Now the results of this theorem follow quite easily from this inequality. In fact,
(a) For any Lipschitzian function f :EN → R,∣∣ν1P

kf − ν2P
kf
∣∣ = ∣∣Ef

(
Zk(1)

)−Ef
(
Zk(2)

)∣∣
≤

N∑
i=1

δi(f )Ed
(
Zi

k(1),Zi
k(2)

)

≤ rk max
1≤i≤N

Ed
(
Zi

0(1),Zi
0(2)

) N∑
i=1

δi(f ),

where the last inequality follows by (3.4). That is (2.6).
(b) Now for ν1 = ν, ν2 = μ, as μP = μ, we have

W1,d
L1

(
νP k,μ

) = W1,d
L1

(
νP k,μP k

)≤ E

N∑
i=1

d
(
Zi

k(1),Zi
k(2)

)

≤ N max
1≤i≤N

Ed
(
Zi

k(1),Zi
k(2)

)
≤ Nrk max

1≤i≤N
Ed
(
Zi

0(1),Zi
0(2)

)
,

the desired result.

3.3. Proof of Theorem 2.7

We begin with

Lemma 3.2. If r1 := ‖C‖1 < 1 (i.e., (H2)), then for the matrix Q given in (3.2),

‖Q‖1 := max
1≤j≤N

N∑
k=1

Qkj ≤ r1

1 − r1
. (3.5)
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In particular

W1,d
L1

(
P(x, ·),P (y, ·))≤ r1

1 − r1
dL1(x, y) ∀x, y ∈ EN. (3.6)

Proof. The last conclusion (3.6) follows from (3.5) and (3.1). We show now (3.5).
By the definition of Q = BN · · ·B1, it is not difficult to verify for 1 ≤ k ≤ N ,

Qkj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if j = 1,

j−1∑
h=1

(
k−1∑
l=1

∑
k>il>···>i2>i1=h

ck,il cil ,il−1 · · · ci2,i1=hch,j + ch,j 1h=k

)
,

if 2 ≤ j ≤ N.

(3.7)

Here we make the convention
∑

∅
· = 0. This can be obtained again by the Markov chain

(ξ0, ξ1, . . . , ξN) valued in {1, . . . ,N} ∪ {�} constructed in Lemma 3.1. Since P(ξN = 1|ξN−1 =
i) = 0 for all i, Qk1 = P(ξN = 1|ξ0 = k) = 0: that is the first line in the expression of Q. Now
for j = 2, . . . ,N , as

Qkj = P(ξN = j |ξ0 = k) = P(ξN = j |ξN−k = k)

and if ξN−k = k and ξN−k+1 > k, then ξN−k+1 = · · · = ξN and so

P(ξN = j |ξN−k = k) = ckj 1k<j +
j−1∑
h=1

ckhP(ξN = j |ξN−k+1 = h).

This implies the expression of Q above by induction.
Thus for 2 ≤ j ≤ N ,

N∑
k=1

Qkj =
N∑

k=1

j−1∑
h=1

(
k−1∑
l=1

∑
k>il>···>i2>i1=h

ck,il cil ,il−1 · · · ci2,i1=hch,j + ch,j 1h=k

)

=
N∑

k=1

j−1∑
h=1

chj 1h=k +
N∑

k=1

j−1∑
h=1

k−1∑
l=1

∑
k>il>···>i2>i1=h

ck,il cil ,il−1 · · · ci2,i1=hch,j

=
j−1∑
h=1

chj +
j−1∑
h=1

N∑
k=1

k−1∑
l=1

∑
k>il>···>i2>i1=h

ck,il cil ,il−1 · · · ci2,i1=hch,j

≤ r1 +
N−1∑
l=1

j−1∑
h=1

N∑
k=l+1

∑
k>il>···>i2>i1=h

ck,il cil ,il−1 · · · ci2,i1=hch,j

≤ r1 + r2
1 + · · · + rN

1 ,
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where the last inequality holds because for fixed l: 1 ≤ l ≤ N − 1 and h: 1 ≤ h ≤ j − 1,

N∑
k=1

∑
k>il>···>i2>i1=h

ck,il cil ,il−1 · · · ci2,i1=h ≤
N∑

k=1

(
Cl
)
kh

≤ ∥∥Cl
∥∥

1 ≤ rl
1.

So the proof of (3.5) is completed. �

Remark 3.3. Let μ be the Gaussian distribution on R
2 with mean 0 and the covariance matrix( 1

r
r
1

)
where r ∈ (0,1). We have c12 = c21 = r < 1 (i.e., (H1) and (H2) both hold); and under

P((x1, x2), (dy1,dy2)), z1 = y1 − rx2 and z2 = y2 − ry1 are i.i.d. Gaussian random variables
with mean 0 and variance 1 − r2. Hence,

Q = B2B1 =
(

1 0
r 0

)(
0 r

0 1

)
=
(

0 r

0 r

)

and since y1 = rx2 + z1, y2 = z2 + rz1 + r2x2,

W1,d
L1

[
P
(
(x1, x2), ·

)
,P
((

x′
1, x

′
2

)
, ·)]= (r + r2)∣∣x2 − x′

2

∣∣.
Thus, ‖Q‖1 = 2r and the Ricci curvature κ is positive if and only if r + r2 < 1. In other words,
though we have missed many terms in the proof above, the estimate of ‖Q‖1 cannot be qualita-
tively improved.

Lemma 3.4. Assume (H2) and (H3), then

P(x0, ·) ∈ T1

(
NC1

(1 − r1)2

)
∀x0 = (x1

0 , . . . , xN
0

) ∈ EN.

Proof. The proof is similar to the one used by Djellout, Guillin and Wu [4], Theorem 2.5. First
for simplicity denote P(x0, ·) by P and note that for 1 ≤ i ≤ N ,

X1
N = X1

1, . . . ,X
i
N = Xi

i ,

P
(
Xi

N ∈ ·|X1
N, . . . ,Xi−1

N

) = μi

(·|X1
N, . . . ,Xi−1

N ,xi+1
0 , . . . , xN

0

)
and thus

W1,d

(
P
(
Xi

N ∈ ·|X1
N = x1, . . . ,Xi−1

N = xi−1),P (Xi
N ∈ ·|X1

N = y1, . . . ,Xi−1
N = yi−1))

≤
i−1∑
j=1

cij d
(
xj , yj

)
.

For any probability measure Q on EN such that H(Q|P) < ∞, let Qi(·|x[1,i−1]) be the regular
conditional law of xi knowing x[1,i−1], where i ≥ 2, x[1,i−1] = (x1, . . . , xi−1), and Qi(·|x[1,i−1])
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the law of x1 for i = 1, all under law Q. Define Pi(·|x[1,i−1]) similarly but under P . We shall
use the Kullback information between conditional distributions,

Hi

(
y[1,i−1])= H

(
Qi

(·|y[1,i−1])|Pi

(·|y[1,i−1]))
and exploit the following important identity:

H(Q|P) =
N∑

i=1

∫
EN

Hi

(
y[1,i−1])dQ(y).

The key is to construct an appropriate coupling of Q and P , that is, two random sequences
Y [1,N ] and X[1,N ] taking values on EN distributed according to Q and P , respectively, on some
probability space (�,F ,P). We define a joint distribution L (Y [1,N ],X[1,N ]) by induction as
follows (the Marton coupling).

At first the law of (Y 1,X1) is the optimal coupling of Q(x1 ∈ ·) and P(x1 ∈ ·) (= μ1(·|x0)).
Assume that for some i,2 ≤ i ≤ N, (Y [1,i−1],X[1,i−1]) = (y[1,i−1], x[1,i−1]) is given. Then the
joint conditional distribution L (Y i,Xi |Y [1,i−1] = y[1,i−1],X[1,i−1] = x[1,i−1]) is the optimal
coupling of Qi(·|y[1,i−1]) and Pi(·|x[1,i−1]), that is,

E
(
d
(
Y i,Xi

)|Y [1,i−1] = y[1,i−1],X[1,i−1] = x[1,i−1])= W1,d

(
Qi

(·|y[1,i−1]),Pi

(·|x[1,i−1])).
Obviously, Y [1,N ],X[1,N ] are of law Q,P , respectively. By the triangle inequality for the W1,d

distance,

E
(
d
(
Y i,Xi

)|Y [1,i−1] = y[1,i−1],X[1,i−1] = x[1,i−1])
≤ W1,d

(
Qi

(·|y[1,i−1]),Pi

(·|y[1,i−1]))+ W1,d

(
Pi

(·|y[1,i−1]),Pi

(·|x[1,i−1]))
≤
√

2C1Hi

(
y[1,i−1])+ i−1∑

j=1

cij d
(
xj , yj

)
.

By recurrence on i, this entails that Ed(Y i,Xi) < ∞ for all i = 1, . . . ,N . Taking the average
with respect to L (Y [1,i−1],X[1,i−1]), summing on i and using Jessen’s inequality, we have

∑N
i=1 Ed(Y i,Xi)

N
≤
√

2C1
∑N

i=1 EHi(Y [1,i−1])
N

+
∑N

i=1
∑i−1

j=1 cijEd(Y j ,Xj )

N

=
√

2C1H(Q|P)

N
+
∑N−1

j=1 Ed(Y j ,Xj )
∑N

i=j+1 cij

N

≤
√

2C1H(Q|P)

N
+ r1

∑N
j=1 Ed(Y j ,Xj )

N
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the above inequality gives us

W1,d
L1 (Q,P ) ≤

N∑
i=1

Ed
(
Y i,Xi

)≤
√

2
NC1

(1 − r1)2
H(Q|P),

that is, P = P(x0, ·) ∈ T1(
NC1

(1−r1)
2 ). �

Theorem 2.7 is based on the following dependent tensorization result of Djellout, Guillin and
Wu [4].

Lemma 3.5 ([4], Theorem 2.11). Let P be a probability measure on the product space
(En,Bn), n ≥ 2. For any x = (x1, . . . , xn) ∈ En,x[1,k] := (x1, . . . , xk). Let Pk(·|x[1,k−1]) de-
note the regular conditional law of xk given x[1,k−1] under P for 2 ≤ k ≤ n, and Pk(·|x[1,k−1]) be
the distribution of x1 for k = 1.

Assume that:

(1) For some metric d on E, Pk(·|x[1,k−1]) ∈ T1(C) on (E,d) for all k ≥ 1, x[1,k−1] ∈ Ek−1;
(2) there is some constant S > 0 such that for all real bounded Lipschitzian function

f (xk+1, . . . , xn) with ‖f ‖Lip(d
L1 ) ≤ 1, for all x ∈ En,yk ∈ E,

∣∣EP

(
f (Xk+1, . . . ,Xn)|X[1,k] = x[1,k]

)−EP

(
f (Xk+1, . . . ,Xn)|X[1,k] = (x[1,k−1], yk)

)∣∣
≤ Sd(xk, yk).

Then for all function F on En satisfying ‖F‖Lip(d
L1 ) ≤ α, we have

EPeλ(F−EPF) ≤ exp
(
Cλ2(1 + S)2α2n/2

) ∀λ ∈R.

Equivalently, P ∈ T1(Cn) on (En, dL1) with

Cn = nC(1 + S)2.

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. We will apply Lemma 3.5 with (E,d) being (EN,dL1), and P be the
law of (Z1, . . . ,Zn) on (EN)n.

By (3.3), Lemma 3.2 and the condition that r1 < 1/2, the constant S in Lemma 3.5 is bounded
from above by

sup
x,y∈EN

1

dL1(x, y)
E

x,y
∞∑

k=1

dL1(XkN,YkN) ≤
∞∑

k=1

(
r1

1 − r1

)k

= r1

1 − 2r1
.

Take S = r1
1−2r1

,F (Z1, . . . ,Zn) = 1
n

∑n
k=1 f (Zk), then the Lipschitzian norm ‖F‖Lip of F

w.r.t. the dL1(x, y) =∑n
k=1 dL1(xk, yk) (for x, y ∈ (EN)n) is not greater than ‖f ‖Lip(d

L1 )/n ≤
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α/n. Thus by Lemmas 3.5 and 3.4,

E
x exp

(
λ

(
1

n

n∑
k=1

f (Zk) − 1

n

n∑
k=1

P kf (x)

))

≤ exp

{
NC1

(1 − r1)2
λ2(1 + S)2

(
α

n

)2

n/2

}
∀λ ∈ R.

So, by the classic approach, firstly using Chebyshev’s inequality, and then optimizing over λ ≥ 0,
we obtain the desired part (a) in Theorem 2.7.

Furthermore by Theorem 2.3, we have∣∣∣∣∣1n
n∑

k=1

P kf (x) − μ(f )

∣∣∣∣∣ ≤ 1

n

n∑
k=1

∣∣P kf (x) − μ(f )
∣∣

≤ 1

n

n∑
k=1

rk max
1≤i≤N

∫
EN

d
(
xi, yi

)
dμ(y) ·

N∑
i=1

δi(f )

≤ 1

n

r

1 − r
max

1≤i≤N

∫
EN

d
(
xi, yi

)
dμ(y) ·

N∑
i=1

δi(f ).

Thus, we obtain part (b) in Theorem 2.7 from its part (a). �
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