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Introduction. The recent developments in the theory of operator
algebras showed the importance of the study of weights. A weight φ
on a von Neumann algebra M is a linear map from M+ to [0, +<*>]; φ
is faithful if φ(x) — 0 implies x — 0, normal if it commutes with the sup
operation, semi-finite when φ(x)< + co on a cr-strongly dense subset of M+.
Throughout this paper, a weight means a semi-finite normal one.

* This work was supported in part by NSF Grant, and accomplished while a Guggenheim
Fellow.
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The origin of this paper lies in the following relation between the
authors' previous works [3] and [30], Let F* be the type !«, factor of
all bounded operators in L\R) and ω the weight on FM such that
ω(x) = Trace (px), x ̂  0, where pu is for any t e R the translation by t in
L\R). In [3; Lemma 1.2.5], it was shown that on Λf® F^ the weight
<5 = φ ® & is independent, up to unitary equivalence, of the choice of the
faithful weight φ. In [30; Theorem 8.1] it was proven independently
that the crossed product of M by the modular automorphism group σφ

is unaffected by changing φ. In fact, the centralizer of ω is trivially
equal to the above crossed product. If V^eF^ for any λ e Λ ϊ is the
multiplication by the function: t— *λ**, thenl®!^ implements a unitary
equivalence between ώ and λώ. We shall show that the weight ώ is
characterized, up to unitary equivalence, as the only faithful weight
with properly infinite centralizer, which is unitarily equivalent to λά> for
any λe/JJ, in any properly infinite von Neumann algebra with separable
predual, Theorem II. 1.1. To understand the meaning of this result, we
first develop an elementary comparison theory for weights, analogue to
the usual comparison theory of projections. Two weights φ and ψ* are
by definition equivalent when there exists a partial isometry u with
initial projection the support s(φ) of φ and final projection s(ψ) such that

φ(x) = ψ(uXU*), U 6 M+ .

The set of equivalence classes of weights on a properly infinite von
Neumann algebra is endowed with the following natural addition:

class φ + class ψ» = class (φ + ψ) provided s(φ) _L s(ψ) .

The class of a weight φ is idempotent: class φ + class φ = class φ if and
only if the centralizer of φ is properly infinite. It is then shown that
such classes form a Boolean algebra isomorphic to the lattice of all
σ-finite projections in a unique abelian von Neumann algebra px. Thus
there exists a map pM from weights to σ-finite projections of $M such
that

PM(<P + ΨO = PM(<P) V pM(ir) if

Each λe/ίϊ determines a unique automorphism gf of S$M such that

PxCλφ) = %¥PM(<P) for any weight φ .

We shall call the couple ffiM, $M] the global flow of weights. The global
flow of weights depends functorially on M by its construction.

Let M be a properly infinite von Neumann algebra and ώ as above.
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Then dM = px(o)) is the largest σ-finite projection of ?βx invariant under
%*, and moreover the following three conditions are equivalent for any
weight φ on M: (i) px(φ) ^ dM; (ii) the map: λ ι-> pM(^φ) is cr-strongly con-

tinuous; (iii) \σ%( )dt has a weakly dense domain. The last condition

provides the name of integrable weight for φ. In Chapter II, we establish
their regularity properties and their density in the set of weights with
properly infinite centralizer.

By condition (ii), the restriction of $M to dM is a cr-strongly continuous
flow FM called the smooth flow of weights. So the smooth flow of
weights FM is just the continuous part of the global one: class φ—* class \φ.
Hence it depends functorially on M, therefore defining a homomorphism
mod of Aut(Λf) into Aut(F^) which corresponds to the fundamental
group of Murray and von Neumann in the semi-finite case. This functor
is exactly the analogue of the module of a locally compact group. For
instance, let G be a principal virtual group, and M — U(G) be the factor
arising from the left regular representation of G on L\G), [16]. Then
FM is precisely the closure of the range of the module AG as defined in
[16]. This allows us to understand better the meaning of the modular
automorphism and to extend it to the whole dual group of FM considered
as a virtual group. This extended modular automorphism group yields
a one-to-one homomorphism δM of H\FM) into Out(Λf) = Aut(M)/Int(M),
whose range is contained in the kernel of mod.

The work presented here has been undertaken since February 1973,
and most of the results wete obtained while the authors stayed at Le
Centre de Physique Theorique, CNRS, Marseille, France, from September
1973 through May 1974. The main results were announced in [7|, 1974.
The authors would like to express their sincere gratitude to Professor
D. Kastler and his colleagues for their warm hospitality extended to
them, which made this collaboration possible and pleasant. The second
named author would like to thank the John Simon Guggenheim Memorial
Foundation for a generous support extended to him.

Preliminary. Given a factor M of type III;, λ ̂  1, there exists a
von Neumann algebra N of type !!«, and an automorphism θ of N such
that

M= W*(N,Θ) ,

where W*(N, θ) means the crossed product of N by a single automorphism
θ. Here if λ > 0, then N is a factor and τ°θ = λτ for a faithful semi-
finite normal trace τ on JV; if λ = 0, then N has a non-atomic center C
and there exists a faithful semi-finite normal trace τ and 0 < λ0 < 1 such
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that τo/?^χ 0 r . We shall call W*(N, θ) or some times the covariant
system [N, θ} itself a discrete decomposition of M. If M is a von
Neumann algebra of type III, then there exists a von Neumann algebra
N of type i L and a one parameter automorphism group {θt} such that

M ~ W*(N, R, θ)

and τ°Θ8 ~ e~*τ for some faithful semi-finite normal trace τ on JV, where
W*(N, R, 0) means the crossed product of N by R the additive group
R with respect to the action θ. We shall call this W*(N, R, θ) or the
covariant system {N, θ} a continuous decomposition of M.

In this paper, we consider often an action a of a locally compact
group G on a measure space {Γ, μ} preserving the family of null sets.
Throughout, we consider the action of G only from the left hand side.
The action of G on L°°(Γ, μ) induced by a of G on {Γ, μ] means the one
defined by

(«,/)(?) - f(a^)> geG,fe L~(Γ, μ\ 7 e Γ .

Let M be a von Neumann algebra. By Aut(M), we denote the group
of all automorphisms of M and Int(Λf) means the normal subgroup of
Aut(M) consisting of all inner automorphisms. We consider the quotient
group

Out(ΛΓ) - Aut(Λf)/Int(ΛΓ) .

The canonical homomorphism of Aut(Λf) onto Out(M) is denoted by εM.
Besides the norm topology, we consider the following topology in Aut(M):
a net {at} in Aut(M) is said to converge to αeAut(M) if for each
φeM*, lim^ ||φoα< — φ°a\\ = 0. Since Aut(M), or more precisely its
adjoint transformations, is contained in the group of isometries on M*9

Aut(Λf) is a topological group under this topology. If M* is separable,
then Aut(Λf) is a topological polish group under the two sided uniform
structure. We note, however, that the one sided uniform structure of
Aut(Λf) is not complete.

CHAPTER I. THE GLOBAL FLOW OF WEIGHTS

1.0. Introduction. Let If be a von Neumann algebra with faithful
semi-finite normal trace τ. Then the map fc—> τ(fo ) — ψ is a bisection
between positive self-adjoint operators affiliated with M and weights on
M. Each -fr being characterized by the representation: t—*hu of the
real line, one sees immediately that the study of weights on such M
reduces to the study of representations of R in M. In particular, when
M — 8(φ), the algebra of all bounded operators in φ, the study of
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weights is thus the classical multiplicity theory of positive self adjoint
operators. When M is no longer semi-finite, so that such a τ does not
exist, we shall establish a comparison theory for weights as a general-
ization of the comparison theory for representations of R. For each
faithful φ, we regard the unitary cocycle: t —> ut — (Dψ: Dφ)t as the
analogue of the above representation: £—»/&** = (Dψ: Dτ}t. This allows to
define equivalence, subequivalence, disjoint sums for weights. Moreover
those notions do not depend on the special choice of the reference weight
φ. We then show that the set of idempotents for disjoint sum forms a
α -eomplete boolean lattice and that the map: (λ, φ) —> \φ induces on this
lattice an action of R*, the global flow of weights g^ of M. With the
help of this construction we then, for factors M which are not of type
IΠi, give an isomorphism of the global flow of weights of M with the
flow ($*)' where M = W*(0, JV) is a discrete decomposition of M. (cf.
Corollary 2.8. (iii)). This allows to show the normality of arbitrary
centralizers in IΠ0-factors, and the existence of normal states with abelian
centralizers in all factors of non-type IIIle

1.1. Elementary comparison of weights. In this section, we develope
an elementary dimension theory for weights on a σ-finite properly infinite
von Neumann algebra which may be viewed as a generalization of the
usual dimension theory for projections.

Throughout this section, M denotes a fixed cr-finite properly infinite
von Neumann algebra. By a weight on M we mean a normal semi-finite
weight on M, and by 2S^ we denote the set of all weights on M. Since
we consider weights which are not necessarily faithful, we need some
modification in terminologies and definitions which were given to faithful
weights.

DEFINITION 1.1. For a weight φ on M, the support of φ, denoted
by s(φ)9 means the projection e of M such that φ(l — e) = 0 and that
the restriction of φ to Me is faithful.

The support s(φ) of φ is also characterized as the projection e in M
such that Λf(l — e) = {x eM: φ(x*x) — 0}. The modular automorphism
group {0ί} of φ means the modular automorphism group of Mβ associated
with the restriction of φ to Mβ. The centralizer Mφ of φ is the von
Neumann subalgebra of Me which is the fixed point algebra under {0f}

For a weight φ on M and a partial isometry u in M with e=uu* e Mφ,
we define a new weight ψ = φu by

τK«0 — φ(uxu*}> x e M+ .

One checks that ψ is a weight with support s(ψ) = u*u and that ψ is
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isomorphic to the restriction of φ to Me disregarding the trivial part
where ψ vanishes. For a projection e e Mφ, φe is a weight with support
β, called a subweight of φ. Note that φe is a weight on M not only on
M..

We now introduce an equivalence and a partial ordering among all
weights as follows:

DEFINITION 1.2. Let ^ and φ2 be weights on M. We say that φ^
and φz are equivalent and write φ^~φ^ if there exists a partial isometry
u 6 M with ιw* = sOpi) and u*u = s(0>2) such that g?2 = 0>lf1t. We say that
φl is subequivalent to φ2 and write ^ -< φ2, if 9?,, is equivalent to a sub-
weight of φz.

In other words, ^ -< φ2 if and only if φ^ — ^>2>w for some partial
isometry u with uu* e Λf^. It will be seen shortly that the equivalence
"~" is the equivalence relation associated with the partial ordering "-<."

LEMMA 1.3. L0έ φ be a weight on M and u a partial isometry with
p — u*u e Mφ and q = uu* e MΨ. We have φu = φp if and only if us Mφ.

PROOF. Let e = s(φ). Since u belongs to M9, we may restrict our
attention to Mβ, so that we may assume φ faithful.

Suppose that u belongs to Mφ. We have then nφu anφ and n^u* anφ.
It follows then that

nφu — {x e M: xu* e nφ}

tty, = {x e M: xp e ttj ,

which implies that ι\Ψu = n^ hence m^π = m^. It follows from [24;
Theorem 3.6] that for any ccetn^, paj^θnt^ and φ(uxu*) — φ(upxpu*) —
φ(pxp). Thus φu = φp.

Suppose φu = ^j,. We have for any a? e ΛΓ+, φ(uxu*) = φ(pxp). Re-
placing a? by ^*α;^, we get <£>(u*m) = φ(qxq). Therefore, we have
nφu* c tt^ and nφu c n^; hence we get umφ c m^ and mφu c trt^. We have,
for any x e mφ,

φ(ux) = φ(qux) = φ(uxq) = <p(uxuu*) = φ(pxup) — ^>(αj^) ,

which implies by [24; Theorem 3.6] that weMp. q.e.d.

We now extend the notion of the cocycle Radon-Nikodym derivative
(Dφ: Dψ), [3; Lemma 1.2.1], to the case where ψ is faithful and φ is
not necessarily faithful. Let P = M ® jP2, and set

Σ

We have s(θ) = 1 (x) eu + s(φ) ® β22, hence s(φ) (x) e21 6 PB(β} and there exists
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a unique one parameter family of partial isometries {ut} such that

Utuf = 8(φ), Ufut = σφ

t(s(φ)) \

o°t(»(φ) (g) β21) = ut (g) β a i , 16 jβ .

We denote by (J9<^: Zty)t this ut, teR.

LEMMA 1.4. Let φ19 φ2 and ψ be weights on M with ψ* faithful.
Let P = M (g) F2 and put

φ(
2

(a) For a partial isometry weM with w*w = s(<p2)
the following statements are equivalent9.

φ* = φlίW *=* w0e12e Pφ <=> (Dφ2: Dψ)t = w*(DφL: Dψ)tσf(w) , teR .

(b) 9?2 -< ψi <=> s(^>2) (g) β22 •< s(φ^ (g) βn relative to Pψ.
(c) 9?! ̂  φ2 <=* s(φj) <g) en ~ s(φ2) ® β22 relative to Pφ.
(d) jPor partial isometries u, v e M with uu* 6 MΨί and vv* 6 Mφι,

<Pι,u < <Pι,v <==^ ^^* •*< ^^* relative to MΨί .

PROOF, (a) We have s(φ) = s(φl) (g) en + s(< 2̂) (g) β22, so that w (g) eιa 6 Pβ(9>) .
As (w (g) βιa)*(w (8) βia) = s(^2) (g) e22 and (w (g) e12)(w (g) β12)* = -M;̂ * (g) eu both
belong to Pφ, it follows from Lemma 1.3 that w (g) β12 6 P9 if and only if
for any x e Λf

2)G» ® ̂ 2)(^ (g) β12)*) - φ((s(φz) (g) e22)(α; (g) e22

if and only if 0>1>w = φ2. Put now Q = M (g) ί̂  and
3

θ( Σ »<j (8) e*i) = ^ι(^π) + φ2(α;22) + ψ (&88) .
ϊ,ί = l

We note that

σ?(β(9>,) (g) βΛ) - (Dφf. Dψ)t (g) βΛ , ί e Λ, j" = 1, 2 .

We have

o1? (w φ β12) = σl((8(φύ (8) β18)(w (g)

- (Z>2V. Dψ}tσt(w)(Dφ2: Dψ)? (g) β12 , ί 6 Jϊ ,

so that w (8) β12 e Pψ if and only if w (g) β12 e Q^, if and only if

(Dφ2. Dψ)t = w*(Dφ,: Dψ)tσ
Φ

t(w} , t e R ,

where we consider P as the reduced von Neumann algebra Q(ιsβll+ι<g>βί8).
(b) By definition, φ2 -< φλ if and only if φ2 = φl>w with a partial

isometry w e M satisfying the condition in (a). Hence it follows from
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(a) that φ2 -< φl implies s(φ2) (g) e22 •< s(φΐ) (x) βu relative to Pψ. Suppose
s(φϊ) ® ^22 -< s(<Pι) (x) βu in Pφ. Let w be a partial isometry in Pφ with
u*u — s(φ2) ® #22 and uu* ^ 8(9^) ® eu. Then there exists a partial iso-
metry w 6 Λf such that % — w (g) β12. By (a) we have φ2 — 0> l fW; hence
φ2 < φt.

(c) The same arguments as (b) work.
(d) Put p — uu* and q = w*. It follows that φltU ~ φ1>p and

<Pι,υ ~ <Pι,q Suppose p < q relative to MΨί. Let w be a partial isometry
in MΨl with 2> — w*w and wtϋ* ^ ̂ . We have then by Lemma 1.3

<Pl,p — Φl,w < <P\,q ~ <Pί,v

Conversely suppose φlιp •< φ1>q. There exists a partial isometry w in M
with w*w = p and ww* ^ ? such that ww* 6 M9l>? and φίtp = 9> l fW. By
Lemma 1.3, w belongs to M9i, so that p -< q relative to M9l. q.e.d.

Recalling the fact that for any pair e, f of projections in a von
Neumann algebra, c = c(e)c(f), the product of the central support c(e)
of e and c(/) of /, is the largest central projection such that ce and of
are quasi-equivalent, and (1 — c)e and (1 — c)/ are centrally orthogonal,
we give the following definition which measures the "quasiequivalent"
piece of a given pair of weights.

DEFINITION 1.5. Let φl and φ2 be weights on M, and P = M®FZ.
Put

2

φ( Σ

We define cφι(φ2) as the unique projection c in the center of M<Pl such
that

c (g) βu = (Central support of s(^2) 0 e22 in P^Cs^) (g) en) .

LEMMA 1.6. Let τ/τ, ψ^ ατιcZ α 2̂ 6e weights on M.
(a) For α^ partial isometry w e M with ww* e M+9 cψ(ψw} is the

central support of ww* in M+.
(b) For any partial isometry w 6 M with ww*

(c) ψ*! •< <fo =
(d) // {^Λ} is α sequence of weights on M with pairwise orthogonal

supports and ψ = Σ?=ι Ψ1** ^e^
00

= Σ ^n(?>)
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Cφ(^r) — V Cφ^tyn)
n=L

for any other weight φ on M.

PROOF, (a) Putting φ^ — ψ and φ2 = ψw, we consider P —
and φ as in Lemma 1.4. It follows then that s(φ2) (x) β22 ~ ww* (x) en in
P^ by Lemma 1.4 (d).

(b) Putting φl = τ/r, φ2 — α/rw and φ3 — α ,̂ we define Q — Jkf (X) F3 and
0 as in the proof of Lemma 1.4. Let c be the central support of

> β33 in Q0. We have then

= c(w*w (g) e22) = cO* (g)

= (w 0 e12)*c(w (x) e12)

β12)

(c) With 9?! =
We have then s

by Lemma 1.4. (a)

and 61 be as before.
by Lemma 1.4(b); so

(d) Put P = M (g) F2 and

0( Σ .̂ Θ e
*,ί = l

Let c be the central support of
we get

0

c(s(<f) (g) β22) =

= 'P(^ιι) +

en in Since s(ψ ) — Σ«=ι

Λ) (x) = Σ c+»(<p) (g) ̂ 22
Λ= Λ=l

For the second equality, let P and Θ be as above, and d be the
central support of s(α/r) (x) e22 in P0 As s(ψ>) = Σ»=ι s(Ψv)> ^ is the supremum
of the central supports of the s(*ψ n) (g) β22, which proves our assertion.

q.e.d.

LEMMA 1.7. Let φ be a faithful weight on M. If N is a factor of
type I contained in Mφ, then the tensor product decomposition
M = (JV' Π M) (g) N splits φ into the tensor product weight φ — ψ (x) Tr

α faithful weight on N' Γ\ M and Tr £/&e usual trace on N.

PROOF. Put Q = JV' n Λf. It follows then that M is identified with
Q® JV. Let {βj be a sequence of orthogonal minimal projections in N
with Σw ̂  = l Let {u%} be a sequence of partial isometries in N with
βj = %Jwn and en = ^wu*, n = 1, 2 . Choose an fc 6 mj with ejie^ Φ 0,
which is always possible due to the density of mφ in M. Put
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β — Σϊ=ι unhu% 6 Q. Multiplying a by a scalar, we may assume that
φ(aeί] = 1. Consider the function τ on N given by τ(a?) = φ(ax). By
[24; Theorem 3.6], τ is a normal trace on N and τ(e^ — 1. Hence τ is
the usual trace Tr on N. Put ψ(b) = φ(be^, beQ. It follows then that
α/r is faithful and normal on Q. Let [ht] be an approximate identity in
mi with respect to the σ-strong* topology. Putting

= Σ MfΛtt? e Q ,
n—i

we obtain an approximate identity {jfcj of Q with respect to the <7-strong*
topology. Since ψ(kt) — φ(kίe1} = φ(/?Ά) < oo , we have fe< 6 m^; so ψ* is
semi-finite on Q.

For each 6 e ζ>+, put τ6(αj) = 9(605), a? e AT. Since τ6 is a faithful normal
trace, which may be purely infinite though, there is a sealer λδ Ξ> 0 (with
possibility of +co) such that τ6(#) = λ6Tr(αO and λδ = r^ej. Thus we
get for any x 6 N

φ(bx) - τb(x) - ΓΛOTrOB) - φ(beJΊ!τ(x) = f (δ)Tr(a?) . .

Therefore, we have the decomposition 9 — τ/r(χ)Tr, using [24; Prop. 5.9],
q.e.d.

DEFINITION 1.8. A weight φ on Λf is said to be of infinite multi-
plicity if the centralizer Mφ is properly infinite.

LEMMA 1.9. Suppose M = Q (x) Fw with Q ίsomorphic to M.
(a) For any weight ψ on Q, the weight ψ (x) Tr on M is of infinite

multiplicity.
(b) Any faithful weight φ of infinite multiplicity on M is equi-

valent to a weight of the form ψ (x) Tr for some faithful weight ψ on Q
which is isomorphic to φ.

(c) If φ is a weight on M, then there exists a sequence {φn} of
weights with pairwise orthogonal supports such that φn ~ φ and
φ = Σ»=ι Φn is isomorphic to the weight φ ® Tr on M® F«>.

(d) If {'f J is a sequence of weights on M, then the weight
Ψ' — ΣSU ̂  is independent, up to equivalence, of the choice of a
sequence {ψ4} of weights on M with pairwise orthogonal supports such
that ψ£ ~ ψn, n = 1, 2, . Moreover, we have ^rn -< '̂, n = 1, 2, .

PROOF, (a) We have s(ψ (x) Tr) = s(^r) (g) 1 and Λf^0Tr = Qψ ® F^.
(b) Choose a type JL subf actor Nc:Mφ such that JV'n Mφ is properly

infinite. Let u be a unitary in M such that u*Mt = C (x) Foo. We have
then
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Replacing φ by φu, we may assume that C (x) F^, say N, is contained
in Mφ and that Nr Π Mφ is properly infinite. By Lemma 1.7, we have
φ = ψ> (g) Tr with ψ> a faithful weight on Q. Thus we must show that
{M, φ} ~ {Q, ψ}. With the notions of the proof of Lemma 1.7, the porperly
infiniteness of N' Π Mφ entails the existence of an isometry v e Mφ such
that vv* = βlβ Let TT be the isomorphism of M onto Q (x) C = N' n Λf
defined by

= Σ

We have then for any x e M+,
00

* * e ^ ) — φ(vxv*) = φ(x)^ Z-*
»=1

ThUS ψoπ rrr <£>.

(c) Let {wj be a sequence of isometries in M with pairwise
orthogonal ranges such that Σwnw% = 1. For each ι&, wns(φ) is a partial
isometry with initial projection s(φ), so that φn = ^w^^j)* makes sense
as well as ΣSU φ*,^ 9 because {s(φn)} are pairwise orthogonal. Let
{βy.fc} be a system of matrix units in Fmf and put, for each xeM,

It follows that π is an isomorphism of M onto Λf (x) F^ and that

(d) Putting ^ = ^«,{WΛ.( jί ft))* with wft as in (c), we obtain a sequence
{ψ'n}. Then the rest is trivial. q.e.d.

For each weight φ on M, we denote by φ the weight of infinite
multiplicity on M9 unique up to equivalence, determined by Lemma 1.9 (c).

LEMMA 1.10. Let φ be a weight on M. The map cφ of Definition
1.5 is an order isomorphism of the set of equivalence classes of weights
ψ of infinite multiplicity with ψ -< φ onto the set of all projections of
the center Cφ of Mφ.

PROOF. With the notations in Lemma 1.9(c) and ^ = Σn=ι9>»» we
have, by Lemma 1.6 (b) and (d),

oo oo

0ί(f ) = Σ <vn(Ψθ = Σ WnfyMw:
n=l Λ=I

for every weight ψ. Hence 7r(cj(ψ«)) = cψ(ψ} (g) 1, so that we may assume
that φ is of infinite multiplicity. Suppose φλ -< φ, φz •< φ and φs = φwj

with Wj a partial isometry such that w3 w* e Mφ for j = 1, 2. If φ$ is
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of infinite multiplicity, then w9 w* — e, is properly infinite in Mφ, and
hence equivalent to its central support in Mφ which is cψ(φj) by Lemma
1.6 (a). Thus it follows that cφ(φ1) <; cφ(φ2) if and only if φ^ •< φ2 for <p,
and φz as above.

As the surjectivity of cφ is obvious, we get the assertion. q.e.d.

The next result tells us that the set of all equivalence classes of
weights with infinite multiplicity form a σ -complete Boolean lattice.

THEOREM 1.11. There exists a couple (pM, $M) of an abelian von
Neumann algebra tyx and a surjection pM from the set of weights on M
to the set of all σ-finite projections of ξβ*- with the following properties:

( i ) For any weight φ, φ^ and φ2 on M,

(ii) For each φ on M if pφ is the map from the central projections
e of Mφ to &>M\M«P) defined by

then pψ is extended uniquely to an isomorphism of the center Gψ of Mψ

onto (5$M}pM(φ ) and we have

for any weight ψ on M.
(iiΐ) For any sequence of weights {φn} on M, with pairwise othogonal

supports, we have
00 00

P*(Σ ?») = V 2>jf(9>»)
Λ=l »=1

The couple (pM, ?βM) is uniquely determined by property (i).

PROOF, ( i ) Consider the von Neumann algebra Q = Λί(g) S(Ϊ2(2B^)),
where 3B^ means the set of all weights on M as mentioned at the
beginning of this section. Let (eφ^: φ, ψ e 28 }̂ be the canonical matrix
units in S(L2(SBjf)). We define a weight Φ on Q as follows:

Φ(Σ ®φ,Ϋ ® eφ,-i) — Σ φ(Kφ,φ)

Then, for any ^6333^, we have

,̂  = Central support of s(φ) (g) e^,^ in Qφ .

We denote by ^/ the center of QΦ, and for each ^eSB^, by (̂̂ ) the
central support of s(φ) (g) eψtψ in Qφ. We have then, by Lemma 1.6(d),
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px(φ) = px(φ), φ 6 3&M. For any pair φί9 φz in 2S ,̂ there exists, by
Lemma 1.9(d), a φe 9&x with φs < φ, j = 1, 2, which in turn shows by
Lemma 1.10 that:

We now show that px(φ), ^e2S^, is σ-finite in 9βM. Let {ct}iel be an
orthogonal family of non-zero projections in φx with c* ̂  Pκ(φ) For
each i e I, Ci(s(φ) ® eM) =£ 0, whence / is countable because Mφ is <j-finite.

We now show that given a σ-finite projection c e ^M there exists a
φ 6 SB^ with j>jf(9>) = c. Since s(Φ) = Σ s(<?) <8> <W> and c <; s(Φ), we have
c<*yφ pM(φ). Hence there is a sequence {£>J in 2S^ such that
c <; V^i px(φn)9 because c is ^-finite. We choose a weight ^ of infinite
multiplicity by Lemma 1.9(d) such that φn -< ψ , w — 1, 2, . It follows
that c ̂  j>jf(ψO By Lemma 1.10, there exists a weight φ <^r such that
c(s(ψO ® e ,̂̂ ) — Cγ(cp) (g) e ,̂̂ . Now c and p^Op) are both projections in
the center of QΦ dominated by the central support pM(ψ) of s(ψO ® e ,̂̂
and such that c(s(ψ>) (x) e^) = Ί>M(φ)(s(Ψ) ® eψt+). Hence c = pM(φ)

(ii) Let (2? ,̂ fβjf) be as above. For each xeCφ, (Cφ = the center of
let pφ(x) = y be the unique element in (Sβ*),̂ ) such that

^(x)^,^. Clearly p^ is an isomorphism of Cφ onto (̂ β
For any weight α/r on Λί, we have

hence pφ(
(iii) This follows from Lemma 1.6(d).
The uniqueness of (p^, ξβ^) follows from the fact that an isomorphism

of the lattices of α -finite projections of two abelian von Neumann
algebras extends uniquely to an isomorphism of the algebras. q.e.d.

DEFINITION 1.12.1 The global flow of weights on M, denoted by
(Sβjo S^)> is the couple of the abelian von Neumann algebra Sβ^ defined in
Theorem 1.11 and the action %M of the multiplicative group R% of
positive real numbers on ^>M determined by

Note that the construction of {?βM, %M} is f unctorial in the sense that
to each α e Aut(AΓ) there corresponds a unique α e Aut(^) commuting
with gf, λeJ?+, defined by the condition:

1 We shall define later the smooth flow of weights as the "continuous" part of the global
flow of weights.



486 A. CONNES AND M. TAKESAKI

We quote now a rather formal consequences of Theorem 1.11.

COROLLARY 1.13. (i) For each φeMt, there exists a normal positive
linear functional μφ on ^>M uniquely determined by the equality:

μφ(PπW) = φ(CφW) , f 6 SB* .

(ii) // φlf φ2 6 Mt, then

PROOF, (i) The restriction of <p to Cφ, the center of Λfy, is mapped
by Pφ1 to a functional μ9 on (^)3,Jf(9>) satisfying the required condition.

(ii) By construction, μφ only depends on the equivalence class of φ.
Hence, to prove the first equivalence, we can assume that φέ — tye. for
some α^ 6 ΛΓί , where ejf j — 1, 2, are projections in M+. For any projec-
tion e 6 C+, we have

by Lemma 1.6(b)

by Lemma 1.6(a);

hence

As ψ is a faithful finite normal trace on M ,̂ this proves the first equi-
valence by making use of the center valued trace in M+. The same
computation, with e1±β2, proves the second equality. Noticing that

cφ(ψ) for any π/r 6 2&M and λ > 0, we have

for every λe/ίί and ψeSB^. q.e.d.

1.2. The global flow of weights for factors of type ΠI^, λ =£ 1.
In this section, we examine the flow of weights on a factor of type
IΠ ,̂ λ τ£ 1, and describe it in terms of the flow of weights on the as-
sociated von Neumann algebra of type IL, and its automorphism.

Throughout this section, we denote by M a fixed σ-finite factor of
type ΠL, 0 ̂  λ < 1.

DEFINITION 2.1. A faithful weight φ on M is said to be lacunary
if 1 is an isolated point in the spectrum of the modular operator Δψ.
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Let φ be a faithful lacunary weight of infinite multiplicity on M.
By [3; p. 238] there exists a unitary UeM(σ?9 ]1, <*>[) such that UMφU*=Mφ,
and that Mφ and U together generate M. Moreover, by [3; p. 241] this
unitary U is unique modulo Mφ as well as the element p of the center
Cψ of Mφ such that

<Pu =

We remark that 0 ̂  p <^ λ0 < 1 for some λ0.
We state here the main result of this section and prove it in several

steps.

THEOREM 2.2. Let M, φ, U and p be as above, and let E be the
unique conditional expectation of M onto N = Mφ. Let τ denote the
restriction of φ to N.

( i ) For each h 6 N+ such that ps(h) ^ h < 1 and 1 — h is non-
singular, putting ωh =

(ii) For each weight ψ on M, there exists an heN+ satisfying the
conditions in (i) such that

ωh o E ~ <ψ* .

(iii) The weight ωh defined in (ii) is unique up to equivalence on N.

This theorem reduces the problem of comparison of weights on M
to the problem of comparison of weights on the von Neumann algebra
N of type IIoo. More precisely, the space of equivalence classes of
weights on M is isomorphic to the space of equivalence classes of weights
on N of the form ωh with h described above, which means that this space
is determined only by N and p, and independent of the automorphism
on N induced by U.

LEMMA 2.3. Let M and φ be as above. If ψ be a weight of infinite
multiplicity, then there exists a positive heMφ such that

PROOF. Making use of [3; Corollary 3.2.5], we see that the spectrum
of the modular operator of a suitable subweight of ψ* will not intersect
expQ— 2ε0, — ε0[ U [ε0, 2sJ) for some ε0 > 0. We hence assume that ψ is
faithful and

Sp(Log 4+) n ([-2ε0, -ej U [e0, 2ε0])) - 0 .

By [3; Lemma 5.2.3], there exists an HeM^ with — ε0/2 <; H^ ε0/2 such
that the weight ̂  — ̂ r(e~H ) is lacunary. As ψ is of infinite multiplicity,
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we can choose ψx to be of infinite multiplicity because ψ* and ψ\ both
can be replaced by α '̂ (g) Tr and ψ»J (g) Tr respectively by identifying M
and Mζ&Foo. By [3; Lemma 5.4.6], there exists a non-zero projection e
in the center CΨ of M^, a non-zero projection / in the center C 1̂ of
and a partial isometry veM such that

e = v*v , w* = /

We have ψ = ψΊ(eH ); hence feM^ and

Ψ/(α) = f (/aO = fiteVαO , x 6

Put k = eHf^ 0. We have then

keM+ltf and ψy = ^ l t/(A?-)

We then define a new weight α/r2 on Λf by

It follows then that α 2̂ -< ψ>, and that

a? 6 Λf+

Now α^1)i; is lacunary and has the same centralizer as the lacunary
weight φe, so that by [3; Theoreme 5.2.1.b] there exists a positive
operator /^ affiliated with the center CΨe of MΨβ such that ψlt9 = φe(hι ).
We have now /y*&/y e M^e; so putting fe = h^kv, which is affiliated to
Mφ, we get 0^2 = 9?(Λ ) Cutting h by a spectral projection so that the
reduced h is bounded, and reducing ^2 further by the same projection,
we complete the proof because ^2 -< ψ. q.e.d.

Before stating the next lemma, we need some explanation on a
notation: Throughout this section, the symbol kλ < kz between two
positive operators fcx and k2 means that kt ^ k2 and k2 — kt is non-singular
on the support of k2.

LEMMA 2.4. Let N be a properly infinite von Neumann algebra
with a faithful semi-finite normal trace τ. For each weight φ on N,
let hφ denote the positive operator affiliated with N such that τ(hψ ) — φ.
If dί and δ2 are positive operators affiliated with the center of N such
that di < S2, then there exists a unique projection [dlt S2[ e tyN such that
for any weight ψ of infinite multiplicity on N

pN(ψ) ^ [8ί9 d2[ <=> s(M^ £h+< s(hγ}δ2 .

PROOF. Let & be the set of weights of infinite multiplicity on N
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which satisfy the condition on the right. Suppose that fa is a weight
in I? and fa — fa. We have fa = fa,w, ww* = s(fa) = s(hγj and
w*w — s(fa} — s(/z^2) where h+2 = w*h^w. It follows then that

w*wdi = w*δ1w ^ w^h^jW — hψ2

Since s(/z^2)<52 — /^2 = w*(s(h^2 — /^)w, s(h^2)δ2 — h^2 is non-singular by
the assumption on /^ hence j^2 < s(/^2)S2. Let faQίϊf and e be a pro-
jection in Afj^. Put ^2 — ̂ rlιβ. It follows that

hence s(fa) ~ β and

with δ2 — fc^ non-singular on β — s( 2̂) Therefore, we get Λ^2 < s(fa}§2.
Now let {α/rj be a sequence of elements of & with pairwise orthogonal

supports. Putting ψ> == Σ"=ι ^> we get
00 00

^ = Σ »̂> «W = Σ sGf J
%=1 W=l

sWδ, = Σ 8(̂ )5, ̂  Σ A*. < Σ β(Vθδ, = s( f)δ2 ,
% = 1 ίl = l 91 = 1

where we understand naturally the sum of infinitely many positive self-
adjoint operators {h^J with pairwise orthogonal supports. Thus ψ
belongs to ^ '. Therefore, the usual exhaustion arguments show that
the set of pN(^)y ψ 6 & , is precisely the set of all ^-finite subpro jections
of V{p*(t): f € g7} - ft, S2[ 6 φ .̂ q.e.d.

LEMMA 2.5. Lβέ M be a general von Neumann algebra (not neces-
sarily a factor of type IΠ^) and E a faithful normal conditional expec-
tation of M onto a von Neumann subalgebra N.

(a) For any weight ψ on N, ψ o E is a weight on M with the same
support as ψ.

(b) // fa and fa are weights on N with fa < fa, then fa o E -< fa°E.
(c) I/ {ψv} is a sequence of weights on N with pairwise orthogonal

supports, then ^?=i(fa'°E)

PROOF, (a) Let e = s(^r). We have then E(e) = e and ψ<>E(L--e) = Q.
Moreover if xeM+, then E(x}eNϊ; hence ^ oE is faithful on Me; so

(b) Let u be a partial isometry in N with uu* e N^z such that
fa,u

 = fa on JV". Since the modular automorphism group of fa o E agrees
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on N with that of ^2 by [ ], we have N+2 = M^oE Γ) N; hence uu*
For each xeM+, we get

ψ»2 o E(uxu*} = ψ2(uE(x)u*) = ΨΊ o jE7(αj)

thus ψΊ o J57 -< α/r2 o j£.

(c) By (a), {α/ryojE} have pairwise orthogonal supports, and for each
x 6 M+ we have

Σ (in ° #)(*) = (Σ f *)»)) - q e.d.
J=l j=l

LEMMA 2.6. Leέ If, 99, U and p be as in Theorem 2.2.
(a) If an he M$ satisfies the condition ps(h) <£ h < 1, έftew tAe cew-

tralizer of the weight ψ = φ(h ) satisfies Mψ> c Mφ.
(b) If an he M$ satisfies the condition in (a), then any subweight

ofψ = φ(h ) is of the form φ(k ) for some keM$ with ps(k) <Ξ A; < 1.
(c) Let ψj — φ(hj ), j = 1, 2, wi£/& ,̂ fe2 e MΊf satisfying the condition

in (a). If α/r2 — <^lιtt /o?' α partial isometry ueM with uu* —
we have u 6 Λf^.

PROOF, (c) Put k, = /o(l — s(^ )) + Λy> J = 1» 2. We have then
^k3 < 1. By Lemma 1.4(a), we have

2: Dφ)t = uu*(Dψι. Dφ)tσ
φ

t(u)

^(u) - kΫstyMu) = fcj'σf fa) , t e JB .

Hence we get

Let 61 = Ad U be the automorphism of M induced by the unitary U.
We have then, as mentioned before Theorem 2.2,

φ o θ — φ(p ) .

For each neZ, we define pn as the positive operator affiliated with the
center Cφ of Mφ satisfying φoθ» = φ(pn ). We then have, for any x eM+,

hence ,om+il - pmθ'm(pn). Hence σf(Z7») - ?7̂  since φ^ - φ(p« ), and
ρn^p = Pi for n> 0.

Recalling that If is the crossed product of Mφ by the automorphism
Θ\xψ9 we choose a sequence {xw} in Λfp such that u = ΣmΞ-oo^ί/w. We
have, for each ^ and ί,
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α tfX' - Wxnθ*(p«)U*

Σ α,tf*A2* = Σ

Thus, we get

Fixing w ^ 0, we show that &{*# = yθn(kΐtp^u\ teR, implies y — 0 for
any # e Λfp. If this were done, then u = xQe Mφ; hence the conclusion.
Making use of the polar decomposition of y, we can assume that y is a
partial isometry such that yy* commutes with k[*, teR, and y*y commutes
with en(ki*p-u), teR. Let n > 0. We have

k?yy* = yθ^Wp^y* , teR.

Since pn <* p <; fca, the right hand side of the above equality extends to
an analytic function in the upper half plane:
z — F(z) - yθn(klzp-iz)y* with

for Im z 2^ 0. But &! < 1, so that the left hand side ki*yy* extends to a
bounded analytic function in the lower half plane. By the Liouville
theorem, the function: t\->kl*yy* must be constant, which is possible
only in the case that yy* = 0. Next let n < 0. We use the equality
kitθn(ρίt)y = yΘn(kΐt)9 teR. As y*y commutes with θ*(ki*), the same argu-
ments as above applies, provided that kiθn(pn) ^ 1. But we have
θn(pn) = pii by the cocycle identity 1 = pϋ — p-.nθ

n(pn). Hence the
inequality kβn(pn) ^ 1 follows from the inequality p_n ̂  p^ klf

(a) If u is a partial isometry in M^ with uu* = s(ψ ) = u*u, then
α/rw = ψ>; hence above (c) implies u 6 If^, which shows that M^ c M .̂

(b) A subweight of ψ is of the form o/re with e a projection in M+.
As Λί^cΛί^, β belongs to Mφ and β commutes with h. It shows that
ι/re = φ(eh ) and ^s(βfc) <; βΛ <£ Λ < 1. q.e.d.

PROOF OF THEOREM 2.2. Let 0 and ̂  be as above, N = Mφ and τ
be as in the theorem. We first claim that Σn=-«>[/0Λ, /0»-ι[ = l in 5β .̂ Let
τ/r be τ(fc ) with fe a positive operator affiliated to N. Then all p'ns and
fc commute, and pn = pn-ιθ~(n~l}(p) ^ λ0/t>»-ι with λ0 < 1, so that there
exists an orthogonal sequence {en} or projections such that Σί=-ooβn==l, {e»}
commute with & and |0»s, and βn/oΛ ̂  Aen < pn-βn. Thus any weight <f
on ΛΓ is decomposed as a sum ψ» = Σ?=-oo ψ*» such that fψ\,}nβ* is a
sequence of weights with orthogonal supports, and ψn = τ(hn ) with
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s(hn)ρn ^hn< ρn^. Hence pN(ψ) - V,βz^(f J ̂  Vnez[pn, ftι-ι[. Thus we
have ynQZ[pn, ft»-ι[ = l Suppose n^m. If h^ and h2 are positive elements
in N such that s(h^pn ^ /ZΊ < ρn^ and s(h2)ρm ^hz< pm_l9 then no non-zero
subweights of fa — τ(feι ) and τ(h2 } are equivalent; hence pN(fa} and
PN(fa} are orthogonal. Therefore, [ft,, ft^f and [ft», ft,,_ι[ are orthogonal
and our claim follows.

For each σ-finite projection e e 3βN, put J(β) = pM(ψ ° E) where ψ is
an arbitrary weight of infinite multiplicity on N with pN(ψ) — e. By
Lemma 2.5, I(e) does not depend on the choice of ψ and we have

βi £ e2 - /(βl) ̂  I(et) , /( V βy) - V Key) -
5=1 J=l

for any sequence {e^} of σ-finite projections of 9βN because we can choose
•fyj on N with pN(ψj) = e^ and s(ψj)s(ψk] — 0 for j" ̂  fc. We claim that
any σ-finite projection in ^>M of the form I(e) with e <Ξ [|0W, jow_1[ is also
of the form /(/) with /^ [ft, 1[. We have

for some heN+ with jθns(fc) ^h < pn_λ by hypothesis. For every a? e ΛΓ+,
we get

φ(hUkxU**) - φuk(θ~k(h)x) = φ(pkθ-\h)x) .

It follows that I(β) = /(/*) with fk-= pN(τ(ρkθ~k(h)^ for fceZ. From
the inequality pns(h) ^ h <. ft^O it follows that

hence

Hence, taking k = 1 — w, we get / = /!_w ^ [ft, 1[ and I(e) = /(/). An
application of Lemma 2.3 shows that for any σ-finite non-zero projection
g 6 ξβa- there exists a non-zero σ-finite projection e Θ ξβ^ with J(e) = g^ g.
Let ^eZ be such that el = e[|t>n, /on-1[ ̂  0, and apply Lemma 2.5(b) to
show that g2 — I(eO ̂  ̂ i, and hence g2 = !(/) for some /<; [ft, 1[. There-
fore, the usual exaustion arguments show that any σ-finite projection
g in fa is a sum g = Σ?=ι J(Λ) where {/Λ} is an orthogonal sequence of
σ-finite projections in ?βN with fn ^ [ft, 1[. Putting /= Σw=ιΛ, we get
/(/) = gr and /^ [ft, 1[. This proves the existence part for weights ψ
of infinite multiplicity. Thus Lemma 2.6 assures the rest of the claim
in the theorem. q.e.d.

REMARK 2.7. In Theorem 2.2, the condition, ps(h) <£ h < 1, can be
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replaced, for any n e Z, by the condition ρns(h) <^ h < ρn-ύ in particular,
for n = 0, by s(h) ^ h < p^.

This follows from:
( i ) For any weight ω on N and keZ, ω°E ~ ω°θk°E;
(ii) If ω = τ(fc ) on N, then ω°θk = τ(pkθ~ k(h) ), fc 6 Z\
(iii) ^-i^'Vi) = ρn and /oΛ.1ί

1"»(l) - ̂ _ι.

To state the next consequence of Theorem 2.2, we must extend the
mapping I defined in the proof of Theorem 2.2. We put, for any pro-
jection e 6 fa,

I(e) = y{I(f): f is a σ-finite projection in Sβ^ with /^ β}. It follows
easily that J( V«e^ O = V«e^ι /(e«) for any family {ea: a e A} of projections
in $#.

COROLLARY 2.8. Let M, φ, U, p and θ be as in Theorem 2.2.
( i ) For each neZ, the mapping I is an isomorphism of (?$N)I.P «,,?„,-£

onto $M.
(ii) Denoting by θ the automorphism of ^>N corresponding to θ, we

have
= I(e) for any projection ee?βN

(iii) TΛe map I induces an isomorphism denoted by I again, of
&N)Θ onto ?βM intertwining the action of R$:

Iδfl^-δf , λ e Λ ? .

PROOF, ( i ) It follows from Theorem 2.2, its proof, Lemma 2.6 and
Remark 2.7 that / is an isomorphism of the lattice of σ-finite projections
of (φy)ipn,p^.ίι onto that of tf-finite projections of ξβ ;̂ hence the conclusion.

(ii) By definition, θφN(w) = ^(w0^"1); hence (i) and (ii) following
Remark 2.7 entail the conclusion.

(iii) By (b), the fixed point algebra (^NY is isomorphic to (Sβ )̂̂ ^^^
under the map: x e (φN)* —* x[pM pn^[ 6 (̂ β )̂̂ ,̂ ,̂ whose inverse is given

by the map: y e (^N\PntPn_^ -> Σ» e z ^Λ(^/) e (Sβ^f. The intertwining property
follows from the simple computation:

for any weight ^ on JV. q.e.d.

COROLLARY 2.9. On α σ-finite factor M of type III;, λ ̂  1, there
exists a faithful normal state ^r such that M^ is a maximal abelian
subalgebra of M.
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PROOF. With the same notations as above, choose a projection e e N
with τ(e) < + °o and an h e N+ such that pβ <ί h < e and Nωh is a maximal
abelian subalgebra of eNe. Put ^ = α>Λ o E. By Theorem 2.2, we have
Mir — Nωh. Since eNe is the centralizer of φe, it follows from [3; Lemma
4.2.3] that Mψ is maximal abelian in eMe. Clearly ^ is a faithful normal
functional on eMe = M. q.e.d.

COROLLARY 2.10. In a σ- finite factor M of type IΠ0, the centralizer
MY of any faithful weight ψ is the relative commutant C'Φ Π M of its
center CV; namely

C'f\M and C^MΠM.

PROOF. Since the automorphism θ = Ad U acts freely on the center
G of N, [3; 5.3], we have N = C' fΊΛf, which, together with Theorem 2.2,
yields the conclusion. q.e.d.

COROLLARY 2.11. If M is a σ- finite factor of type ΠI0, for any
faithful weights φ, ψ on M there exists a non-singular positive self-
adjoint operator h affiliated with the center Cφ of the centralizer Mφ

such that

CHAPTER II. INTEGRABLE WEIGHTS ON FACTORS OF TYPE III

II.O. Introduction. The aim here is to introduce and study a very
manageable class of faithful semi-finite normal weights (faithful weights
for short) on factors of type III. Those weights are called integrable

S
oo

σ{( )dt has a weakly

dense domain in the von Neumann algebra in question). They play the
role of a substitute for almost periodic weights which may fail to exist
on factors of type IΠlβ Like for almost periodic weights M is spanned
by the eigenelements for the modular automorphism group, which will
be shown using the Fourier transform of the function: t — * σ%(x). Though
no integrable weight is strictly semi-finite, there is still an unbounded
normal conditional expectation Eφ from M to the centralizer M99 and a
semi-finite normal trace τψ on Mψ such that τψ°Eφ — φ. Moreover, the
relative commutant of Mφ in M is the center Cφ of Mφ. Unlike almost
periodic weights, the integrable weights exist on any properly infinite
von Neumann algebra and even form a dense subset, for a very strict
topology, of the set of faithful weights of infinite multiplicity. In fact,
any faithful weights of infinite multiplicity is well approximated by
integrable weights commuting with it. Also unlike almost periodic
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weights, the integrable ones are easily classified, and among them there
is a largest one in the sense of the ordering defined in the preliminary
section LI, called the dominant weight. The dominant weight is uniquely
characterized, up to the conjugacy under the inner automorphism group,
by the fact that it is invariant within equivalence under the multiplica-
tion by any positive number.

The dominant weights appeared in fact already in the authors' pre-
vious works [3] and [301. It is shown in [3] that if M is an arbitrary
von Neumann algebra, and ω is a faithful weight on &(L\R)) such that
(Dω: DTr),, t e R, is the translation in L\R) by ί, then the weight
ω = φ®ω on M02(L\R)) does not depend, within equivalence, on the
choice of a faithful weight φ on M. It turns out that φ ® ω is dominant.
In [30], the weight τ dual to a trace τ on a semi-finite von Neumann
algebra N (yielding the continuous decomposition M — W*(N, R, θ)) was
studied. In fact, τ is dominant also.

The integrable weights are characterized by the σ-strong continuity
of the mapping: λ e R* —> gf (PM(ΦΪ) 6 ̂  Their study enables us to
determine the smooth flow of weights, i.e., the restriction on the flow of
weights $M to its σ-strongly continuous part. Integrable weights are
then classified, up to equivalence, by their multiplicity: a normal weight,
not necessarily semi-finite, on the smooth flow of weights. The smooth
flow of weights (PM, FM) is isomorphic, under a trivial change of scales,
to the restriction of the {θs} to the center CN of N in an arbitrary con-
tinuous decomposition M = W*(N, R, θ). When M is a factor, it is
ergodic and its kernel is precisely the invariant S(M) Γ) R*. In parti-
cular, it is trivial when M is of type ΪIlί9 which has striking consequ-
ences on faithful weights φ of infinite multiplicity: for example their
domain mφ is, up to conjugacy under inner automorphisms, independent
of φ. When M is a factor of type IΠ0, the smooth flow of weights is
isomorphic to the flow built on the restriction of θ to C — the center of
N under the ceiling function dτ°θ~ljdτ, in an arbitrary discrete decom-
position M = W*(N, θ).

ILL Dominant weights. Throughout this chapter, we shall keep
the following notations:

The Planαherel measure on R is denoted by dr, ds, dp, dq, •••, i.e.,

x the Lebesgue measure;
V 2π

The unitary of £(Z/2(Λ)) = F^ defining the Fourier transformation is
denoted by F, i.e.,
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Ff(p) - e-is»f(s)ds,fzU(K) Π L\R)

For each s e R, Vs is the unitary of F«, such that

/6 L\R) , p 6 Λ

For each έejR, C74 is the unitary of jFΌo such that

(Utf)(p) = f(p + t ) , fe L\R) , p e R

Also, F (resp. U) is the isomorphism of L°°(R) into .FΌo such that

y(exp(iί )) = Fί , έejβ ,

(resp. Z7(exp(iέ )) = ί/ί)

The usual trace on F^ is denoted by Tr, and (0 is the weight on
such that

THEOREM 1.1. Let M be a properly infinite von Neumann algebra
with separable predual.

( i ) There exists a faithful weight ω of infinite multiplicity on M
such that

ώ ~ λα) . λ > 0 .

(ii) The weight ώ satisfying (a) is unique up to equivalence.

PROOF. ( i ) Looking at ω on -Poo, we have

( * ) (DωVs: Dώ)t = V* UtVsUf - eίst ,

so that ωVs — e~sω, seR. By the proper infiniteness of M, we identify
M with P (g) jPoo, where P is a properly infinite von Neumann algebra
isomorphic to M. For any weight φ of infinite multiplicity on P,
ώ — φ (x) ω satisfies condition (i) on M since

\ω = φ®\ω ~ φt&ω — ώ , λ > 0 .

(ii) Suppose α^ and ω2 satisfy condition (i) on M — P(x)jPoo. By
Lemma 1.9b, we choose weights φ± and φ2 on P satisfying condition (i)
and such that

&i ~ 9 j ® Tr , j = 1, 2 .

For each s e jβ, there exists a unitary Xj(8) e P such that

(**) <Pi.zs(* = esφj i.e., a?i(Xd(8)) = ei8tXj(s) .

By the separability of the predual P* of P, we can select a Borel
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map: s e R ~> Xά(s) e P, j = 1, 2. Let Z, be the element of P (g) U(L°°(R)) =
(1 (g) U)(L°°(R, P)) corresponding to the above map: s — > X, (s). We have
then

Hence we get

Xfσΐ^(Xj) = (D(φ, (g) ω): D(φi (x) Tr)), , t e R .

Thus we have

φ3'®ω~ φj (g) Tr ~ ώy , j = 1, 2 .

By [3: Lemma 1.2.5], we conclude that

<*>ι ~ φ\ (g) <*> ~ ^2 (g) ω ~ <S2 .
q.e.d.

DEFINITION 1.2. A dominant weight on a properly infinite von
Neumann algebra with separable predual is a faithful weight of infinite
multiplicity satisfying condition (i) in Theorem 1.1.

THEOREM 1.3. For a faithful weight ω on a properly infinite von
Neumann algebra M with separable predual, consider the conditions:

( i ) ω is dominant;
(ii) ω — φ®ω in some factorization M^Pξ&Fc*, where P ~ M;
(iiϊ) ω is dual to the trace τ on N in a continuous decomposition

M = W*(N, R, θ) where τ°U8 = e~sτ, seR;
(iv) There exists a faithful weight ώr on M which does not com-

mute with ω but such that

( v ) ω ~ λώ, λ > 0.
Then ( i ) < = » ( i i ) < = » (iii) =» (iv). If M is a factor, then (iv) => ( v). More-
over if M is of type III, then ( v) => ( i ).

LEMMA 1.4. Let P be a properly infinite von Neumann algebra
acting on the separable Hilbert space !ζ)φ corresponding to a given faithful
weight φ on P.

(a) The weight ω — φ (x) ω is dominant on M = P (g) F<*.
(b) Afc - W*(P, R, σ*) on %φ (x) L\K).
(c) MZ is generated by the 1 (g) Ut, t e R, and the element of

P (g) V(L°°(R)) corresponding to the function: t e R — > σ?(αj) 6 P, a; e P.
(d) ΓΛβ αcέio^ θ* of R on W*(P, R, a*) = Λf« d^αZ to α^ is

0?(αO = (1 (g) F.M1 (x) Fs)* , a? 6 Mz, s e R .
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(e) There exists a faithful semi-βnite normal trace τ on M-0 such
that for any unitary w e M with ώw = λώ we have

where τw should be naturally understood since wH^w* — M».
(f) For any λ > 0, there is a unique automorphism Ff of the

center C^ of MU such that

Ff(x) = wxw* , x 6 GU ,

with any unitary w e M such that ώw — λά). Moreover, Ff is the re-
striction of θΐ.Losι to Cΰ

PROOF. Assertion (a) follows from the proof of Theorem 1.1. (i) and
the definition of a dominant weight.

(b) Let Aφ be the modular operator on SQφ associated with φ. By
definition, we have

Afϊ = ΛΓn{4 ί ® Ut:teR}' ,
so that the commutant M~ of MU in $φ (g) L\R) is the von Neumann
algebra generated by Mf = P'(g) C and A$ (x) Ut9 teR. It follows from
[30; Corollary 5.13] that Λfc - W*(P, R, a*) on Q9 (x) L\R).

(c) This is an immediate consequence of (b) and the definition of
TF*(P, R, a*}.

(d) This is easily seen by checking directly that ΘΨ

8 and Ad(l (x) V8)
agree on the generators considered in (c).

(e) If WL and w2 are unitaries such that ώWί = ώW2 then w2w* 6 Λfj;
so it is enough to find τ with τ o θl = e~sτ, sεR, which follows from
[30; Lemma 8.2].

(f) As in (e), we see that Ad w restricted to GU is independent, for
any λ > 0, of the choice of the unitary w 6 M with ώw = λώ. Choosing
w = 1 (8)K-Log;., we complete the proof. q.e.d.

PROOF OF THEOREM 1.3. Both weights of the form φ®ω and dual
weights f to a trace τ on N such that τ o θs — e~sτ, seR, are dominant
on M = P (g) Foo and M = W*(N, JB, θ) respectively. Hence the equivalence
( i ) < = > ( i i ) < = » (iii) follows easily from the uniqueness of dominant weights.

Let ωr be the weight on Fo* such that (Dω'\ DTr)t = Vtfte R. It is
easy to check that (D(φ (x) ft)'): D(φ 0 ω))t — 1 (x) (DωΊ Dω}t is not a one
parameter unitary group; hence for each weight of the form φ (g) ω
there exists a weight φ (x) ft)' — ά5' which does not commute with φ® ω
but whose modular automorphism group 0f ̂  commutes with σψ

s®
ω, s,teR.

Hence we have shown the implication (i)=>(iv).
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Now, we show the implication (iv) => (v) when M is a factor. Let
ut = (Dώr: Dω)t, teR. For each s, t e R and x e M, we have, by hypothesis,

utσ?+t(x)u? = σ? o σ*(x) = σf ° σ?'(x)

Hence ut and σy(ut) give rise to the same inner automorphism of M, so
that σζ(ut) is of the form f(s, t)ut, (M being a factor). Namely, ut is an
eigen operator of {σ?}; hence f(Sί + s2, t) — f(sL, £)/(s2, ί) for each slf sz, teR.
As uh+t2 = Utjάf^UtJ, we get

/(«, *! + £2) = f(8, ίO/(s, ί2) 5, ίi, ta 6 # .

Since / is a continuous function on R x R with modulus one, there exists
a real number a e R such that f(s, ί) — eίαsί. As ώ does not commute
with ω', we have aφ§. For λ > 0, let s = (1/α) Log λ. We have then

therefore ώUg = λα>.
We postpone the proof of the implication: (v) ==> (i) for a von Neumann

algebra of type III until the end of the next section. q.e.d.

Given two weights φ and ψ on factor M with commuting modular
automorphism groups σψ and σ^9 we have seen in the above arguments
that there exists a constant aeR such that

: Dφ)s , s, t e R .

DEFINITION 1.5. The constant a is called the Stone- von Neumann
constant of the pair φ and ψ , and denoted by a(φ, ψ>). It is clear that
φ and ψ commute if a(φ, ψ) — 0. When a(φ, ψ) Φ 0, φ and α^ are said to
be quasi-commuting.

THEOREM 1.6. Let M be an infinite factor with separable predual.
Let {ώl9 ώ2} and {ώ[, ω'2} be two pairs of quasi-commuting dominant
weights on M. Then the following two conditions are equivalent:

( ϊ ) There exists a unitary ueM such that

ωί}U = ω{ and ώ2>u = ώ'2

(ii) a(ώl9 α)2) = a(ώ[, ω'2) .

The implication: (i)=>(ii) is trivial. The proof of the reversed
implication requires further analysis of dominant weights, so we postpone
it until the end of III. 5.
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II.2. Integrable weights and the smooth flow of weights. In the sequel

$ 00
x(t}dt for a (/-strongly continuous

-00
function #(•) on R with values in the positive part of a von Neumann

S CO
x (t) dt 6 M to mean that the increasing net

S - o o
x(f)dt, K compact subset of R, is bounded above in M+, and of

K fco
course \ x(t)dt stands for the least upper bound.

J— 00

DEFINITION 2.1. Let φ be a weight on a von Neumann algebra M
with support e = 8(9). We say that <p is integrable if

{ f°° ")
cc e Me: \ σ%(x*χ)dt exists [

J — oo )

is dense in Me for the σ-weak topology.

As in the case of weights, we have the following properties:
(1°) qφ is a left ideal;

(2°) $φ = q*q^ is a hereditary *-subalgebra of Me;
(3°) $φ is linearly spanned by its positive part and

σ<l(x)dt exists

(4°) The integral

Eφ(x) -

makes sense for every x e jρφ and takes values in the centralizer Mφ of φ;
(5°) $φ is a two sided Jlf^-module and

Eφ(axb) ~ a,Eφ(x}b, x e ̂ , α, 5 6 M^

(6°) For any bounded increasing net {xt} in ̂  we have

jE^sup Xi) — sup Eφ(xt) ,

where sup xi is not necessarily in $, and so we understand the above
equality in the extended sense allowing + oo as its value;

(7°) φ is integrable if and only if $ contains an increasing net of
projections converging σ-strongly to 1.

THEOREM 2.2. For a weight φ on a properly infinite von Neumann
algebra M with separable predual, the following three statements are
equivalent:

( i ) φ is integrable;
(i i) The map: λ 6 R$ H^ gf pM (φ) e 3βM is σ-strongly continuous;
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(iii) φ •< ω for some, and hence all, dominant weight ώ on M.

The proof of the implication: (i) => (iii) relies on the following:

LEMMA 2.3. For an integrable weight φ on a von Neumann algebra
M, the following statement hold:

(a) For all y£$φ and λGjBJ, the integral

-
J

belongs to M(σφ, {λ}), i.e., σψ

t(yλ) = \uyλ, teR;
(b) )pφ is a two sided module over Mφ with

= xyλz, x, zeMφ and y e jpφ, λ

(c) Let W9 be the algebra of analytic, (entire), elements for σφ. Then

φ Π tv is a σ-weakly dense *-subalgebra of M and

(d) For any pair elf e2 of projections in Mφ which are not centrally
orthogonal in M, there exist a λ > 0 and a partial isometry u e M(σφ, {λ})
such that

PROOF, (a) This follows immediately from the observation that for
each ijr 6 ΛΓ#, the function: t e R h-» ψ(al(y)) is integrable if y belongs to Jv

(b) If xe$φ and y e Mφ, then we have σ%(y*x*xy) = y*σ%(x*x)y, t e
R. Hence our assertion follows.

(c) For any x 6 Jjj and non-negative / 6 L\R), we have

tffKM) - Γ f(8)σΐ+t(x)ds .
J-oo

Hence a direct application of Fubini's theorem shows that
hence σ^^c^ for any feL\R). Choosing / to be n1/2π~ί/z

we conclude the density of Wφ n ̂ . For any y eWφ n ̂  and ψeM*, the
function: t e R \-+ψ(σφ

t(y)) is analytic and integrable, so that the Fourier
inversion formula applies.

(d) There exists a y eM with βa^ ̂  0. It follows from (c) that
there exists an x e Wφ n tv with ^α;̂  ̂  0. By (c) once again, z — (β2#

βι)Γ ̂  0
for some λ 6 J?i. Now let z = uh be the polar decomposition of z.
We have then heMφ and w 6 Λf(<7?), {λ}), and also e2u = uβi = u by con-
struction, q.e.d.
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LEMMA 2.4. If φ is an integrable weight on a von Neumann algebra
M, then we conclude the following:

(a) Any other weight ψ on M with ty -< φ is integrable;
(b) The tensor product weight φ ® <fy on M ® N with ψ an arbitrary

weight on another von Neumann algebra N is integrable.

PROOF, (a) It is clear that any weight equivalent to an integrable
one is integrable, and it follows from property (5°) fop $φ that any
subweight of an integrable weight is integrable. Thus the assertion
follows.

(b) Use that the algebraic tensor product $φ (x) N of $φ and N is
contained in $φ®ψ. q.e.d.

PROOF OF THEOREM 2.2. (ii) => (iii): Let e = pM(φ) and / = yλBQ gf (β).
By assumption, each f$f(e), λ > 0, is a σ-strong limit of $fn(e) for some
sequence {λw} in Q, so that / = V*>oSf(β) is a σ-finite invariant projection.
By Theorem 1.1, we have / = px(ώ) with ώ a dominant weight. Hence
e <i pM(ώ) Therefore we get φ -< φ -< ώ.

(iii) =* (i): Let ω be the weight on F* = 8(I/2(1?)) defined above. It
follows that for each f eL~(R),σ?(V(f)) =V(ft) where /t(β) = /(β + t),
so that we have F(Iί°°(JZ) Π L\R)) c £ω. Hence ω is integrable. Therefore
the integrability of a dominant weight ώ follows from Theorem 1.3. iii
and Lemma 2.4.b. Hence Lemma 2.4.a entails the integrability of any φ
with φ < ώ.

(i) =» (iii): We first observe that given a dominant weight ώ on M,
the weight ψ on P = M® F2 defined by ψ<Σ »ιy Θ^ ) = φ(xίί) + <S(x22) is
integrable if φ is. Let β ® βn, β e M"̂ , be a non-zero subprojection of
s(0>)®βu in P .̂ Since β®βu and I®β22 are not centrally orthogonal in P,
there exists, by Lemma 2.3.d, a partial isometry v in P belonging to
P(σφ, {λ}) for some λ > 0 such that v*v <ί e (x) en and 'yv* ^ 1 (g) β22. Let
w be a unitary in M(σω, {λ""1}), where the existence of w is granted by
Theorem 1.3. Then (w (x) e22)v belongs to P+. Thus we have shown that
any nonzero subprojection of s(φ) ® eLί in P^ is not disjoint from 1 (g) β22,
with respect to P .̂ As ώ is of infinite multiplicity 1 (g) e22 is a properly
infinite projection of P ,̂ so that s(φ) (g) βn -< 1 (g) e22 in P ,̂ which means
that 9) •< ώ, cf(1.1.4.b).

(iii) => (ii): Since pM(φ) — Px(φ) for any weight φ, we may assume
that φ is of infinite multiplicity. It follows then that φ ~ ώp for some
projection p in the center C- of the centralizer MU. By Theorem 1.3,
with a continuous decomposition M — W*(N, R, θ) of M, ώ is dual to a
faithful semi-finite normal trace τ on N such that τ°θs = e~sτ. Denoting
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the one parameter unitary group generating M together with N by
(u(s): s e R}, we have α)w(β) — e~sω. We have then

e- φ = e-'ώp = (e-'ώ)p = (ώw(β))2,

— [<S08(2»)]w(8)

Hence we have

where p^ is the isomorphism of Cfc into φ,¥ defined in Theorem 1. 1.11.
Since the map: s e R ι-> #s(p) e C^ is σ-strongly continuous, the map: λ e
-B* H> gf (PM(<P)} is ^-strongly continuous. q.e.d.

COROLLARY 2.5. .For α properly infinite von Neumann algebra M
with separable predual, the following three statements hold:

( i ) There exists a largest σ-finite projection dM e tyM such that the
map: λ 6 JBJ H* gf (d) is σ-strongly continuous]

(ii) pΛf(ώ) = djf >

where F% is the automorphism of Cΰ defined in Lemma 1.4;
(iii) For each continuous decomposition M = W*(JV, J?, ^), the res-

triction of the action: λ— *θ__lΌSλ of R* to the center CN of N is isomorphic
to the restriction of glV to (^f)rf¥.

PROOF. With dM = ^(ώ), our asssrtions follow immediately from
Theorem 2.2 or its proof. q.e.d.

DEFINITION 2.6 For a properly infinite von Neumann algebra M with
separable predual, the couple {PM, FM] consisting of the reduced von
Neumann algebra (^>M}dM and the restriction FM of the action gp¥ of R^
is called the (smooth) flow of weights of M.

The map pM is clearly an order preserving bijection from the set of
equivalence classes of integrable weights of infinite multiplicity to the
set of projections of PM. We now describe the set of equivalence classes
of integrable weights of arbitrary multiplicity. To this end, we need the
following regularity property of integrable weights.

LEMMA 2.7. For an integrable weight φ on a properly infinite von
Neumann algebra M with separable predual, there exist a σ-weakly dense
*-subalgebra cφ of M contained in mφ n fV, which is a two sided Mφ-module,
and a unique faithful semi-finite normal trace τψ on Mφ such that
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τφ°Eφ(x) = φ(x) , x 6 cφ ,

where Eψ is given by the integration:

Eφ(x) = Γ σφ

t(x)dt .
J—00

PROOF. By Theorem 2.2, we may assume that φ is dominant, because
if the conclusion of this lemma holds for an integrable weight, then it is
also true for all subweight of this weight. By Theorem 1.3, a dominant
weight ώ is dual to the trace τ on N in a continuous decomposition
M = W*(N, R9 θ) where τ°θs = e~sτ, seR. Therefore, we must show that
τ and ω are connected by the formula

for each x in some σ- weakly dense *-subalgebra c- of M, which is a two
sided JV-module. This is not entirely trivial; but it can be shown by
a routine rearrangement of the arguments in [30; Lemma 5.19]. Thus
we leave it to the reader. q.e.d.

THEOREM 2.8. Let M be a properly infinite von Neumann algebra
with separable predual and no type I component.

( i ) For each integrable weight φ on M, there exists a unique
normal, but not necessarily semi- finite, weight vφ on PM such that

for every integrable weight ψ on M.

(ii) The map: φϊ-*vφ is a bisection from the set of equivalence
classes of integrable weights on M onto the set of normal, but not neces-
sarily semi-finite weights on PM, which enjoys the properties:

PROOF, (i) For each xe(PM)+, we put

vφ(x) = τφop-\χpM(

Since pφ(cφ(ψ)) = pM(φ}pπW by Theorem 1. 1.11, we get

(ii) By construction vφ only depends on the equivalence class of φ.
Let ώ be a dominant weight on M. Making use of pz, we identify PN

with the center C« of M^. Every integrable weight is equivalent to a
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weight of the form ώe for a projection β e A f c by Theorem 2.2. Since
M has no type I component, MU is of type ΠL by [30; §8], so that any
normal weight v on the center Cΰ of MU is of the form

v(x) = τ-(βίϋ)

with e a projection in MU Hence the weight v is of the form y-e. Thus
the map: 9? M> vφ is sur jective. Let ^ = ωej, j — 1, 2, where ^ and e2 are
projections in Λfc. Then we have

y/(aO = r«(&e,) , x 6 C£ .

It follows then that ^ •< e2 in Λf« if and only if i^ ̂  V2, and that if ^
and e2 are orthogonal, then ^ + v2 = ιvl+ίv Finally, for each λe.β*,
integrable weights φ and f>, we have

q.e.d.

We now finish the proof of the implication: (v) => (i) in Theorem 1.3
for a von Neumann algebra M of type III. Suppose φ is a faithful
weight on M such that <£> ~ \φ, λ > 0. By definition, 9? is dominant, so
that φ is integrable. By the last equality in Theorem 2.8.(ii), we have
vφ°Ff = λv^. Identifying PM with the center C^ of the centralizer
MU of a dominant weight, the largest projection eeC^, such that ι̂
is semi-finite on C^e, is invariant under F% , λ > 0. Hence it follows
from Lemma 1.4 (f) and [30; Theorem 8.5] that e is a central projection
of M. By [30; Lemmas 8.9 and 8.10] and [30; Theorem 8.6], Me must
be semi-finite. Hence we have e = 0. Therefore, vφ has no semi-finite
portion, which means that φ is of infinite multiplicity. Thus φ is dominant
by definition. This completes the proof.

II. 3 Computation of the smooth flow of weights (1). First of all,
we state a consequence of §§8 and 9 of [30] in terms of the smooth flow
of weights as follows:

THEOREM 3.1. For a properly infinite von Neumann algebra M with
separable predual, the smooth flow of weights on M is ergodie if and
only if M is a factor. Moreover, Ff = 1 if and only if λeS(lf) Π-R*.

Therefore, we conclude another immediate result as follows.

COROLLARY 3.2. Let M be a factor of type II^ with separable predual.
( i ) Two integrable weights φ^ and φ2 are equivalent if and only

if τPl(l) = rft(l);
(ii) Any integrable faithful weight of infinite multiplicity is

dominant.



506 A. CONNES AND M. TAKESAKI

Thus, the smooth flow of weights on a factor of IIΪL with separable
predual is trivial. We now compute the smooth flow of weights in the
other cases. First, let N be a semi-finite properly infinite von Neumann
algebra acting on a separable Hubert space φ, and τ a faithful semi-finite
normal trace on JV. We identify the center C of N with L°°(Ω, μ), where
Ω is a compact metrizable space and μ a positive Radon measure on Ω.
Let

Φ = [+Q(oί)dμ(a\ N = \®N(a)dμ(a), τ = (\adμ(a)
J Ω JΩ JΩ

be the direct integral decompositions with respect to C. For a weight
ω on N, there exists a unique positive self-adjoint h affiliated with N
such that

h* = (Dω:Dτ)t , tzR .

Also, this gives rise to a measurable field h(ά)iϋ of continuous one par-
ameter unitary groups on Ω such that

LEMMA 3.3. In the above situation, if a) is integrable, then for almost
every aeΩ, the weight a)a on N(a) determined by (Dωa: Dτa)t = h(a)u is
integrable.

PROOF. Let x be an element of J>ί with

SΘ ΓΘ
x(a)dμ(a) and Eω(x) = I y(ά)dμ(a) .

Ω Jβ

It follows then that

Γ huxh~udt ^ Eω(x) for n > 0 .
J —n

Hence we have, for almost every aeΩ,

*dt ^ y(a) .

S °° _h(a)ux(a)h(a)~udt exists for almost every a e Ω.
-00

Let A be a countable σ-strongly dense subset of $+. Then we can choose
a null set E in Ω such that

S CO
h(aY*\

-co

exists for every a? 6 A and a$E. Since we can choose another null set
F in Ω such that {^(α:):α;6A} is α-strongly dense in N(a)+ for every
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a ί F, we conclude that ^a is σ-strongly dense in N(at)+ for every
a g E U F. Thus almost every ωa is integrable. q.e.d.

Therefore, we may assume, deleting a suitable null set from β, that
each ωa is integrable. By Theorem 2.2, ωa is subequivalent to a dominant
weight ώa on N(ά). By construction, see Theorem 1.3, the Radon-Nikodym
derivative of ώα with respect to the trace τα has a spectral measure
which is equivalent to the Lebesgue measure d\ on R* in the sense of
absolute continuity. Therefore, h(a) has a spectral measure which is
absolutely continuous with respect to dλ, and so equivalent to a measure
of the form eadλ, with ea the characteristic function of a measurable
subset Ea of R$. We define a map p from the set of integral weights
on N to the set of projections in L°°(Ω x R*, dμ (g) rfλ) by

SΘ
eadμ(a) e L°°(β x R*,

0

We observe then that p is an isomorphism of the smooth flow of weights
on N onto L°°(fl x jRί, dμ (x) (Zλ) equipped with the flow defined by the
action: (a, v)—>(a, λ"1^), λ e Λ ΐ , of R$ on β x J?ΐ.

THEOREM 3.4. Leέ Mbe a factor of type IIIλ, λ=£l, αm£ 99, JV, 0, {/on}wez,
E and I be as in 1.2. As above put L°°(Ω, μ) = C = Center of N and let
0o be a, non-singular transformation of {Ω, μ} corresponding to the res-
triction of θ to C, that is, θ(f)(a) — f(θ^a\ aeΩ, for every feC.

( i ) For any weight a) on N, ω°E is integrable if and only if ft)
is integrable.

(ii) If ψ is an integrable weight on M, then ψ~a)°E for some
integrable weight ω on N such that (0 = τ(h } and s(h) ^ h < p^s(h).

(iiϊ) In statement (ii), p(ω) only depends on ψ and the mapping:
ψ H> p((ι)) is an isomorphism of the smooth flow of weights on M onto

the flow built on the transformation Θ0 under the ceiling function p~~l.

PROOF, (i) Let ψ = ω o E. It follows then that the restriction of
of to N is nothing but σf. Hence if ω is integrable, then t>ω contains a
sequence of projections converging σ-strongly to the identity 1. But
ί>ωc^. Hence α/r is integrable. Conversely, suppose ψ» is integrable.
Put e — pN(ω} and e = V^=-oo θ*(e)9 where θ is the automorphism of ̂
corresponding to θ. By Corollary 1.2.8, we have I(β) = I(e). By assumption,

we have I(β) = pM(ψ ) ̂  d^. Since I is an isomorphism of (^NY onto Sβ^
intertwining the flows S^|(¥^ and g3f, the map: λ e ΛJ -+ gf (e ) is σ-
strongly continuous by the ^-strong continuity of the map: λ e Rl H*
Sf /(e) 6 φ .̂ Hence we get e" ̂  dN, and so e ̂  d^. Thus ω is integrable.
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( i i ) This is a direct consequence of Remark 1.2.7 and (i).
(iii) By virtue of Theorem 1.2.2 and Remark 1.2.7, the equivalence

class of ω is uniquely determined by the equivalence class of α/r = ω°E
under the condition that s(h) ^ h < p^8(h) and ω — τ(h }. Hence p(ω)
is uniquely determined by the equivalence class of .̂ Denoting by d
the projection in L°°(Ω xR$,dμ® d\) corresponding to the set Γ — {(a, λ) 6
ΩxRl: l^\<p~1(a)}, the condition, s(h)^*h<ρ_1s(h'), is equivalent to the
condition, p(ω) <; d. We identify, by means of p, the smooth flow of
weights on N with L°°(Ω x R$, dμ ® ώλ) equipped with the flow given
by the multiplication of jβj on the second component. We have then
θp(ώ) = p(ωoθ~1) for every integrable weight ω on N. Since ωh°θ~~l =
φp^θdi] with ωh = τ(h ), θ corresponds to the non-singular transformation:
(a, λ) e Ω x #ί -» (00(O, j0_1(00(aO)λ) = (00(α), p~l(a)\} e Ω x R$. Thus, our
assertion follows from Corollary 1.2.8. (iii). q.e.d.

We now summarize what we know about the smooth flow of weights
for infinite factors with separable predual:

Type Hoc*. The flow (PM, FM) is isomorphic to the flow coming from
the action (by multiplication) of R% on R$.

Type IΠ0: For any continuous decomposition M = W*(N, R, 0),
(PM, FM) is isomorphic to (C — the center of N, 0Log^ restricted to C).
For any discrete decomposition M = W*(N, θ), (PM, FM} is isomorphic to
the flow built on the restriction of θ~l to C — the center of N, under
the ceiling function dτoθ^/dτ.

Type III*, λ Φ 0: The flow (P ,̂ ί7^) is isomorphic to the flow coming
from the action, by multiplication, of R% on R$IS(M) Π R*

Π.4. Regularization of weights of infinite multiplicity. We show in
this section how to approximate, by integrable weights, an arbitrary
weight φ of infinite multiplicity on a fixed von Neumann algebra M with
separable predual. In fact, the approximation will take place in a very
strict topology on the set of weights that we shall discuss first.

DEFINITION 4.1. (One Parameter Family of Orderings) For a positive
real number λ > 0 and a couple φ19 φ2 of weights on a von Nummann
algebra M, we write

9ι ^ φM

if the map: teR—>(Dφ2: Dφ^t = ut is extendable to a continuous function
ug on the horizontal ssrip D_λ = {zeC: — λ ^ Im2 ^ 0} which is holo-
morphic inside D^ = {z6C: —λ < Im2 < 0} and \\u9\\ ^ 1, zeD_λ.
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LEMMA 4.2. The relation "φ± <j 9>2M" °n the set of faithful weights
is indeed an order relation.

PROOF. Trivially φ <1 <p(λ). Suppose φ± ^ φz(λ>) and <PZ ^ φzOΨ Let
uΐj = (Dips. Dφ^t, i, j — 1, 2, 3. By assumption, ul'1 and ul'2 have extensions
ulΛ and ul'2 on D__λ. It follows then that uβ = ^ϊ 8 '̂1 is a continuous
function on S_^ holomorphic in D_;, and ^ = ul*1 by the chain rule on
the cocycle Radon-Nikodym derivatives. Obviously, \\u,\\ ^ \\ul'*\\ \\ulΛ\\ ̂
1. Thus cpi ^ 2?3(λ).

Suppose ^ ̂  φz(λ>) and ^2 ̂  9>ιM Then M2;1 and %ί'2 have extensions
ul'1 and '̂2 on D_λ. But we have ^jl = (^ί'2)*. Let ψ be a normal state
on M, and put f(z) = f (ul'1) and g(z) = f ( '̂2), » e .D .̂ Since /(ί) - ^(ί)
for real ί, / is extended to a continuous function on

Dλ = {z 6 C: 0 ̂  Im « <; λ}

which is holomorphic inside the strip A. Hence / is holomorphic in
Dλ U D_λ U /ί. But we have /(O) = 1 ̂  /(^) for every «. Hence by the
maximal modulus principle, we have f(z) = 1 for every z. Hence ul>l = 1,
that is, φ± = 9?2. q.e.d.

The ordering corresponding to λ = 1/4 was analyzed in [5; Lemma
3.13] for states on M, and the one corresponding to λ = 1/2 was shown,
in [6], to be the usual ordering on weights: φλ <£ 9>2(l/2) if and only if

PROPOSITION 4.3. Leέ M be a von Neumann algebra and let P =
) F2. For faithful weights φ^ and φ2 on M, put

The condition, φ^ ^ φ^00), is equivalent to the condition that 1 (x) e21 G
, [0, oo)).

PROOF. Our assertion follows from a more general one. With an
arbitrary continuous action a of R on P, a? belongs to P(a, [0, oo)) if and
only if for each α/rGP*, the Fourier transform, in the sense of tempered
distributions, of the function: t e R H* ψ(at(x)) has its support contained in
[0, oo ); hence by the Paley- Wiener theorem, if and only if the function:
£ G R H> at(x) G P is extended to a bounded holomorphic function on the
upper half plane D^. Taking σt — σf and x — 1 ® e2ι> our assertion
follows. q.e.d.

DEFINITION 4.4. For a pair of faithful weights φ± and y>2 on M,
we put
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φ2) = inf {a > 0: φt <^ eaφz(^} and < 2̂ ̂

From Lemma 4.2, it follows that d is a distance function on the set
2B5i of faithful weights on M with values in the extended positive reals
[0, co ]. We note that if d(φlf φ^< + °° , then the function t 6 R h-> (.Dyy -D î)*
extends to an entire function. The topology on 3S°, associated with d
will be called the uniform topology.

PROPOSITION 4.5. (i) The set SB^ of all faithful weights on a von
Neumann algebra M with metric d is complete, and the function: φ e
3B5ί ~* <£>(#) € Λ+ is continuous for every x e Af+.

(ii) For any normal states φt and φ2 on M,

<PI - φ*

We need the following lemma in order to prove the above result:

LEMMA 4.6. For any ε > 0 and R > 0 there exists δ = <5(ε, J?) > 0
such that if f is a Banach space valued entire function such that

|| ^ eδllm", ^ eC, then we have

PROOF. Let £Γ be the space of all entire functions equipped with
the compact open topology. Let Dλ, λ > 0, be the set of all entire func-
tions / with \f(z)\ ^ e* |Imβ|, zeC. It follows then that Dλ is a compact
subset of H for each λ > 0, and fh>o A = {«!: |α ^ 1, α 6 C} = D0 Put

Ge,E - {/efΓ: I/O) - /(0)| < ε, z\ £ R} .

Clearly Gε>R is an open subset of H and G9tR ID Z?0 Hence, by compactness,
there exists d = <5(ε, 5) such that Dδ c GβfB.

Now, let £7 be a Banach space and / be an ^-valued entire function
such that ||/0)|| ^ e ί | lmβl, ^eC. For any φeE*, \\φ\\ ^ 1, the function:

C belongs to Dδ; hence to G£jjB, so that

Thus we get, for any \z\ <Z R,

I I/O*) - /(0)|| - sup{(^(/0)) - φ(fm\ <peE*9 \\φ\\ £ 1} < ε .
q.e.d

THE PROOF OF PROPOSITION 4.5. ( i ) Let φλ and φ2 be faithful weights
on M and d > 0. Assume that φl <; βδ^2(oo) and < 2̂ <; eVι(°°) Let (w« ^ e c}
be an entire function such that ut = (Z?9>2 -D^ι)ί> * e Λ Since

(Dφ2: D(eδ

φι)\ - β-*"wt
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and (Dφ^. D(eδφ2))t = e~iδtuf we have

uz

δllmzl

Hence, if <5 = δ(ε, R) for any ε > 0, then

by Lemma 4.6. Therefore, with a fixed faithful weight φ on M such
that d(φ19 φ) — a < + oo , we have

~ (Dφι: Dφ).\\ =

R .

This shows that if {φn} is a Cauchy sequence in 3B5ί with respect to the
metric d, then (Dφn\ Dφ)z converges to vz uniformly on every bounded
part of C; hence the function: z e CΉ* vz 6 M is entire, vβ+ί = 0̂1̂ ), s, έ e
Λ, and each v9 is a unitary. By [3; Theoreme 1.2.4], there exists a
faithful weight ψ on M such that (J0ψ>: ΰ<p)ί = vteR. In other words,
for any faithful weight φ on M, (Dφn: Dφ)z converges to (Zty: Dφ)z uni-
formly for I z \ ̂  R. For any ε > 0, choose m > 0 such that || (jD^: J9φ»)f || ̂
β.ιimβ| for any ^ ̂  m. it follows then that ||(Zty: DφJ,\\ ^ βe|Im^', ^ eC.
Hence we have d(^r , ^>m) g ε. Thus <ψ is the limit of {φn}, that is, the
metric d is complete.

The continuity of the function: φ ι-» 97(0?), ff 6 M+ follows from the
observation:

if d(φ19 φz} <* S.

(ii) If d(φί9 φ2) ^ ε, then we have

(<Γε - 1)̂  <; 9?2 — 9>! ^ (ee ~ 1)̂  in

hence for faithful normal states φ^ and φ2, we get

^ 2 max {βe — 1, 1 — β~δ} ̂  4ε . q.e.d.

THEOREM 4.7. If φ is a faithful weight of infinite multiplicity on
a von Neumann algebra M, then for any ε > 0 there exists an integrable
weight ψ of infinite multiplicity commuting with φ such that d(φ, )̂ < ε.

PROOF. Let ε > 0 and φ be given. Let F^ be a type L, subf actor
of Mψ and A, 1 — ε <; ft <Ξ 1 + ε, be an element of F^ which has absolutely
continuous spectrum only and such that {h}' Π F^ is properly infinite.
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We claim that the weight Tr(fe ) on F* is integrable, that is, there exists

S CO
h^eji'^dt

— 00
exists for each n = 1, 2, and lim en — 1. If this is the case, then
α/r = φ(h ) is an integrable weight because (Dψ: Dφ)t = hu and σf(x) =
h^σ^x^h'^, hence <τf (eΛ) = huenh~Ut, thus βΛ 6 Jty, and we have d(<£>, <ψ) ^ ε.
Therefore, we must show the above claim. Since the quasi-equivalence
class of a unitary representation of R is completely determined by the
equivalence class of the spectral measure in the sense of absolute con-
tinuity of measures, the one parameter unitary group hu

9 1 e R, is quasi-
equivalent to a subrepresentation of the regular representation Ut of R.
This means that the weight Tr(fe ) is quasi-equivalent to a subweight of
a dominant weight on F^. Therefore, our claim follows. q.e.d.

COROLLARY 4.8. If M is a factor of type 11̂  with separable predual,
then for any pair φ19 φ2 of faithful weights of infinite multiplicity on
M and any ε > 0 there exists a unitary u such that d(φί)U, φ2) < ε.

PROOF. Let ψ^ be integrable weights of infinite multiplicity such
that d(φh ψv) < ε/2, j = 1, 2. By Corollary 3.2, (ii), there exists a unitary
u e M such that ψltU = ψz. Now, we have d(φί}U, ψ l f J = d(φ19 ΨΊ), and
hence

d(φlιu, φz) ^ d(φ19 <fj + d(Y2, φ2) < ε . q.e.d.

REMARK 4.9. In the same situation as above, for any ε > 0 there
exist hi 6 Mφi9 1 — ε ^ ^ ^ l + ε and a unitary ^ 6 M such that

<£>2(x) — φ^hzUhiXh^hz) , x 6 M+ .

COROLLARY 4.10. If M is a factor of type IIIλ, λ > 0, with separable
predual, then for any pair φ19 φ2 of weights of in finite multiplicity on M
(φ0 (V) = + oo y j — l? 2, is enough when λ =£ 1) tfeere βα isίs α unitary ueM
such that

where mψj means, of course, the domain of φ3 .

PROOF. The case λ — 1. In the proof of Corollary 4.8, ψ3> was taken
to be φs(hj ) with hszMφ.9 1 — ε ̂  hj ^ 1 + ε, j = 1, 2. By [24; Prop.
3.3. ii], we have m^. = mφj, j = 1, 2. Since τ/r2 = ^1>tt for some unitary
t6 6 Λf, we have

The case λ ^ 1, and (̂1) = 9?2(1) = +00. Let T = — 2ττ/logλ, and

2, λ ^ fey ̂  1, be elements of Mφ. such that
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= h?xhjiτ , xeM . (cf. [24; Chapter III].)

Then ψs = φ^hj1 ) is a generalized trace on M for j = 1, 2, because
ψv(l) = ^X^Γ1) = + co Since m .̂ — m .̂, our assertion follows from [3;
Theoreme 4.3.2]. q.e.d.

CONJECTURE. A factor M is of type IIIj. if and only if the orbit
{φu: ueUM} of any normal state φ is dense in the set of all normal states
in the norm topology; more precisely if and only if for any pair φ, ψ>
of normal faithful state and ε > 0 there exists a unitary ueM such that

^ φu £ (1 + ε)^ .

II. 5. Relative commutant theorem.

THEOREM 5.1. // α/r is an integrable faithful weight on a von
Neumann algebra M with separable predual, then

PROOF. We first note that the existence of an integrable faithful
weight implies the proper infiniteness of M. We shall use the notations
and the conventions established at the beginning of ILL Let M — PξQF^
where P is isomorphic to M and fix a faithful normal state φ. Considering
the cyclic representation of P induced by φ, we assume that P acts on
a Hubert space 4? containing a cyclic and separating vector ξ0 such that
φ = ωξQ. We then represent M = P (g) F«> on L\$, R) = $ (g) L\R). Let
ω be the weight on F^ such that (Dω: DTr)* — Ut9 teR, and ω = φ®ω.

We observe next that, replacing ψ» by φ, one can assume that ψ is
of infinite multiplicity. As 9? (x) ω is a dominant weight on M , Theorem
2.2 shows that ψ ίg isomorphic to a subweight of φ (x) ω. It is hence
enough to prove the theorem for φξζ)ω. By Lemma 1.4, M» is generated
by l(S)U(LGO(R)) = l(x)Fω and r(P), where π is the faithful normal
representation of P on I/2($; /Z) defined by

ττ(a?)ί(8) - σφ_s(x)ξ(s}, ζ e L2(φ; R) , xeP .

Since jPω is maximal abelian in F^, it is sufficient to prove the following
inclusion:

( * ) P (x) U(L-(R)) n 7Γ(P)' c PΨ ® U(L-(K» .

We denote by U the isomorphism I(x)ϊ7 of P(x)L°°(/2) - L°°(P; 12) onto
P (x) U(L~(RΊ) and put 0t - Ad(l (x) Ft), ί 6 /ί. Since Vt U(f) V? - U(ft\ f e
L°°(R), where ft(s) — /(s — ί)> we have

, aeL~(P;R),
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where at(s) = a(s — £). For every continuous function f on R with
compact support, we have, for each a e L°°(P; R),

θf(U(a» - \f(t)θt(U(a))dt = U(af) ,

where α/(s) = \f(t)a(s — t)dt. Since l®Vt and π(P) commute, θt leaves

π(P) pointwise fixed; hence θt leaves π(P)' globally invariant, and hence

θt(U(L~(P: R}} Π π(P)') c J7(L°°(P: R)) n π(P)' .

Therefore, if Z7(α) belongs to U(L°°(P; R)) Π π(P)', Ϊ7(α/) belongs to

#(L"(P; R)} Π π(P)'

for each continuous function / with compact support. Since α/ approxi-
mate a arbitrarily well in the σ-strong* topology, in order to prove (*)
it suffices to verify that U(C(P\ R)} n π(P)' c U(C(Pφ] Λ)), where C(P; R)
(resp. &(Pφ; R)) denotes the *-algebra of all σ-strong* continuous bounded
P-valued (resp. Pφ- valued) functions on R. Since FUtF* ~Vt,t£ R, we
have (1 (x) F)U(C(P; Λ))(l (g) J?7)* - C(P; Λ), where C(P; Λ) is represented
on L2(£; Λ) by

aξ(8) = α(8)ί(β), α 6 C(P; JZ), ί 6 L2(φ; R) .

Therefore, putting F = 1 (x) F, we must show the following inclusion:

(**) C(P; Λ) Π Fπ(P)'F c C(P ;̂ JZ) .

The proof of (**) follows from the next two lemmas:

LEMMA 5.2. Let a e C(P; R),xeP and f, g e Cc°°, wfoere Cc°° = CC°°GR),
the space of all C°°-functίons on R with compact support.

(a) (Fπ(x)F(ξQ (x) /) | α*(£0 ® flr)) = β«('-«/(p)ff(ίMα(?)αf (a?))

where for p and q the order of integrations is irrelevant.
(b) If a commutes with Fπ(x)F*, then we have

PROOF, (a) We have
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where the order of integration does matter. Then assertions (a) follows
from the definition of the scalar product in L2($; R) and the equality:

q,teR.

(b) By hypothesis, we have

( J J γs(^f(p}g(q}φ(a(q)σ^s(x))dpdqds)

- (Fπ(x}F*(ξQ (x) /) I α*(fβ (x) 20)- - (Fπ(x*)F*(ξQ (x) £)|(ί0 (x)/))

.

But 0^ is the modular automorphism group for φ, so that for each p e R,
there exists a bounded holomorphic function G(z, p) on the strip, 0 <;
Im z ̂  1, such that

G(s, p} - φ(σ*.(x)a(p)\ G(s + ί, p} = φ(a(p)σ

We have then

= {(eisp(Fg)(s)f(p)G(s, p)dsdp by Fubini^s theorem .

Since the function: z —> eizp(Fg)(z)G(z, p} is holomorphic in the strip, 0 <;
Im z < 1, and decays exponentially along horizontal line, the above integral
becomes

+ i, p)dsdp

i)f(p)G(β + if ^)dpdδ

by Fubini's theorem ,
= S S ̂ ^̂ '̂ '̂ /(̂ (̂̂ w )̂̂ -̂ )̂̂ ^8

by Fubini's theorem, q.e.d.

LEMMA 5.3. // H(q, s) is a bounded continuous function of two real
variables (q, s) e R x R such that for each f, g e C?,

, s)dpdqds - (s+i^f(p)g(q)H(q, s)dpdqds ,
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then H(q, s) = H(q, 0), (g, s) e R x R.

PROOF. Let Hl and H2 be the distributions on R x R defined by

, s)dpdqds , / e

By hypothesis, we have </ (g) #, j^) = </ (x) #, #2>, /, # e Cr(-R), so that
JΪ! - #2 by the density of C~(R) (g) Cr(Λ) in Cr(Λ2). Hence we have, for
any /eCr(/22),

r, g)H(g, s)drdqds = eisre~rf(Q + r> ΦH(q + r, s)drdqds .

Since the functions: (r, g) ι-> f(q + r, g) exhaust all of C™(R2), we have

, s)drdqds - ίίίeίsre~r^(r, t - r)H(t, s)drdtds

for every g e C™(R2). Let H be the distribution on R2 given by

, s)dpdqds , g e

Being the partial Fourier transform of the bounded continuous function
H, the distribution H is tempered. We define a linear transformation
T on Cr(.B2) by

(Tg)(p, g) - e-'g(p, q - p) , ge C~(R*) .

We have then <(1 - T)g, H) = 0, g e Cr(Λ*). For an / e CΓ(Λ2) with supp
/ Π {0} x -R = 0 , we define a sequence {#„} in Cr(-B2) by

Σ e~kpf(p, q - kp) if p ^ 0
k=Q

n>

if
4=0

It follows then that

[(1 - T)g.](p, q) = f ( p , q) - β-( +1"/(p, ? - (n + l)p) for p ^ 0

[(1 - DfifJCP, 9) = f ( p , q) - β-<"+1»/(p, g + (w + l)p) for p £ 0 .

Hence (1 — T)gn— >•/, as ίi-^ oo in the space @(β2), so that

</, #> = lim <(1 - Dflί., ^> = 0 .

This means that supp H c {0} x J?, so that
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jjβ' '/teXHfa s)dpds = 0

for every / e C?(R) with supp / $ 0. Therefore, H(q, s) is a polynomial
in s for each fixed q, but being bounded, it has to be independent of s.

q.e.d.

END OF THE PROOF OF THEOREM 5.1. If aeC(P; R) commutes with
all Fπ(x)F*, xeP, then the combination of Lemmas 5.2 (b) and 5.3 shows
that

φ(a(p)σ9.a(x)) = φ(α(p)x\ (p, s) e R x R .

Hence we get

\ seR, xzP ,

which means that α(p) = σ%(α(p)), s e R; and hence α(p}ePφ. Thus (**)
follows. q.e.d.

PROPOSITION 5.4. Let φ be α faithful weight on a von Neumann
algebra M and ω be the weight on F^ as before. If M'ψ Π M — Cψ c Mφ,
then the center Cφ®ω of Pφ$ω with P = M (x) F^ is contained in Cφ (x)

PROOF. We keep the notations in the proof of Theorem 5.1. We
know that Pφ®ω is generated by π(M) and C (x) U(L°°(R)). Since U(L°°(R))
is maximal abelian in F^ Cφ®ω is contained in M (x) Z7(L°°(Λ)). On the
other hand, π(x) — x (x) 1 for every x e Mφ. Hence we have π(M)' Π P c
(Λf; n M) (g) jPoo = Cp (g) Foo. Thus we get

C^ω c ΛΓ ® U(L~(K)} n C^ ® Feo - Cφ (g) U(L~(R)) . q.e.d.

Π.6. Computation of the smooth flow of weights (2). In Theorem 3.1,
we saw that the modular spectrum S(M), or more precisely S(M) n Λ+,
of a properly infinite factor M with separable predual is precisely the
kernel of the smooth flow FM of weights on M. In Mackey's terminology
[16], each ergodic action of a separable locally compact group G on a
standard measure space would have a "non-trivial kernel", called a virtual
subgroup of G. Following his theory, the smooth flow FM of weights
on M may be called the virtual modular spectrum of M and may be
denoted by Sυ(M). As a matter of fact, Mackey's theory of virtual
groups provides us very useful strategic technique in computing the
smooth flow F* of weights in the case where M is given by the so-called
group measure space construction.

Let G be a separable locally compact group acting on a standard
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measure space {Γ, μ}. Let C denote the abelian von Neumann algebra
L°°(Γ, μ). The action of G on Γ gives rise to a continuous action a of
G on C as follows:

ag(x) = x(g~1Ύ)t geG, xeC, 7 e Γ .

Let p be a 1-cocycle for the action of G on {Γ, μ} with coefficients in
another separable locally compact group H, that is, p is an Jϊ-valued
Borel function of G x Γ such that

, τO = rtffi, aff)p(g* U Λ, Λ 6 G , T e Γ .
In Mackey's theory, <o, or more precisely its cohomologus equivalence
class, is regarded as a homomorphism of the virtual subgroup {G, Γ, μ}
of G into H. To this p, there correspond a virtual subgroup of G, called
the "kernel" of p, and a virtual subgroup of H, called the "closure of
the range" of p, which are defined as follows:

Consider the cartesian product measure space {Γ x H, μ x λ} with
λ the left Haar measure in H, and define the actions of G and H on
Γ x H by

g(7, h) = (07, 0(0, 7)Λ), geG,7eΓ,heH;
k(Ύ, h) = (7, AAr1), 7eΓ,h,keH.

We note that the actions of G and Jίf commute. Let D = L°°(Γ x H, μ x λ).
The action of G on Γ x H, or the action a oί G on D induced by that
of G on Γ x #, corresponds to the "kernel" of p, and the action /3 of H on

the fixed point subalgebra Da of D under α corresponds to the "closure
of the range" of p. We denote this "closure of the range" of p by

) or p(G~C).

REMARK 6.1. The closure of the range p(G, Γ) and the kernel of
p depends, within equivalence, only on the cohomologus class of p. We
also observe that p(G, Γ) is independent of the topology in G, and that
p(G09 Γ) — p(G, Γ) for any dense subgroup (?0 of G.

We now apply the above Mackey's procedure to the computation
of the smooth flow FM of weights on M.

We now apply the above Mackey's procedure to the computation of
the smooth flow FM of weights on M.

THEOREM 6.2. Let M be an infinite factor with separable predual,
and φ a faithful weight on M. Suppose that N is a von Neumann
subalgebra of Mφ with relative eommutant Nr Π M — C contained in N.

( i ) If a unitary ueM normalizes N, i.e., uNu* = N, then there
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exists a non-singular self-adjoint positive operator pu affiliated with C
such that

φu = φ(pu ) and σψ

t(u) — up™ , t e R .

( ii ) If the normalizer η(N) of N generates M, then for each countable
subgroup G of η(N) such that M — (N U (?)" there exists a canonial
isomorphism of the closure p~~\G, C) of the range of p~l onto the smooth
flow FM of weights on M.

PROOF. ( i ) We have (Dφu: Dφ)t = u*σφ

t(u), teR and MΨu = u^M^ui)
u*Nu = N. For each x e N, we get

x = σΐ«(x) = u*σΐ(u)σ?(x)σΐ(u*)u = u*σΐ(tϊ)xσΐ(u*)u

hence u*σ%(u) e N' D M — C. As we have

w*σ*(u)u*σξ(u) = u*σφ

s(uu*σφ

t(u)} = M*σ*+t(u), s,teR,

there exists a non-singular self -adjoint positive operator pu affiliated with
C such that

p? - u*σϊ(u) = (Dφu: Dφ)t ,

so that

φu = φ(pu )
It is straightforward to observe that the map: u e G H^ pu is a 1-cocycle
with values in the multiplicative commutative group of non-singular self
adjoint positive operators affiliated with C with respect to the action of
G on C given by Ad(u), ueG.

(ii) Representing M on a Hubert space φ, we consider the tensor
product P — M (x) F* on L2(φ, R) and the weight ώ — φ (x) ω on P, where
ω is the weighe on F^ defined in § 1. Let U and V be as before. It follows
then that the centralizer P^ of ώ is generated by π(M) and 1 (x) Ut,
teR, where

π(x)ξ(8) - φφ-,(x)ξ(8), xeM,seR,ξe L2(^; Λ) .

By Proposition 5.4, the center C^ of P^ is contained in C (x) U(L°°(R)).
Since π(M) is generated by ΛΓ (x) C and ττ(G), C^j is the fixed point sub-
algebra of C (x) U(LCG(R)) under the automorphism group (Ad(^): % G G},
that is

We now compute the action of G on C (S)U(L°°(R)). For each ueG,

xeC and ί 6 R, we have
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[Ad π(u)(x®Ut)ξ](8) = π(u)(x®Ut)π(uTζ(s)

+ t)

= up-isxpi(s+t}u*$(s + t)

= [(upϊxu* ®Ut)ζ](*) I

hence

Ad π(u)0 (x) Ut) = upuxu* ®Ut, xeC,teR, ueG .

Let {Γ, μ} be a standard measure space with L°°(Γ, μ) = C. The auto-
morphism Ad u, u e G, of C gives rise to a non-singular transformation
tftt of {Γ, μ} such that

[Ad (u)x](7) = x(a~lΊ], ueG, xeC, 7 e Γ .

Identifying C&)U(L°°(R)) with L°°(ΓxR, dμ®dt] under the correspondence:
n ®Ut <-* {#(7)0***: (7, p) e Γ x Λ}, we have

[Ad (u)x](Ύ, p) = x(a~lΊ, p + log ρu(a^7)\ x e L°°(Γ x R, dμ (x) dί) .

Therefore, G acts on Γ x R by

£«(% P) = (α.% P ~ log ̂ (7)), ueG,(7,p)eΓ x R .

It follows from the proof of Theorem 5.1 that

[θt(x)}(Ί, p) = x(7, p -t),teR,xe L°°(Γ x R) .

Hence the action of R on Γ x R is given by

0?(7, p) = (7, j> + ί) .

By Corollary 2.5, the smooth flow FM of weights on Jί is isomorphic to
the action {^_Log;. λ 6 jRί) of Λ* on C^. Therefore, replacing Γ x β by
Γ x R* under the correspondence: (7, p) <-> (7, ep), G and R$ act on Γ x
JBJ respectively as follows:

0(7, λ) - (7, λί 'λ), λ, λ0 6 /ίί, 7 6 Γ .

Therefore, the smooth flow FM of weights on M is isomorphic to the

action of R^ corresponding to the closure p~\G, Γ) of the range of p~\
q.e.d.

COROLLARY 6.3. Let N be a semi-finite von Neumann algebra with
separable predual, and Θ a continuous action on N of a separable locally
compact group G such that the restriction of Θ to the center C of N is
ergodic. Let pg, g G G, be the non-singular self-adjoint positive operator
affiliated with C such that τ°θg — τ(pg ) for a faithful semi- finite normal
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trace τ on N. Let M= W*(N, G, θ). If the relative commutant Nf Γ\M of
N in M is contained in N, and hence must be C, then the smooth flow FM

of weights on M is isomorphic to the closure (ΔGp)~l(G, C) of the range
of (ΔGp)~l, where AG is the modular function of G.

PROOF. Let φ be the weight on M dual to trace τ on N in the sense
of [8], Let (u(g): gzG] be the unitary representation of G in M which,
together with N, generates M. By a result of [8], we have

(σφ

t(x) = x, x e N, 1 e R

Hence the quartet, M, φ, N and {u(g):geG} satisfies the assumption in
Theorem 6.2 with pu(g] — ΔG(g}pg, geG. q.e.d.

The assumption that N' Π M — C is satisfied if either (a) G is discrete
and θ is free, or (b) the restriction of θ to C is free. Case (a) when N
is abelian goes back to the classical work of Murray and von Neumann
[19], and when N is a factor it is due to Nakamura and Takeda [21]
and Suzuki [27]. Case (b) is relatively new, shown independently by
Sauvageot, [26], and the authors, [7J. Since Sauvageot's paper [26] is
now available, we will omit the proof for Case (b). However, it is still
an open question as to when N' Π M — C holds with a non-discrete group
G.

COROLLARY 6.4. In the same situation as in Corollary 6.3 with
G = Z, the smooth flow FM of weights on M is isomorphic to the ergodic
flow built from the ergodic automorphism θ on C under the ceiling func-
tion p, where p = dτ°θ~~^ldτ.

One should compare this result with Theorem 3.4.
We now turn to the study of an explicit construction of the continuous

decomposition of a factor M of type III when M is the crossed product
of a semi-finite von Neumann algebra N by a locally compact group G.

Let N be a von Neumann algebra with separable predual, and C the
center of N. Let {Γ, μ] be a standard measure space with C = L°°(Γ, μ).
Let

be the central decomposition of N. Let a be a continuous action of a
separable locally compact group G on JV. Discarding a null set from Γ,
we may assume that G acts on Γ in such a way that

x(ϋ~^\ geG,xeC,7eΓ.
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Furthermore, the action ag gives rise to a family {ag, 7:7 eΓ} of isomor-
phisms from N(7) onto N(gΎ), 7eΓ such that

(ag(x)(7) = agtβ-ιr(x(g-*Ί)\ x e N, 7 e Γ

(agh>r = ag,hr°ah>r, g,heG .

Suppose that p is a 1-cocycle on G x Γ with coefficients in a separable locally
compact group Jϊ. We then consider the tensor product N(x)L°°(H), and
denote it by N. The central decomposition of JV" is given by

N P
JΓxH

where N(7, fe) = N(7), 7eΓ,heH. We now define actions θ of G and α
of jff on N respectively as follows:

Λ) - α^-irMflΓ1?, pίflΓ1, 7)Λ)), xeN, geG, heH, 7 e Γ

&) = B(% ΛA?), h,keH.

Obviously, the actions a and β commute. As a straightforward generaliza-
tion of Mackey's definition, we say that the action a on N of G is the
kernel of p and the action β of H on the fixed point subalgebra JVff of
JV under a is the closure of the range of p.

COROLLARY 6.5. Let N be a semi-finite von Neumann algebra with
separable predual, and a a continuous action of a separable locally
compact group G on N such that the restriction of a to the center C of
N is ergodic. Let pg, g 6 G, be a non-singular self-adjoint positive
operator affiliated with C such that τ^ag — τ(pg ) for a faithful semi-
βnίte normal trace τ on N. Let M= W*(N, G, a). Let M = TΓ*(Af0, R, θ)
be a continuous decomposition of M. Then M0 is isomorphic to the
crossed product of the kernel {N, a] of the 1-cocycle Log (AGp}~1, where
ΔG means of course the modular function of G. The action θ of R on
MO is isomorphic to the canonical extension β of the action β of R on
N to the crossed product W*(N, G, a).

The proof does not require much change in the proof of Theorem
6.2; so we leave it to the reader. However, we should observe the
following:

REMARK 6.6. In the previous result, we did not require that Nr Π
M = C. This is because we consider the extended action β of jβ on
W*(N, G, a). There are many evidences that the crossed product
W*(N9 G, α) of the kernel of p in general will be a better substitute of
the fixed point subalgebra NG of N under a. We quote Corollary III. 2.15
for a reference to this statement.
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REMARK 6.7. A slight modification of the above argument shows
that if M = U(G) is the von Neumann algebra generated by the left
regular representation of a principal virtual group G, then the smooth
flow FM of weights on M is precisely the closure of the range of the
module ΔG of (?, where AG is the natural analogue for G of the classical
module for a locally compact group — see [26; page 198 (B) and page 203
(i)]. Furthermore the von Neumann algebra N generated by the left
regular representation of the kernel of the module AG is precisely the
Πco-von Neumann algebra appearing in the continuous decomposition of M.

We apply now Theorem 6.2 to the tensor product of factors of type
III. On the modular spectrum, there is no formula for S(Mt (8) Λf2) in
terms of S(Mι) and S(M2). However, we do have a formula for computing
the virtual modular spectrum SXMΊ ® M2) out of S,(JMi) and SV(M2). Once
again following Mackey's formalism, we will construct the product of
two virtual subgroups of an abelian group G.

Let G be a separable locally compact abelian group acting ergodically
on standard measure spaces {Γlf ft} and {Γ2, ft}. Let a and β be the
actions of G on Γλ x Γ2 given by the following:

<*,(?» «») = (ffVi* Ύά &(?!> TB) = (#~X ^2) , g e G .

The virtual subgroup of G corresponding to the restriction of a to
L°°(Γi x jΓg, ft x ft)'5, the fixed point subalgebra of LCΛ(Γl x Γz, ft x ft)
under /3, will be called the closure of the product of the virtual subgroups
of G corresponding to the actions of G on /\ and Γ2.

COROLLARY 6.8. For two factors Mi and M2 of type III with separable
predual, the virtual modular spectrum SV(ML (x) M2) is the closure of the
product of S,(Λfι) and Sυ(M2}.

PROOF. Let Ml = W*(N» R, θl) and M2 = W*(N2, R, θ2) be continuous
decomposition of Ml and M2 respectively. We have then Jlfi (g) M2 =
TF*^ (x) JV2, Λ

2, ^1 (g) 02). Let M - Jlfi ® M2, JV - ̂  (g) ΛΓ2, and C, and C2

be the centers of N^ and JNT2 respectively, and let C = ̂  ® C2. We have
then, by Theorem 5.1,

n^® Λfa) - W
- ct (g) C2 - c .

Therefore, we can apply Corollary 6.3 to M, N, θ = θl®θz and R2. Let τl

and τ2 be faithful semi-finite normal traces on Nl and N2 respectively
with τ^oθl — e~8τ± and τao^f = e~*r2. Put τ = ZΊ (g) r2. It follows then that
τoθ8tt = e~(8+t)τ, (s, t)eR2; hence ps>t = e~(s+t}. By Corollary 6.3, we must
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compute the closure of the range of this p with respect to {C, R2, θ}.
Let {/\, μj and {Γ2, μ2} be standard measure spaces with CΊ — L°°(Γ19 μj and
C2 = L~(Γ2, μ2). Put {Γ, μ] = {Γ, μ} - [Γlf μ,} X {Γ2, ft}. Then C- L"(Γ, μ).
In order to avoid possible confusion, we denote by {#Π and {#f} the flows
in Λ and Γ2 induced by {d, 01} and {C2, 0

2}. We then have

tfίίOΊ, ?2, λ) - (0JX 0?X βs+ίλ), s, t e JS, λ e /ίΐ

<OΊ, 72, λ) - (7,, 72, λo^λ), CΛ, 72) 6 Λ X Γ2, λ0 6 Λ* .

Put

Γ(Ύl, ?2, λ) - (*Log A, ^2, λ), (7lf 72, λ) G Λ X Γ2 X J?ί .

We have then

72, λ) - (flL*̂ , ^f72, β
s+ίλ)

72, λ) - (Cog^, 72, λ) . q.e.d.

Therefore, our assertion follows.

CHAPTER III. NON-ABELIAN COHOMOLOGY IN PROPERLY
INFINITE VON NEUMANN ALGEBRAS

III.O. Introduction. So far we have studied the flow of weights on
a factor. As the reader has already noticed, what we have treated there
is nothing1 else but the first cohomology of R in the unitary group of a
factor with respect to the modular automorphism group. The techniques
developed there can also be applied to the general case, not only to the
modular automorphism group. The first cohomology of a locally compact
group G in the unitary group tt of a von Neumann algebra M with
respect to an action a of G on M is related to the structure of the crossed
product W*(M, G, a) and its automorphism group. We shall regard a
one cocycle in the unitary group as a twisted unitary representation and
then follow the well-established multiplicity theory of unitary representa-
tions, instead of following the algebraic theory of cohomology. Of course,
integrable actions of the group in question will play the role corresponding
to that of integrable weights. The result of particular interest is the
stability of the single automorphism or of the one parameter automorphism
group appearing in the discrete or the continuous decomposition of a
factor type III, (see Section 5).

In §1, developing elementary properties of twisted ^-representations,
we shall lay down our strategic point of view. We shall see in §2 that,
as for weights, there exists a unique square integrable twisted unitary
representation, called dominant, which dominates all other square inte-
grable twisted representations, Theorem 2.12. As a corollary, it will be
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seen that the fixed point subalgebra of an integrable action is isomorphic
to the reduced algebra of the crossed product. Section 3 is devoted to
the case of abelian groups. A characterization of a dominant action
will be given in terms of the spectrum; and also it will be shown that
Γ(ά)j the exterior invariant of a ([3, part II]) is the kernel of the
restriction of the dual action a to the center of the crossed product
W*(M, G, a), a generalization of [30; Theorem 9.6].

In §4, we shall study the Galois type correspondence between the
closed subgroups and the intermediate von Neumann subalgebras for an
integrable action of an abelian group. Section 5 is devoted to the study
of stability of automorphisms (or one parameter groups of automorphisms)
of semi-finite von Neumann algebras.

III.l. Elementary properties of twisted * -representation. Let M
be a properly infinite von Neumann algebra equipped with a continuous
action a of a locally compact group G. We assume the cr-finiteness of
M always.

DEFINITION 1.1. A σ-strong* continuous function a: s e G t-> a(s) e M
is called an α-twisted ^-representation of G in M if the following con-
ditions are satisfied:

α(st) = a(s)as(a(t)\ s, t e G

If all a(s) are unitaries, then it is called an α-twisted unitary represen-
tation of G in M.

We denote by Za(G, M) (resp. Za(G, U(lf ))) the set of all α-twisted
* -representations (resp. unitary representation) of G in M, where tt(Λf)
denotes the unitary group of M. A straightforward computation gives
the following:

LEMMA 1.2. If ae Za(G, M), then all a(s) are partial isometrics such
that

a(s)a(s)* = α(l) and α(s)*α(s) = cκβ(α(l)), s e G ,

where 1 means, of course, the identity of G.

We denote α(l) by ea. It is also straightforward to observe that by
the formula:

aas(x) = a(s)as(x)a(sΓ , %zMea, s e G ,

we can define a new action aa of G on the reduced von Neumann algebra
Mβa( = eaMea). We denote the fixed point subalgebra of Mea under this
new action aa by Ma. If p is a projection in Ma, then the map: s e G i— >
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pa(s) e M is also an ^-twisted * -represent at ion of G in M", which will be
called the reduced α-twisted * -represent at ion by p and denoted by ap.
We call it also a subrepresentation of a.

DEFINITION 1.3. We say that a and 6 in Za(G, M} are equivalent
and write a = b if there exists an element c e M such that

a(s) = c*b(s)as(c) , s e G

We write a -< b if a ~ bq for some projection q in Λf 6.

The reader should be aware of the following 2 x 2-matrix arguments:

LEMMA 1.4. Let P = M®F2 be the 2 x 2-matrix algebra over M,
and a be the action a (x) 1 of G on P. Given a, b e Za(G9 M), we define
c 6 Zτ(G, P) by

c(s) = a(a) ® βu + 6(s) (g) 022 , s e G ,

witfe α jft#ed matrix unit {eiά} in F2. Then the following two statements
are equivalent:

( i ) a -< b (resp. a = 6) :

(i i) ββ <g) βu ̂  eβ (g) βag (rβsp. ββ (g) βtl ~ β6 (g) βa2) m Pc .

We leave the proof to the reader.

DEFINITION 1.5. With the same notations as in Lemma 1.4, we call
a and b disjoint and write a i 6 if ea (g) βn and eδ (g) e22 are centrally or-
thogonal in Pc. We say that a and & are quasi-equivalent and write a~b
if ea (g) βu and eδ (g) β22 have the same central support, (namely ea (g) βu +
βδ (g) βB), in Pΰ.

Given a and 6 in #α(G, M), we set

J(α, &) = {cc 6 eaMeb: xb(s) = α(«)αθ(o5), s 6 G} .

It is not hard to see the following properties of I(a, 6):

1(6, a) - I(a, &)* J(α, a) = Ma 1(6, 6) - M6

e I(α, α) , xί2 e I(α, 6) ,

* - < Kb, α) , *22 6 1(6, 6)

a i b — /(α, 6) = {0} .

LEMMA 1.6. ( i ) Given α, b and, c in Za(G, M), we have

J(α, 6)1(6, c) c /(α, c) .

( ii) If x — uh is the polar decomposition of x e I(a, 6), then we have
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h e 7(6, 6) and u e I(a, 6) .

The proof is straightforward, so we leave it to the reader.

DEFINITION 1.7. We say that a e Za(G, M) is of infinite multiplicity
if Ma is properly infinite.

LEMMA 1.8. // a and b in Za(G9 M) are of infinite multiplicity, then

a ~ b <=* a ~ b .

PROOF. The implication "=>" is trivial.
<=: Suppose a ~ b. Let P — M(g) F2, a and c e Z«(G, M) be as in

Lemma 1.4. It follows then that ea (x) βu and eb (x) β22 are both properly
infinite projections in Pc by assumption; so they are equivalent to their
central support in Pc, P being σ-finite. Therefore, we have

ea (x) βii ~ ea (x) eu + eb (g) e22 ~ eb (x) e22 in Pc . q.e.d.

We close this section with the following:

REMARK 1.9. If a is a continuous action of a separable locally
compact group G on a von Neumann algebra M with separable predual,
then for an M-valued function a: s e G —> a(s) eM to agree almost every-
where with an α-twisted ^representation a! of G in M, it is sufficient
that a satisfies the conditions in Definition 1.1 for almost every pair s, t
in G, cf [18].

III.2. Tensor product and integrability of twisted *-representations.
Let M and N be von Neumann algebras equipped with continuous

actions a and β of a locally compact group G respectively. We understand
naturally the covariant system {M® N, a (g) β] on G. Given a e Za(G, M)
and 6 e Zβ(G, N), we define a (g) b e Za®β(G, M(x)N) by

(α (g) 6)(β) = α(β) (x) 6(β) , s 6 G .

It is of our particular interest when N = 8(31) and β = 1. This means
that ί> is an ordinary unitary representation of G of the Hubert space 3ΐ.

THEOREM 2.1. Let M be a von Neumann algebra equipped with a
continuous action a of a locally compact group G. Put P — M® 8(L2(G)).
// λr is the right regular representation of G on Z/2(G), then 1 (x) λr 6
^αΘl(G, P) <mώ

TF*Olf, G, α) ~ P(1®*'> .

PROOF. We may assume that M acts on a Hubert space φ in such
a way that {M, φ} is standard, so that there exists canonically a uni-
tary representation U of G on φ suΛ that as(x) = E7(s)#ί7(s)*, #eJf,
s 6 G. The crossed product TF*(M", G, #) of If by a acts on the Hubert
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space φ (g) Z/2(G). In this situation, the recent result of Digernes, [8],
says that the commutant W*(M, G, a)' of W*(M, G, a) is generated by
M' (g) 1 and U(s) (g) λr(s), seG.

Hence we have

T7*(M, G, α) - Tf *(Λf, G, α)" = {Jf' ® 1 U {C7(s) (g) λr(β): s 6 G}}'

= ΛΓ® £(Z/2(G)) Π {Z7(β) ® λr(β): s 6 G}'

- P(1®^ . q.e.d.

Since the left and right regular representations of G are equivalent
in S(L2(G)) as twisted unitary representation with respect to the trivial
action of G on S(L2(G)), we have also

PCKWD ^ w*(M, G, α)

with the left regular representation λz of G.
The next proposition is classical in homological algebra.

PROPOSITION 2.2. For any a e Za(G, U(M))9 we have

a \ r ^ \ r n =

PROOF. Suppose that M acts on a Hubert space φ. Then P acts on
φ(g)L2(G) = L2(φ; G). We define a unitary δ in Λf ® I/°°(G)cP by the
following:

(δf)(<0 - ̂ -̂ (β), f 6 L2(^; G), β 6 G .

We compute then

λr(t))fl(8) - αίβ-1)? (βt)

α(ί) ί̂(α((^)""1))f (si) ,

where we use the right invariant Haar measure drs in the construction
of L2(φ; G). We compute further the last term:

Hence we get

6(1 (g) λr(t)) - [α(έ) g) λr(t)](α ® 1)«(6) , 1 6 G .

Therefore, our assertion follows, since 6 is unitary. q.e.d.

DEFINITION 2.3. Given a σ-fmite properly infinite von Neumann
algebra M equipped with a continuous action a of a separable locally
compact group G, an α-twisted unitary representation a of G in M is
said to be dominant if a ® λr = α (g) 1 in If (g) S(L2(G)) and α is of infinite
multiplicity.



FLOW OF WEIGHTS 529

From now on, we assume always that the von Neumann algebras and
the groups in question are ^-finite and separable respectively.

COROLLARY 2.4. Any dominant a-twisted unitary representations
are equivalent.

PROOF. Let a and b be dominant α:-twisted unitary representations
of G in M. By Theorem 2.2, we have

α(g)l = α(g)λ, = l(g)λ r = δ ( g ) λ r p ί & ( 8 ) l

in M 0 S(L2(G)). Therefore, we have only to show that if a and b in
Za(G,U(M)) are of infinite multiplicity, then α (x) 1 ̂  & (g) 1 in M^F^
implies a = b in M with F* a factor of type 1^. But α (g) 1 = 6 (g) 1 in
M (g) jPoo means that α ~ δ; hence α = δ by Lemma 1.8. q.e.d.

COROLLARY 2.5. I/ α e ^α(G, U(M)) is dominant, then

M*^W*(M, G, a) .

DEFINITION 2.6. A continuous action a of G on M is said to be

integrable if the set qα of all x in Λf such that the integral \ aβ(x*x)dlsJG
exists in M with respect to the left invariant Haar measure dts in G, is
σ -weakly dense in M. We say that a e Za(G9 M) is square integrable if
the action aa of G on Mβa is integrable.

We note here that the integral I aa(x*x)dιS is defined as the limit of

the increasing net \ a^x^s indexed by the net of compact subsets K
JK

of G. The very much similar arguments as those in the case of weights
show that

a) qα is a left ideal of M;
b) ί?α = QίQα — {y*x: x, 2/eq α } is a hereditary *-subalgebra of M

generated linearly by the positive part |>+ = t>α n M+;

c) t>+ = \xeM+: \ a^x^s exists};
( JG )

d) The integral

- \ as(x)dLs
JG

makes sense for any x e pα.
The following further properties of Ea are easily verified:
e) Ea(x) lies in the fix point algebra Mα;
f) Ea(uxv} = uEa(x}v, xe^U Ve Ma;
g) £7α(^*x) ̂  0 and '#β(a?*αO - 0'=> a? = 0;
h) .2?α(sup a?4) = sup ^fe) for any increasing bounded net {#,} in Λf+,
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where EΛ(x) — + oo if x e M+ is not in Jj+, and sup yt — + °o if {y.} is
not bounded in Ma.

From property (/), we conclude immediately the following:

LEMMA 2.7. Any subrepresentatίon of a square integrable a-twisted
* -representation of G in M is also square integrable.

EXAMPLE 2.8. Let M — S(φ) and a — 1. For a unitary representation
{C7, £>} of G on φ, U is square integrable as a twisted unitary represen-
tation with respect to the trivial action a in the sense of Definition 2.6
if and only if {U, §} is square integrable in the sense that

JC?

for a dense set of £ in φ.

EXAMPLE 2.9. Let M = L°°(G) and α be the translation action of G
from the right. It is immediately seen that £α — L°°(G) n Î G, <^s) and

EΛ(f) = \ f(s}dts .
j£

LEMMA 2.10. Leέ M and N be von Neumann algebras equipped with
continuous actions a and β of G respectively. If either a or β is inte-
grable, then the tensor product a^β on M®N is integrable. q.e.d.

We leave the proof to the reader.

LEMMA 2.11. The regular representation of G is square integrable
in Z,(G, S(L2(G))).

PROOF. Let λr be the right regular representation of G on L\G).
Let as = Ad (λr(s)), s e G. It follows that the action a leaves the maximal
abelian algebra L°°(G) = Sί globally invariant and α|κ is the right transla-
tion action of G on St. Hence t>α ΓΊ 81 = L°°(G) ΓΊ Ll(G, dts), which contains
a net converging σ-strongly to 1. Therefore, £α, hence qα, is <τ-weakly
dense in S(L2(G)), which means that λr is square integrable in

Z,(G9 8(L2(G))) . q.e.d.

THEOREM 2.12. Let M be a σ- finite properly infinite von Neumann
algebra equipped with a continuous action a of a separable locally
compact group G.

( i ) There exists a dominant a-twisted unitary representation a
of G in M, which is unique up to equivalence.

(ii) An a-twisted * -representation b of G in M is square integrable
if and only if b < a.
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PROOF. Since M is properly infinite, replacing a by aa, we may
assume that M" is properly infinite. Choosing a factor F* of type !„
contained in M", we may identify {.M, a] with a co variant system
(N® Foo, /3 (g) 1} on G. Identifying once again F^ with the tensor product
S(I/2(G)) (x) I? of 8(L2(G)) and a factor 5 of type !«,, we can consider a
(β 0 l)-twisted unitary representation 1 (g) λr (x) 1 of G in N (g) £(L2(G)) (g)
B = M. We have then

AP (g) λr(G)' (X) 5 .

Hence 1 (g) λr (g) 1 is of infinite multiplicity. Therefore, 1 (g) λr (x) 1 is
dominant.

For the second assertion, we need the following results:

LEMMA 2.13. If be Za(G, M) is square integrable, then

V {supp x*x:xe I(b (x) λr, 6 (g) 1)} = βft (g) 1 m Λf (x) 8(L2(G)) .

PROOF. Let e denote the left hand side of the equality. By Lemma
1.6, e belongs to [M (g) $>(L2(G))](b®1}. For any unitary u e [M (g) £2(G))](6Θ1),
we have 1(6 (g) λr, 6 (x) l)w = /(6 (x) λr, & 0 1); hence u*eu = e, so that e
is a central projection in [M®8(L\G))](b®1}. Since 7(6 ® λr, b (g) l)β ==
1(6 (g) λr, 6 (g) 1), we have only to show

1(6 (g) λr, 6 (g) I)/ ^ {0}

for any non-zero central projection / in [M® S(L2(G))](&®1}. Since
[M(g) S(L2(G))](^1} - Mb (g) S(L2(G)), / is of the form p (g) 1 with a central
projection p in Λfδ. We consider now M on a Hubert space φ and L2(G)
with respect to the right Haar measure drs on G. We note, however,
that dvs~l - dts. Then If (g) S(I/2(G)) acts on L2(£; G). Choose an α e jv
with xp = x Φ 0 and a continuous function / on G with compact support.
Put

,ξeL\& G)
JCί

We have then

^ ( ( n/ωΛ-x
J<? JG
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= \
J

Hence y is bounded; so 2/eM® 8(L2(G)). Furthermore, we have, for
any £ 6 L2(£; (?) and r, s e G,

) (X)

λr(β)][αf

t
JG

/(t)ί(t)<Z,i

f(t)ξ (t)drt

f(t)ξ(t)drt

- >o£l(x)b(r) \
J

Hence y belongs to 1(6 (g) λr, 6 (g 1) and
/ Φ 0.

) 1) = y. Clearly y Φ 0 if
q.e.d.

LEMMA 2.14. jPor α^2/ 6 6 Zα(6r, Λf), ίλerβ βajiβte be Za(G, U(Λf))
infinite multiplicity such thatj) <b. If b is square integrable, then we
can chose a square integrable 6.

PROOF. Let e — eb and z be the central support of e in the whole
algebra M. Since as(z) is the central support of as(e) = &(β)*δ(β), s e (?,
we have αβ(«) = «. Therefore, we have {M, a} = {M"2, «} φ {lfι_β, <̂ } in
the obvious sense. It follows from Theorem 2.12 (i) that there exists a
dominant 62 e Za(M^zί tt(MΊ_β)). We then restrict our attention to {Mz, a}.
Let {e J and {uw} be families of orthogonal projections and partial isome-
tries in M respectively such that Σ?=ι e«, — z, u%un = e and %»̂ ί = en, n =
1, 2, , where the existence of such families is guaranteed by the proper
infiniteness and the (7-flniteness of M. Put

&ι(β) = Σ
» = 1

It follows that for any s, t e G,
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Σ

= Σ M.6(

= 6ι(βί)

e'1) = Σ M δί

Σ unb(ΐ)uϊ = Σ MΛβ%* = Σ

Since the map: s 6 G — > δ^s) e If is σ-strongly continuous, δi is an α-twisted
unitary representation of G in AΓβ. Put

- We) + W«)

It follows that Mb = (Mz)
bl + (M^z)\ By the definition of a dominant

representation, (M^z)
bz is properly infinite. We will show that (MΛ)

bί is
properly infinite. Put wn>m — unu%,, n, m — 1.2, . It follows that

wί f mwn f m - βm and ^%,m^ί,m - βn

%6(β)αΛ%*))α.^
j=l / \A;=1 /

= Σ

Hence wn,m 6 (Λf,)&1; so δ! is of infinite multiplicity. By construction, δ -< δx;

hence δ -< δ.
Suppose now δ is square integrable. Since δ2 is square integrable

by definition, we need only to show that δx is square integrable. Let
{xt} be a net in }v such that unii a?4 = β. Let α? ί l W = %na?iWί . We have then

hence cc i>Λ 6 1>6«. Since limέ xi>n — eΛ, the cr-strong closure $b* contains all
en's; hence δf is integrable. Thus, δx is square integrable, and so is δ.

q.e.d.

PROOF OF THEOREM 2.12. (ii). By Lemma 2.14, we may assume that
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6 is a square integrable α-twisted unitary representation of G in M with
infinite multiplicity. Consider M (g) 8(L2(G)), 6 (g) λr and δ (g) 1 as well as
P = M (g) 8(L2(G)) (X) jPa. Let

φ) = 6(s) (g) λr(s) (g) βn + δ(β) (g) 1 (g) β22 .

It follows from Lemma 2.13 that the central support of 1 (g) 1 (g) βu in
Pc majorizes l(x)l(x)022. Since Λf * (g) 1 (g) βu is contained in Pu<g>ι®eιl),
1 ® 1 (g) βu is properly infinite in Pc because Mb is. Hence 1 (g) 1 (g) eu >
1 (g) 1 (g) βaa in Pc; so 6 (g) 1 •< 6 (g) λr. By Proposition 2.2, we have

6(g)l <δ(g)λ r ^l(g)λ, ^α(g)l

if a 6 2Γα(Or, tl(Λf )) is dominant. Thus 6 •< a because a is of infinite mul-
tiplicity. q.e.d.

COROLLARY 2.15. Let M be a a- finite von Neumann algebra and G
a separable locally compact group. If a is an integrable action of G
on M, then the fixed point algebra Ma of M under a is isomorphic
to a reduced algebra of the crossed product W*(M, G, a).

PROOF. Seeing that α(g)l is integrable on M®F«> with a factor
F^ of type !«,, and that (Af <g) jFJ"®1 = M* ® F», we may assume that
Ma is properly infinite. Let 6(β) = 1, s e G, and a be a dominant α-twisted
unitary representation of G in M. By Theorem 2.12, 6 -< a, that is,
there exists an isometry u in M such that u*u = 1, WM* e Mα and
u*α(s)α:s(M) = 1, s eG. Let β — uu*. It follows that ar(x) — x if and only
if aas(uxu*} — ί&m*. Hence Λfα = Λίe

α. On the other hand, we have
Ma ^W*(M, G, α) by Corollary 2.5. q.e.d.

COROLLARY 2.16. Let M be a a- finite von Neumann algebra and G
a finite group. If a is a free action of G on M in the sense that
ag(x)a — ax for every xeM implies either g ~ e or a — 0, then any pair
ofa-twisted representations of G in M are equivalent; i.e., the equivalence
classes in Zί(G, U) reduces to a singleton.

PROOF. The discreteness and the free action of G yield, [21], that
the relative commutant of M in W*(M, G, α) is Ma n C, where C denotes
the center of M. This means that if M is properly infinite then every
a e Z«(G, IX) is quasi-equivalent to a dominant one by Theorem 2.12. The
finiteness of G implies that M is properly infinite if and only if M01 is
also. Hence any a e Z«(G, U) is dominant if M is properly infinite.

Suppose M is finite. Considering M (g) F*, and a (x) c, we conclude from
the above arguments that Ma Π C is the center of Ma. Hence the uni-
queness of the center valued trace in a finite von Neumann algebra implies
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that the restriction of the center valued trace of M to M* is indeed the
center valued trace of M*9 which means that for any projections
β, / e Mae ~ f in M if and only if e ~ f in M". Thus our assertions
follows from the well exposed 2 x 2 matrix arguments. q.e.d.

DEFINITION 2.17. A continuous action a of a locally compact group
G on a von Neumann algebra M is said to be stable if for every ae
Za(G, UM) there exists δ 6 UM such that ag = b*ag(b}. A single automor-
phism a of M is said to be stable if every u 6 lXJf is of the form u =
v*a(v) for some v e UM.

Of course, the stability of an automorphism a of M implies that any
automorphism β of the form Ad(u) a (and in particular any β with
|| α — /3|| < 2, [11]) is conjugate to a under Int (M). The converse is also
true when M is an infinite factor, (cf. Theorem 3.1).

We will discuss further the stability of a single automorphism and
a one parameter automorphism group together with its application in
Section 5.

III. 3. Integrable action of abelian groups, duality and invariant
Γ. In this section, we study integrable actions of an abelian group. Let
G be a separable locally compact abelian group with dual group G. We
choose Haar measures ds in G and an in G so that the Plancherel formula
holds. We denote by <s, τ> the value of Ί e G at s e G. An action a of G
on M is by definition dominant if the trivial α-twisted unitary represention
1 of G in If is dominant.

THEOREM 3.1. Let M be a properly infinite von Neumann algebra
with separable M*. For a continuous action a of a separable locally
compact abelian group G on M with properly infinite Ma, the following
conditions are equivalent:

( i ) a is dominant;
( i i ) For any 7eG, there exists ueU(M) such that a8(u) — <s, 7)u,

seG;
(iii) There exists a continuous action β of G on Ma such that

PROOF, (i) => (ii): Since M* is properly infinite,

{M, a} ^ {M® S2(L(G)), a (x) 1} .

Denoting the regular representation of G on L2(G) by λ, we have

{M® S(L2(G)), a <g) 1} » {M (x) S(L2(G)), a (x) Ad λ} .
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For each 7eG, let μ(Ύ) denote the unitary on Z/2(G) given by

μW£(*) = <Vr>f(*), f € L2(G), seG.
It follows then that

Ad (λ(s))X7) - <β, 7>μ(7) .

Hence, putting u(Ύ) = 1 ® μ(7), we have

{as (x) Ad (λ(«))}«7)) - <β, 7X7) .

Thus, the isomorphism {Λf, α} = {M (g) £2(Z/(G)), a (x) Ad λ} assures the ex-
istence of a unitary ueM with αβ(%) — <s, 7>w.

(ii)=>(i): Suppose that for any 7eG, there exists a unitary ueM
with as(u} = <s, 7>% for any s e G. Put

E = {(7, u) e G x U(M): as(u) = <s, 7> ,̂ s 6 G} .

It follows then that E is a closed subset of the polish space G x U(M)
whose projection to the first coordinate G covers the whole dual group
G. Therefore, there exists a U(.M)-valued measurable function M( ) on
ό such that α.(%(7)) = <s, 7>^(7). Put

e M (g)
G

Since λ(s)eI/°°(G) such that λ(s)(7) = <β, 7>, we have

1 (g) χ(8) ^ (Θ <s, 7>dr 6 M (g) L-(G)
JG

Hence we have

u*(as ® !)(%)

= 1 (X) λ(8) , 7 S 6 G .

Therefore we have l(g)l^l(g)λin Za^(G, tl(M(g)S(L2(G))). Thus, we get

{M® S(L2(G)), α (x) Ad λ} s {M® S(L2(G)), α (x) 1}

= {Λf, a] ,
since Mα is properly infinite.

(iii)=*(ii): This follows from the definition of the dual action β.
(i) => (iii): If a is dominant, then we have, by [30; Theorem 4.6],

{M, a}^{M® S(L2(G)), a ® Ad λ} ̂  {M® S(I/2(G)), α (g) Ad λ*}

Identifying α with α, the action α — β is the desired action of G on
Ma. q.e.d.



FLOW OF WEIGHTS 537

As in [3; Definition 2.2.1], we define the invariant Γ(a) of a as follows:

Γ(a) = Π {Sp of*, e runs through all non-zero projections in Ma} .

We note here that the arguments for [3; Proposition 2.2.2. and Theorem
2.2.4 (c)] do not require the fact that If is a factor. Hence we have

Γ(a) — Π {Sp ae e runs through all non-zero central projections in Ma} .

THEOREM 3.2. Let M be a σ-finite von Neumann algebra equipped
with a continuous action a of a separable locally compact abelian group
G. The invariant Γ(a} is the kernel of the restriction of the dual action
a of G on W* (M, G, a) to the center of W*(M, G, a). (Hence it is, in
particular, a closed subgroup of G.)

PROOF. We consider M (x) S(L2(G)), a (x) 1 and α(x)Adλ as before.
Trivially, wehaveΓ(α) = Γ(α(g)l); hence Γ(a) == Γ(α(x) Adλ) by [3, 2.2.4],
Hence we may assume that M is properly infinite and a is dominant.
It follows from the previous section that there exists a continuous action
θ of the dual group G on M" such that

{M, a} ^ {W*(M«, G, θ), θ}',

{Ma,θ} = {W*(M, G} a), a}

by [30; Theorems 4.5 and 4.6], where a and θ mean the dual action of
a and θ in the sense of [30; Definition 4.1]. Representing Ma on a Hubert
space ©, we see that M acting on L2(φ; (?) is generated by the operators:

θM«,ξeL\& G)

70), 7, 70 6 G .

The action a on M is implemented by the unitary representation

{v, L\& G)}

of G defined by

Hence have we as(u(7}) = <s, 7>%(7), so that M(a, 7) = Mau(Ύ), 7 e G, where

M(a, 7) = {x e M: as(x) = <s, 7>^(7)}.

If e is a central projection in Ma, then we have

eM(a, 7)β = eθr(e)Mau(Ί}, 7 e G

Me(α
e, 7) = eθr(e)Ma

eu(7) .

Hence Me(ae, 7) ̂  {0} if and only if eθr(e) Φ 0. If θr = e on the center of
Mα, then e r̂(β) 7^ 0 for any non-zero central projection e in Ma; hence
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7eΓ(α). A slight modification of the arguments for [30; Lemma 9.5]
shows that if θro Φ c on the center of Ma, then there exists a neighborhood
F of 70 in G and a non-zero projection e in the center of Ma such that
eθγ(e) = 0 for every 7 6 F. Hence we have Me(ae, 7) = {0} for every 7 6 F.
Since ae is integrable, our assertion follows from the next lemma.

q.e.d.

LEMMA 3.3. If a is an integrable action of a locally compact abelian
group G on M, then for any open subset V of G, the spectral subspace
M(a,' F) Φ {0} if and only if M(a, 7) Φ {0} for some 7 6 F.

PROOF. Trivially, M(a, 7) c M(a, F) for any 7 e G. Hence we have
only to prove that M(a, 7) = {0} for every 7 6 F implies M(a, F) = {0}.
By a simple application of Fubini's theorem, we conclude that a/(x) e J#

for any /eL^G), / ^ 0, and $e£ί, where af(x) — I f(s)as(x)ds; hence

) c ^ by the linearity for / e L\G). Put

x e l p a .

We have then 35(7) e M(a, 7) for any x e £α. Suppose that M(a, 7) = {0}
for any 7 6 F. Then we have x(Ύ) = 0 for every 7 e F. If / is a function
in I/(G) with supp / d F, then we have for any x 6 £β and 7 e G

Hence af(x) = 0 for every x e pα; so α/(Λf) — {0} since α/ is σ-weakly
continuous and £α is cr-weakly dense in M. Hence af = 0 whenever
supp /cF. Thus AΓ(α, F) - {0}. q.e.d.

COROLLARY 3.4. Let a be a continuous action of a separable locally
compact abelian group G on a σ-finίte von Neumann algebra M. Then
the crossed product W*(M, G, a) is a factor if and only if Γ(a) — G and
a is ergodic on the center of M.

PROOF. Suppose that W*(M, G, a) is a factor. By Theorem 3.2,
Γ(a) = G. Since W*(M, G, a) ^ [M ® S(I/2(G))]α®Ad^, for any central fixed
point x under a, a?(g)l is in [ΛΓ(g) S(L2(G))]αΘAd;ί. Hence α(g)l must be
a scalar. Hence a is ergodic on the center of M.

Suppose that Γ(a) — G and a is ergodic on the center of M. Since
a (g) Ad λ on S(L2(G)) enjoys the same property, we may assume that
M is properly infinite and a is dominant. Then there exists an action
θ of G on Ma such that {M, a] ^ {W*(Ma, G, 0), §}. By Theorem 3.2, 0
acts trivially on the center Ca of M". Therefore, C" is contained in the
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center C of M. But a acts ergodically on C, so that C Π Ma = {λl};
Hence Cα = {λl}. Thus Λf" is a factor. q.e.d.

COROLLARY 3.5. If a is a continuous action of a separable locally
compact abelian group G on a σ-finite von Neumann algebra M with
Γ(a) = G, then any square integrable a-twisted unitary representation
of G in M with infinite multiplicity is dominant.

PROOF. Replacing a by a dominant action of G of the form Λa, we
may assume that a is dominant. By Theorem 2.12.U, every square
integrable tf-twisted unitary representation of G in If is majorized by a
dominant one in the ordering "X". We have only to prove that ae on
Me is dominant for any properly infinite projection e of M" such that
e ~ 1 in M. Let {̂ (7): 7 e Γ] be a unitary representation of G in M" such
that as(u(Ί}) = <s, 7>%(7), so that AΛu(Ί)\Ma — #r is a continuous action
of G on IP with {W*(Ma, G, 0), 0} ̂  {M, α}. By Theorem 3.2, the action
of θ on the center Ca of ΛP is trivial. Hence e and θr(e) have the
same central support in Ma, and are properly infinite in Ma; hence e ~
θγ(e). Therefore, there exists a partial isometry vr in Ma such that
^vr = θr(e) and vr^r* — e. Let wr = vγu(Ί)e. Then we have wr*wr = e
and w rw* — e, and also al(wγ) = <s, 7>wr. Hence {Me, α

e} satisfies condition
(ii) in Theorem 3.1. Thus ae is dominant. q.e.d.

We close this section with the following:

REMARK 3.6. So far we have mainly dealt with actions and/or weights
of infinite multiplicity. The contrast between the following two state-
ments (i) and (ii) might illustrate some of the reasons why the infinite
multiplicity has been useful.

( i ) If a is a continuous action of a separable locally compact group
G on M with infinite multiplicity, then M(a, V) contains a non-zero partial
isometry for any open subset V of G with VΓ\Γ(ά)^ 0. More strongly,
if Γ(a) — G in addition, then M(af V) contains a unitary for every non-
empty open subset V of G.

(ii) Let M be an abelian von Neumann algebra and a an ergodic
continuous action of R. If u is a non-zero partial isometry in M(a, V)
for a bounded interval V9 then u is unitary and at(u) — eistu for some
seV.

The first assertion can be proven by approximating a with inte-
grable actions. The second statement can be shown by some modification
of the Paley-Wiener Theorem for the Fourier transform of distribution
with compact support.
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III.4. Galois correspondence. In this section, we shall show that
given an integrable action a of a locally compact abelian group G on a
von Neumann algebra M with M" a factor, there is a Galois type cor-
respondence between closed subgroups of G and globally ^-invariant von
Neumann subalgebras of M containing Ma, which generalizes a result
in [30; §7].

THEOREM 4.1. Let MQ be a factor equipped with a continuous action
a of a locally compact abelian group G. Let M — W*(MQ, G, a). If N
is a von Neumann subalgebra of M such that MQdN and άp(N) — N
for every peG, where a means the dual action of G on M then there
is a closed subgroup H of G such that

N = {x 6 M: cίp(x} — x for every p e H}

H = {peG: ap(x) = x for every x e N}

therefore N is of the form N = T7*(Λf0, H, a) with H = H\

We divide the proof into a few steps.

LEMMA 4.2. Let P be a factor and A an abelian von Neumann algebra.
If Q is a factor such that P(x)lcQcP(g)A, then Q = P (x) 1.

PROOF. Representing A as a maximal abelian von Neumann algebra
on |>, we have

(P® i)' n (P® A) - [P' <g> TO] n (P® A)
- 1 (x) A

hence
(P® ιy n Q c (i (x) A) n Q = cι CP® i .

Therefore, there is at most only one normal conditional expectation from
Q onto P(g)l by [3; Theoreme 1.5.5(a)]. Since there are in general
many normal conditional expectations from P (g) A onto P ® 1, there
exists a unique normal conditional expectation, say ε, from Q onto
P® A. To each normal state ω on A, there corresponds a normal con-
ditional expectation εω of P (g) A onto P (g) 1 by the formula:

φ(εω(x}} — (φ (X) ώ)(x) , X 6 P (X) A, φ 6 P* .

By the uniqueness of a conditional expectation, we have, for any x 6 Q,
ε(#) = εω(#), so that

Therefore, we get s(x) (g) 1 = x for every x e Q; thus Q = P® 1. q.e.d.

PROOF OF THEOREM 4.1. We put
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H = {peG: aj(x) = x for every x e N} .

By [30; Theorem 7.1], the algebra MH of all fixed points in M under
άp, peίl, is W *(lfo, H, a) with H = {g e G: (g, p> = 1 for every p e H}9

where the technical assumption in [30; Theorem 7.1] on the existence of
a relatively invariant weight on Λf0 is not essential because of the com-
mutation theorem for the general crossed product due to T. Digerness
[8]. Replacing G by H and M by W*(HQ, H, a), we may assume that
H — {0}, and must show that N = M.

We consider the crossed products, W*(M, G, a) = M, W*(N, G, α) = ff
and W*(MQ, G, α) = MQ. We have then

Mo - Mo (x) L~(G) c N c M .

The action a of G on N is faithful, and the fixed point algebra N^ in
N under α is Λf0, hence a factor. Hence JV is a factor by Corollary 3.4.
By [30; Theorem 4.5], we have

M = M0 (x) £(L2(G)) .

Therefore, if we can identify the algebras MQ, and M with MQ®LCO(G}
and ΛΓ0 ® £(Z/2(G)), then Lemma 4.2 is applied to the commutants: M'0 (x)
L°°(G) ID JV' => M; (g) 1. Hence Λί7 = AΓJ ® 1, so ^ = M. Since N is the
fixed point algebra in N — M under the action a of G, we have M = N.
Thus, we must show that M is identified with MQ ® £(L2(<?)) in such a
way that M0 coincides with M0 (g) L°°(G) under this identification.

Let Q be the Hubert space on which MQ acts. Then M acts on the
Hubert space Z/2(φ; G), and M" acts on Z/2($; G x G) and is generated by
the following three types of operators:

'ΰζ(8, ί) - ar'Wf (β, ί) , α? 6 Λf0

• u(r)ξ(8, t) = ξ (s - r, t - r) , r 6 G

v(p)f (β, Q - <ί, p>f(β, ί) , P 6 G . (cf . [30; (4.10)]) .

It follows then that M0 is generated by {x, v(p); xeMQ, peG} and iden-
tified with MQ (x) L°°(G) = I/°°(Mo; G), where the action of L°°(MQ; G) is
given by the following:

α?f («, ί) - αΓXaJίtMβ, t)

for every x( )eL°°(M0

m, G). We define an automorphism π of L°°(Λf0; G) by

- α.(a?(8)), x( ) e L°°(Jf0; G) .

It follows from the proof of [30; Theorem 4.5] that M is the tensor
product of π(M0 ® 1) and its relative commutant B in M where B is
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generated by u(G) and v(G). Thus we have

Mo - π(M0 (g) L~(G)) ~ π(M0 (g) 1) (g) L"(G)

M - τr(M0 (g) 1) (g) 33 ID # z> τr(Λf0 <g> 1) (g) £•"(<?) - MO .
q.e.d.

THEOREM 4.3. Let M be a factor equipped with an integrable ac-
tion a of a locally compact abelian group G. If Γ(a) = G, then there
exists a bijective inclusion reversing correspondence between the closed
subgroups H of G and the a-invariant von Neumann subalgebras N of
M containing the fixed point algebra Ma in such a way that

NH = {x e M: as(x) — x, s e H}

HN = (s e G: as(x) = x, x e N} .

PROOF. We put

M = M (g) jFoo and as = as (g) £ , s 6 G ,

with jPoo a factor of type loo. It follows then that a is dominant, since
the fixed point algebra Ma under a is Ma (x) F^. Hence, by Theorem
4.1, the correspondence between H and α-ίnvarίant von Neumann sub-
algebras N of M containing Ma given by

NH — (x e M: oί8(x) = x, s e H}

HN = {s 6 G: αβ(a?) - x, x 6 JV}

is bijective and inclusion reversing. It is now trivial that NH N Ό N and
HNlI Z) H. For a given N, we put JV — N (g) Foo. Trivially we have
£Γ^ = jffjv If ^ 6 JVjΓ^, then a? ® 1 e JV^^; so x (g) 1 6 N equivalently xeN.
Hence N = NHN. For a given £Γ, we have NH = NH0 F00( = (NH)~).
Hence we get

H = HNH = H(NH®FOO) = HNH . q.e.d.

EXAMPLE 4.4. Let G be a locally compact abelian group, and M =
S(L2(G)). Putting

- ξ(t - s) , ξ 6 L2(G), s, 1 6 G

((v(P)ξ)(t) = <*Γp>5(t) , ί e L2(G), p e G, t e G ,

we obtain unitary representations u of G and v of G with

w(β)v(p)w(s)*v(p)* = <s, p)l , s 6 G, p e G .

Thus we may define an action a of G x G on M by
α ,p(#) — u(s)v(p)xv(p)*u(s)* , seG, peG, xeM .
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Since u(s), seG, and v(p\ peG, together generate M, we have

M" = {λl: λ 6 C}

hence Γ(ά) = (G x GΓ = G x G.
For a pair /, g of functions in L2(G), we define an operator xf g e M

by
s/,,£

We have then

- t,

Therefore, by the Plancherel formula, we get

(s)#0)f(s + r)η(s + r)dsdr

= (flr I /)(£!?),
so that

This means that the action a of G x G is integrable. Thus, the α-
invariant von Neumann algebras on L\G) are labeled by the closed sub-
groups of G x G by Theorem 4.3. The von Neumann algebras considered
in [28] are of the special case where the corresponding subgroups are
of the form H x K with H a closed subgroup of G and K a closed
subgroup of G.

Since there are many von Neumann algebras not corresponding to
any closed subgroup of G x G, the invariance of a von Neumann algebra
under the action a in Theorem 4.3 is not removable in this general
setting. The same is true for Theorem 4.1 because the tensor product
with Fπ a factor of type /«, gives counter examples for the Galois cor-
respondence without α-invariance.

The following result strengthens and refines a generalized commuta-
tion theorem [28].

PROPOSITION 4.4. In the setting of Example 4.4, let H be a closed
subgroup ofGxG and HL — {(q, t) e G x G: <s, q) = <ί, p) for every
(s, p) 6 H. The fixed point algebra MH under as>p for every (s, p)eH
is generated by u(t)v(q) with (q, t)&HL.

PROOF. In general, we have

astp(u(t)v(q)) = <ί, p><s, q}u(t)v(q) , s, t e G, p, q e G .

Hence u(t)v(q) belongs to MH if and only if (q, t)eHL.
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The action of (G x G)/H on MH, denoted by the same notation a,
induced by the original action of G x G is integrable; hence MH is gen-
erated by the eigen operators. Let x be an eigen operator in MH cor-
responding to (0, t) e ((G x G)/HΓ = JET1. It forllows then that (u(t)v(q))*x
belongs to the fixed point algebra M" — {λl}. Hence x = \u(t)v(q) for
some λ 6 C. Thus MH is generated by {u(t)v(q)ι (q, t) e Hλ}. q.e.d.

III.5. Stability of automorphisms. In this section, we shall show
that if a is an automorphism (resp. one parameter automorphism group)
of a semi-finite von Neumann algebra N scaling a trace down, then
every unitary one cocycle is a coboundary. This, in turn, improves the
isomorphism criterion for the factors of type III in terms of the con-
jugacy of discrete as well as continuous decompositions.

THEOREM 5.1. Let N be a semi-finite von Neumann algebra.
( i ) If θ is an automorphism of N such that there exists a faithful

semi-finite normal trace τ on N such that τ o θ ̂  λτ for some 0 < λ < 1,
then (a) there exists a continuous action a of the torus T on the fixed
point algebra Nθ such that

{W*(N&, T,a\a}^{N,θ};

(b) every unitary u e N is of the form u = v*θ(v) for some unitary v e N.
(ii) // {θt} is a one parameter automorphism group of N such that

τ oθt — e~*τ for some faithful semi-finite normal trace τ on N, then (a)
there exists a one parameter automorphism group {as} of the fixed point
algebra Nθ such that

(b) every a-twisted unitary representation {ut} of R in N is of the form
ut = v*at(v) for some unitary veN.

PROOF. ( i ) Let θ be an automorphism of N with τ o θ <; λr. We
first claim that for any non-zero projection peNθ there exists a non-
zero projection q ̂  p such that {θn(q)} is orthogonal. Let e be a non-
zero projection such that e <* p and τ(e) < + <*>. Let /= V~=o0*(β)
We have then

τ(f) ^ Σ τ(θ*(e)) £ ± λ«τ(β) - -!— τ(e) < + -
n—Q n=Q 1 — Λί

f and

It is clear that {θn(q): neZ} is orthogonal. Therefore, the usual exhaus-
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tion arguments entail the existence of a projection q e N such that
{θn(q):neZ} is orthogonal and Σwez0%) = 1.

We put, for 0 ̂  s < 1,

neZ

It follows then that θ(u(s)) = e2πisu(s), 0 ̂  s < 1. Therefore, (u(s): 0 ̂  s < 1}
induces a continuous action a of the torus T = jR/J?' on JY* by

/ \ / \ / \ ϊb mΓΫ f 1* I ~~~ ΊI ( Q i /yt/?/1 Q 1 Q £Ξ *vVg^ Λyy —- w\ Ό J d j (Λ\O J , o C JL ,

where we identify the torus T with the half open unit interval [0, 1).
Thus, our assertion (a) follows from [15].

For the second assertion, (b), we observe first that if Nθ is properly
infinite, then θ is dominant. But we claim that N is properly infinite
if and only if Nθ is also. By the usual reduction arguments, it is suf-
ficient to prove the claim that the finiteness of Nθ implies that of N.
Suppose Nθ is finite. Let φ be a faithful semi-finite normal trace on
Nθ invariant under a, the existence of such a φ being guaranteed by
the compactness of T. Let φ be the weight on N dual to φ. It follows
from [30; Proposition 5.16] that φ is invariant under θ. Since φ is a
faithful semi-finite normal trace on JV, φ is of the form: φ — τ(h ) for
some non-singular positive self-adjoint operator h affiliated with the
center C of N. We have then

τ(θ(K)x) = τ

= \φ(θ~l(x}} = \φ(x) = \τ(hx) , x 6 N+ .

Hence we get θ(h) 5* λA. From this, repeating more or less the same
arguments as above, we can construct a continuous unitary representa-
tion v(s) of T in C such that

Hence the action αf of T on JV* induced by MS)} is trivial, and 0 is
still dual to this new α'. This means that N ~ Nθ ® ^(Z) and 0^1®
(translation on Z°°(Z)). Thus JV must be finite. In this case, let u be
an arbitrary unitary in N, and w = {un} in the decomposition N = Nθ (x) Z°°.
Put vn+1 = vHwft if n ̂  1 and v0 = 1, VΛ = ^^+ι^w if w < 0. We have then
v*0(t;) = %. If JV is properly infinite, then every θ with τ ° 0 ^ λr is
dominant, so that for any % 6 U# the new action θ = Ad w o 0 is dominant;
hence the 0-twisted unitary representation of Z in .ΛΓ generated by u is
dominant, which means that u — v*θ(v) for some v 6 tt#.

(ii) We apply (i) to [0n: n e Z}. Let JVΊ denote the fixed point sub-
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algebra of N under {θn: neZ}. It follows then that the restriction Θ\NI

of θ to NI is periodic with period one. The action {θn: n e Z] of Z on
N is integrable by (i) and Θ\NI is integrable as an action of the torus
T = R/Z. Hence θ itself is integrable, because

E(x) - θt(x)dt = θt( Σ On(x))dt , xeN+ .
J-oo JO % e Z

Let ψ* be a strictly semi-finite faithful weight on .Λ/Λ It follows then
that the weight φ — ψ o # is a faithful weight on AT invariant under 0.
By [30; Theorem 5.4], there exists a non-singular self-adjoint operator
h affiliated with N such that φ = τ(h ). For any xeN+, we have

τ(0.(Λ)&) - τ*θs(hθ_s(x}) - e~*τ(hθ „.(*]) =

= e~sφ($) = e~*τ(hx)

hence we have 08(/&) — e~s/&. Putting %(£) = AT**, teR, we have

0.(tt(t)) - eistu(t) .

Thus, the one parameter unitary group {u(t}: teR} gives rise to a one
parameter automorphism group {at: teR} of Nθ such that {jϊSΓ, θ} =
{TΓ*(JVtf, Λ, α), α} by [15]. This proves (a).

To prove the second assertion (b), we first show that N° is semi-
finite if and only if {N, θ] ^ {Nθ 0 L°°(R), c <g) translation}. Let P =
Nt&Fco and θt = ^(x)^, t e Λ . It follows then that £ is dominant and

NΘ®F^^ Pi If N* is semi-finite then so is Pi Hence W*(N, R, θ) ^

P~θ is semi-finite. Our claim then follows from [30; Section 9], and as-
sertion (b) in this case is standard.

If Nθ is properly infinite, then Na is also for every a e Zl(R, UN],
which means that a is dominant since τ o aθt — e~*r, teR. Thus a ~ 1.

q.e.d.

COROLLARY 5.2. ( i ) Let JVΊ. and N2 be properly infinite semi-finite
von Neumann algebras equipped with one parameter automorphism
groups θ1 and θ2 respectively which transform some faithful semi-finite
normal traces τL and τ2 respectively in such a way that

τ^θ\ — e~sTi and τ2 o 0J = e~sτ2 , s e R .

Then W*(Nί9 R, θ1) = W*(N2, R, θ2) if and only if there exists an isomor-
phism π of NI onto N2 such that θl

s — 7Γ"1 °θ\°π, seR.
( ii ) If {N19 θ^ and {N2, Θ2} are discrete decompositions of the same

factor of type ΪLIλ, 0 < λ < 1, then there exists an isomorphism π of Nj.
onto N2 such that
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(iii) If {N19 θi} and {N2f Θ2} are discrete decompositions of the same
factor of type IΠ0, then there exist central projections βx 6 Nt and e2 6 N2,
and an isomorphism π of N1)βί onto N2iβ2 such that θliβl = π~l°θ2)(l2°τc,
where Θ1)βl (resp. Θ2)β2) is an automorphism of N1>eι (resp. N2)β2] induced
by θt (resp. 02) as described in [3; Definition 5.4.1.].

PROOF. This is a straightforward consequence of Theorem 5.1 and
[30; §8] and [3, Theorems 4.4.1 and 5.4.2]. q.e.d.

COROLLARY 5.3. An automorphism a of a factor M of type Π^ is
stable if and only if a does not preserve the trace τ of M.

PROOF. Suppose a does not preserve the trace τ on M. It follows
that τ o a — λτ for some λ > 0 by the uniqueness of the trace. Con-
sidering or1, we may assume λ < 1. Let β — Ad (u) o a with u a unitary
in M. Then we have W*(M, a) ^ W*(M, /3), and they are of type III;.
By Theorem 5.1, we have Ma (x) %(l\Z)) ^ W*(M, α), so that M" ~
W*(M, <x). Thus Ma and Mβ are both properly infinite, which means
that a and β are both dominant. Therefore, there exists a unitary v e M
such that u — v*a(v), which means that β — Ad( / y)~ 1 oαo Ad (v).

Suppose conversely a preserves the trace τ. Let β be a projection
in M with τ(β) < + °o. Since e ~ a(e), there exists a unitary ueM
such that e = ua(e)u*, where we note here that the equivalence between
finite projections is unitarily implemented. Let β = Ad (u) ° a. It follows
then that β preserves a normal positive linear functional φ — τ(β )
Hence {βn: neZ} is not integrable, so that {βn} is not conjugate to any
integrable action of Z. But there is a unitary v e M as seen in § 2 that
{(Ad v o β)n] is integrable, even dominant. Hence β and Ad (v) β are
not conjugate; therefore either β — Ad (u) ° a or Ad (v)oβ = Ad (vu) o a
is not conjugate to a. Therefore, a is not stable. q.e.d.

PROOF OF THEOREM II. 1.6. Let {ώ19 ώ2} and {ώ[, ώ'2} be two quasi-
commuting pair of dominant weights on an infinite factor M with sep-
arable predual such that a(aj19 α)2) = a(ώ{, ώj), say a for short. By the
uniqueness of a dominant weight, there exists a unitary ueM such that
<*>ι — ΦU Replacing ω'2 by ώ'2>u, we reduce the situation to the following:
given three dominant weights ώ, φ, and ψ on M such that {ω, φ] and
(<δ, α/r} are quasi-commuting with α(ώ, φ) — α(α>, α/r) = a, we must show
that there exists a unitary % in M» such that ψ» = φu.

Let Λί — TF*(JV, /J, ί) and {%(s): sθR] be a continuous decomposition
of M and the one parameter unitary group in M associated with this
decomposition. We may assume that ω is the weight on M dual to a



548 A. CONNES AND M. TAKESAKI

trace τ°θt — e^τ, έ e jβ. For short, put vs — (Dφ: Dω)s, and ws = (Dψ\ Dώ)s,
seR. We have then

a»(vs} = βiastv8 and σ?(wβ) = eiastws

For each s e Λ, put

= eiaatvsvt 9

and ba = e~ίαs2/2

It is easily seen that {αj and {δj are both continuous and parameter
families of unitaries in N such that

αs+ί = αaθαa(αt) and &s+ί - baθαβ(bt) .

By Theorem 5.1, there exists a unitary ueN such that

αs — ubsθα8(u*) , s e R .

Hence we get, for any s e R,

= eiαs2/2ubsu(αs)u* =

Thus it follows that <p = o^w. q.e.d.

CHAPTER IV. THE FLOW OF WEIGHTS AND THE
AUTOMORPHISM GROUP OF A

FACTOR OF TYPE III

IV.O. Introduction. The aim of this chapter is to extend the exact
sequence of [3, 4.5] to the general case from type IΠ^ case, 0<λ<l, for
the automorphism group Aut (M) and/or the outer automorphism group
Out (Λf ) = Aut (If )/Int (Λf ) of a factor M of type III in terms of the
flow FM of weights on M and a continuous decomosition M — W*(N9 R9 θ)
of Λf. Since FM is f unctorial to each α e Aut (M ) there corresponds a
unique automorphism mod(α) of the flow FM as the restriction of αe
Aut(Sβjf) to PM. Assuming Λf to be a factor of type ILo, we will see
that mod (α) is precisely the translation of L°°(R+) by multiplying \(α) > 0
where this positive number λ(α) is determined by τ ° α = λ(α)r for the
trace τ on Λf. With this evidence, we call mod the fundamental homo*
morphism of Aut (M) in general. Considering the topologies in Aut (Λf )
and Aut (FM) as in preliminary, we will show that mod is continuous;
hence ker mod contains the closure of Int (Λf ).

We next extend the modular automorphism group {of} from the ad-
ditive group R to the multiplicative group Z\FM) of unitary one cocycles
with respect to the flow FM of weights. To each c£Z\F*) and a
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faithful integrable weight φ on M, we associate an automorphism α? of
M by σφ

c(x) = pφl(cλpM(φ))x for each x e M(σφ, {λ}). The relative corn-
mutant theorem, Theorem II.5.1, then enables us to characterize these
automorphisms as those which leave the centralizer ejementwise fixed.
We then show that for a smooth ceZl(FM) there exist a map:<£>— >0T
from the space 2δjf of faithful weights to Aut (Λf ) and a map: (φ, ψ) — >

from 2BS, x 2B^ into the unitary group U of M such that

3>(x) - (Zty : Dφ).δ*(x)(Dγ: Dφ)* , xeM,

which coincide with of and (Dψ: Dφ)t if cλ — \u. In this setting, the
modular period group 5P(Λf) of M is generalized to Bl(FM) in the sence
that σl is inner if and only if ceB\FM), see [30; Theorem 9.4]. Thus
we obtain a homomorphism δM of H\FX), the first unitary cohomology
group of the flow FM , into Out (M) = Aut (Λf )/Int (M). Assuming Λf to
be semi-finite, we will see that (Dφ: Z>Tr)c = /(!)*/(/&) with 9? = Tr(Λ )
and cλ=fFλ(f*)f /eL°°(JBϊ). From this, we view σ? and (Dφ: Dψ\ as
functional calculus of the "generator" of the modular automorphism
group {αf}

In the last section, fixing a continuous decomposition M— W*(N, R, θ)9

we obtain an exact sequence:

{1} - > H\F*) -^ Out (M) - > Out,iΓ (ΛΓ) - > {1} ,

where

Out0,Γ (N) = {ae Out (JV): eN(θt)a = aeN(θt), τ^a^τ]

and εN is the canonical homomorphism of Aut (N) onto Out (JV).

IV.l. The fundamental homomorphism. Let M be an infinite factor
with separable predual, and FM the smooth flow of weights on M.
Recall that FM is just the action: φ—*\φ of -B* on the classes of in-
tegrable weights of infinite multiplicity. Let Aut (FM) be the group of
automorphisms FM, (i.e., automorphisms of the abelian von Neumann
algebra PM which commute with the action FM of JB+). For any ae
Aut (If), the permutation: φ— +φ°arl of classes of integrable weights of
infinite multiplicity defines a unique element mod(α) of Aut(jP^) such
that

mod (ot)pM(φ) = pM(φ ° or1) , a e Aut (Λf ) .

DEFINITION 1.1. We call mod the fundamental homomorphism.

This name comes from the following:

PROPOSITION 1.2. // M is a factor of type IL, with separable
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predual, then the map: λ e R* — * Ff e Aut (FM) is an isomorphism and
for any a e Aut (M) and a faithful semi-βnite normal trace τ we have

τ o or1 = mod (a)τ

where mod (a) is identified to λ e R* with mod (a) — Ff.

PROOF. By assumption, FM is transitive with trivial kernel, so that
every automorphism of FM is of the form F f , \eR*. Hence for any
a e Aut (M) there exists λ > 0 such that φ o a"1 ~ \φ for every integrable
weight φ of infinite multiplicity. Since M is a factor, we have τ o or1 =
μτ for some μ > 0. Let ε > 0. As in the proof of Theorem II. 4. 7,
choose an heM, 1 — ε <^ ft <; 1 + ε, such that φ = τ(ft ) is an integrable
weight of infinite multiplicity. We have then \φ — φ o or1 o Ad (u) for
some unitary u e M, so that for every x e M+9

\τ(hx) = \φ(x) = τ(ha~l(uxu*)) = τ ^ or\a(K)uxu*)

= μτ(a(h}uxu*} = μτ(u*a(h)ux) .

Thus we get λfc = μu*a(K)u; hence (1 — ε)λ ̂  (1 + e)μ and (1 — ε)μ ^
(1 + ε)λ. Therefore, \ = μ, ε being arbitrary. q.e.d.

PROPOSITION 1.3. (i) If M is a factor of type IΠ^, 0 < λ < 1,
with separable predual, then the map: \eR*—*F¥eAut(FM) is a homo-
morphism of R* onto Aut (FM) with kernel S(M) Γ) R*, and for any
a e Aut (M) and a generalized trace φ on M, [3; 4.3], we have

φ o or1 ~ \φ with mod (a) — F* .

(ii) If M is of type Π^ instead, then mod (a) = 1 for every a e
Aut (M).

PROOF, ( i ) We know that the flow FM is transitive with kernel
S(M) Π R*, so that the first assertion follows. Now let a e Aut (M) and
φ be as above, and λx, λ2 6 R% be such that

φ o a~l ~ \φ and ψ o a"1 ~ λ2^

for any integrable weight ψ* of infinite multiplicity on M. As above,
for any ε > 0 there exists an h e M9, 1 — ε ^ Λ ^ l + ε, such that
φ(h } — ψ is integrable and of infinite multiplicity. For some unitaries
u, v e M we have ψ o α"1 = λ2ψv and 9? o a"1 — \φv, so that for any x 6 M+

= \φ(va(h)xv*)
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Hence we get (Dφu(u*hu ): Dφv(a(K) ))t = λίV, έ^JB. Let Γ0 be the
generator of the modular period group T(M). Then

(Dφu(u*hu ):

As we have

we get

The right hand side tends to 1 when ε — >0, so that \\ϊl belongs to S(M).
(ii) We know that the flow FM is trivial for a factor of type IIIie

q.e.d.

PROPOSITION 1.4. ( i ) If M is an infinite factor with separable
predual, then Aut (FM), equipped with the simple convergence topology
with respect to the norm topology in (PM}*> is a polish topologίcal group.

(ii) If M is a factor of type HIλ, λ Φ 0, with separable predual,
then the isomorphism of R*/S(M) Π R* onto Aut (FM), given by Proposi-
tion 1.3, is a topological isomorphism.

PROOF, (i) This follows from the fact that Aut(FM) is a closed
subgroup of the automorphism group Aut (PM} of the separable abelian
von Neumann algebra PM.

(ii) The map: λ e R* — * Ff e Aut (FM) is continuous, so the isomor-
phism of R*/R* n S(M) onto Aut (FM) is continuous whose domain is
compact. Hence it is a homomorphism. q.e.d.

We are now going to show the continuity of the fundamental homo-
morphism mod. Let M be an infinite factor with separable predual.
We represent Aut (M) on the predual M* by considering the transpose
of each automorphism, then consider the pointwise convergence topology
in Aut(Λf) as in the preliminary. What we are going to prove is that
mod is a continuous homomorphism of Aut (M} into Aut (FM).

LEMMA 1.5. Let M be a von Neumann algebra with separable predual,
and U the unitary group of M with the uniform structure of the σ-
strόng* convergence. Let a be a continuous action of a separable locally
compact group on M. Then the set Z«(G, U) of all U-valued continuous
functions on G such that ugh = ugag(u^, g, h 6 G, is a Polish space with
respect to the uniform convergence topology on compact sets in G.

PROOF. Let d be a bounded complete metric of U giving the uni-
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form structure of the σ-strong* convergence. Let {Kn} be an increasing

sequence of compact sets in G such that G = U~=ι &*,> where Kn means
the interior of Kn. Put

oo -1

δ(u, v) = Σ —sup d(ugf vg), u, v e Za(G, IX) .
n=l2ngsKn

It is not hard to see that d is a complete metric on Z\(G9II) giving the
uniform structure in question. Furthermore, Zl

a(G9 II) is a closed subset
of the separable complete metric space of C(G, XI) of all continuous 11-
valued functions on G with the same metric d. q.e.d.

PROPOSITION 1.6. In the same situation as above, let U0~{^6tl:
ag(u) — u, geG}. Then the map d:weU—+dweZl

a(G, II) with (dw)g =
w*oίg(w} induces a Borel isomorphism d of the quotient Borel space 110\1I
onto a Borel subset B of Zl

a(G, 11).

PROOF. Since 110 is a closed subspace, 1X0\11 is a Polish space. Now
we claim that the map d is continuous. By Akemann's result [1], the
σ-strong* topology in a bounded set in M is given by the uniform con-
vergence topology on every weakly compact set in M*. It follows then
that the map: (φt g) G L x G—>φ°<xgeM* is continuous on every weakly
compact set L in M#, where we consider the weak topology in M*;
hence the set {φo<χg: φ eL, g eK] is weakly compact in M* for any
compact subset K of G and weakly compact subset L of M*. Hence if
{wn} is a sequence in IX converging to w, then {{ag(wn}, φ}} converges
to (ag(w), φ) uniformly for g e K and φ e L as n —> oo hence ag(wn)
tends to ag(w} uniformly in U for g e K. Since IX is a topological group,
w*ag(wn) converges to w*ag(w) uniformly for geK. Hence d(wn) con-
verges to d(w) in Za(G, IX), which means that d is continuous. Further-
more, d(Wι) = d(w2}, wί9w2GU, if and only if WjW? e 1X0. Therefore, d
induces a continuous injective map d from 1X0\U into Zl

a(G, IX). Hence
it follows from [17] that the induced map d is a Borel isomorphism from
U0\U onto a Borel subset B of Zl

a(G9 IX). q.e.d.

PROPOSITION 1.7. Let M and IX be as before.
( i ) The space SŜ  of all faithful weights ψ on M is a Polish space

with respect to the topology of uniform convergence of the (Dψ: Dφ)t

in U on compact subsets of R with φe%&M fixed] and this topology is
independent of the choice of φ.

(ii) For a faithful weight φ on M, the set {ψ 6 SB :̂ φ ~ <ψ>} = WΨ

is a Borel subset of SS ,̂ and there exists a Borel map u: ψ e Wφ --*
e IX such that φu(^} = ψ, π/r e Wφ.
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PROOF, (i) With φe^ fixed, the topology in 2δ^ is identified
with that in Z\ψ(R9 tt) under the correspondence: ψ<-+(Dψ: Dφ) e Zl

aψ(R, tt).
Hence the first half of the assertion follows from Lemma 1.5. Let {^rn}
be a sequence in $ΆM converging to ψ. Then (Dψn: Dφ)t — > (Dψ : Dφ)t in
U uniformly on compact subsets of R. For any other faithful weight φf,

(Dψn: Dφ')t = (Dψ n: Dφ)t(Dφ: Dφ')t ~> (Dψ: Dφ)t(Dφ: Dφ')t - (Ity: Όφ'\

in tl uniformly on compact subsets of R. Hence the topology in 2δ3/ is
independent of the choice of φ.

(ii) We apply Proposition 1.6 to G = R and a = (j^. It follows then
that φ ~ ψ , ^ 6 SB*, if and only if (Dψ: Dφ) e d(U). Let / be a Borel
cross-section from tt0\tt to tt, and put u(ψ) = /o d~\Dψ: Dφ). Then w is
a Borel map and φu(^ — ψ by construction. q.e.d.

PROPOSITION 1.8. Leέ .M 6β as above, and Aut (Λf ) δe equipped with
the simple norm convergence topology in M*. For any φ e 333̂ , the map:
a e Aut (M) —*φ° or1 e Sδ^ is continuous in the topology on 3BM defined
above.

PROOF. Let ψ be a faithful normal state on M. If an— >a0 in
Aut (If), then ||ψ °a~l -<^°cc* \\~ »0. Hence by [4], (Dψ°a-1: Dψ°a^)t-+l,

n __> oo , uniformly on compact subsets of R. For any φ e SBM , we have

= an((Dφ: Dlr)t)(Dlrooz*: Dψ°a^ta0((Dψ: Dφ)t) .

Thus we have only to prove that an(Dφ: Dψt) —* &o((Dφ Dψ)t) in H uni-
formly on compact subsets of R. Hence we will show that an(u) —> a(u)
in tl uniformly for u in a compact subset of K of IX. For any u, v e tt,
<%, /3 e Aut (Λf) and ωelf*, we have

|<α(tt) - /3(v), ω>| ^ \(u, o)o a - ω°βy\ + \{u - v, ω°β}\

^ | |α>oα: - <ύoβ\\ + \<u - v, ω°β)\ ,

so that the map: (a, u) e Aut (M) x tt — > a(u) 6 tt is continuous, because
the σ-strong* topology and the σ-weak topology in tt coincide. Hence
^ = ί^W u 6 K, n = 0, 1, •} c tt is compact, so that the er-weak uni-
form structure and the σ-strong* uniform structure agree in A. For
any fixed ωeM*, the set B = {ω°an: n = 0, 1, •} is compact in the
norm topology. For any ε > 0, there exist ul9 u2, •• , um in K such that
iafi^m KM— w<f ωoα%>|<ε for every ueK and w^O, 1, , by Akemann's
characterization [1] of the 0 -strong* topology in M. Let nQ be large
enough so that \{uί9 ω°an—a)Qa^\ <ε for every n^n0 and ί = 1, 2, , m.
We have then, for any w 6 K and % > n0,
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\(u, ω°a«,- ω°aoy\ <; \{u — uif(uoan — ω°<>| + \{ui9 ω°an- ωoa0)\

^ 2ε + ε = 3ε .

Thus (<xn(u)} cou verges to a0(u) a- weakly and uniformly for ueK; hence
it converges to o^(u) σ-strongly* uniformly on K. q.e.d.

We are now at the position to state the continuity of 7M.

THEOREM 1.9. Let M be an infinite factor with separable predual.
Then the fundamental homomorphism mod is a continuous homomor-
phism of Aut (If) into Aut (FM], where we consider the simple norm
convergence topologies in M* for Aut (M ) and in (PM}* for Aut (FM)
respectively. Hence mod (a) = i for every a e Int (M ).

PROOF. We know, as in the preliminary, that Aut (M ) is a Polish
topological group as well as Aut (FM). Hence we just have to prove
that 7M is a Borel map.

By construction, mod (a) = c for every a e Int (M). Let ώ be a
dominant weight on M, and p^ be the isomorphism of the center Ck of
M» onto PM defined in Theorem 1. 1.11 and the proof of Theorem II. 2. 2.
We claim that for any aeAut(M) with ώ°orl = ώ

^ - a\c, .

To see this, let u be an isometry in M with e = uu* e Cfc. Then we have

mod (a)(pχ(ω J) = pM(ώu o or1} = pM(ωa(u})

= Pω(α(β)) by Theorem 1. 1.11 (ii);

hence

mod (a)(ps(e)) - Ps(α(β)) .

Let %(•) be the Borel map from the set W^: of dominant weights on M
to the unitary group tt of M defined in Proposition 1.7(ii) such that
ωu(ψ) — ψ for any dominant weight ψ. By Proposition 1.8, the map
h: a e Aut (M) -^ h(a) = Aά (u(ώ o a'1)) o a e Aut (M) is a Borel map, since
the map Ad: v 6 IX — > Ad v 6 Aut (M) is continuous. We then have

mod (a) = mod (Ad (u(ώ o or1))) mod (a), a e Aut (M )

ά) o h(ά)~l = (ώ o or1)^*-!, - ώ

therefore

p^1 mod (ά)p- = h(ά) \c. by (*).

This shows that mod is a Borel map. q.e.d.

THEOREM 1.10. Let M be a factor of type IΠ;>, λ Φ 1, wί£/z, separa-
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ble predual. Viewing the fundamental homomorphism mod as a homo-
morphism of Out (Λf ) = Aut (M)/Int (M) into Aut (FM) by the trivial
identification, the following three conditions for a e Out (M) are equi-
valent:

( i ) mod (a) — t\
(ii) There exists a faithful normal state φ on M and a represen-

tative aQ of a such that

φ°a0 = φ and a0\Cφ = c

(iii) For any ε > 1 such that ]ε~\ ε[ n S(M) = {!}, there exists a
faithful normal state φ on M and a representative a0 of a satisfying
(ii) and

Sp (4) n X Λ < = {!}.
To prove the theorem, we need the following lemma which is a

slight refinement of Lemma 1.2.3 and [3; Lemma 5.2.4],

LEMMA 1.11. If ψ is a faithful weight on a factor of type III;.,
λ Φ 1, then for any ε > 1 with ]ε"\ ε[ Π S(M) = {1} there exists a posi-
tive h<Cψ> such that, with φ — ψ(h ) and e = s(h),

Sp(^)n]e-1,e[ = {l},

where Δφ means of course the modular operator corresponding to {Me, φ}.

PROOF. This follows from Lemma 1.2.3 and the observation that the
operator HeM^ in the proof of Lemma 1.2.3 is indeed in C^l because
each spectral projection of H is given by the left support projection of

V) for each closed subset V of R which belongs to CVy q.e.d.

PROOF OF THEOREM 1.10. (i) => (iii): Suppose ΊM(a) = c and ώ is a
dominant weight on M. There exists a representative a^ of a such that
ojo^ — ώ and a^- = c. Let heC^ be a positive operator such that
φ = ώ(h ) satisfies the condition in Lemma 1.11. It follows then that
φoaλ = φ. Since Mφ^M^e with β — s(h), we have Cψc:G-e~C^)e by
Theorem II. 5.1. Therefore, we have

φ o aL = φ and aλ Cφ = c .

Being lacunary, φ is strictly semi-finite, so that the restriction τ of φ
to Mφ is a faithful semi-finite normal trace. Since aL leaves τ invariant
and Cφ elementwise fixed, we have a^p) ~ p in Mφ for every projection
peMv. Let p be a projection in Mφ such that φ(p) < + oo. It follows
then that ^ — (ίfφ(p))φp is a normal state of M. Let % be a unitary
in Mφ such that upu* = a^p). Put a2 = Ad (^)-1 o ̂  e α. We have then
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ψ o a2 = ψ and that <%2 leaves CV elementwise fixed. Let w be an isometry
of M such that ww* — p. Put

aQ(x) — w*oiι(wxw*)w , x 6 M

ψ o = ψ»

We have that α 0̂ is a faithful normal state on M, α/r0 o aQ = α/r0 and aQ

leaves CV0 elementwise fixed. Since a0 — Ad(w*a2(w))°a2 and w*a2(w)
is unitary, α:0 belongs to a. Thus (iii) follows.

(iii) => (ii): Trivial.
(ii) ==> (i): Let tf0 e Aut (M) and 9? be a faithful normal state on M

satisfying the condition in (ii). We consider the tensor products M =
Λf(g)Foo, ω = φ®ω and α0(8)' = #o From the proof of Theorem Π.5.1,
it follows that the center Cfc of MU is a von Neumann subalgebra of
Cφ (x) U(L°°(R)). Since α:0 Cί0 = <?, α0 leaves C^ (x) Z7(L°°(JZ)) elementwise
fixed. Hence C^ is fixed elementwise by SQ. Therefore, we have
mod (α0) = mod (α0) = 1. q.e.d.

IV.2. The extended modular automorphism groups. Throughout this
section, let M be an infinite factor with separable predual, PM, pM, FM

and so on be as before. Let Z\FM) be the set of all σ-strongly* con-
tinuous functions {cλ} on R* with values in the unitary group of PM

such that

cμ) , λ,

and B\FM) be the set of all elements in Z\FM} of the form:
v*F*(v) for some unitary v e PM. Under the pointwise multiplication,
Z\FM) is an abelian group, and B\FM) is a subgroup of Z\FM). Put

H l(FM] = Zl(F*)IB\FM) .

For each t e R, let t denote the element in Zl(FM) defined by

t (λ) == λ** , λ 6 jBJ .

PROPOSITION 2.1. If φ is an integrable faithful weight on M, then
to each c e Z\FM) there corresponds a unique automorphism σφ

c of M such
that

( Ί ) σψ

c(x) = pφ\cλpM(φ)}x for every x e M(σψ, {λ}), λ > 0;
( ii ) φoσ* = φ and σ^2 = σ^ o σ*2, clt c2 6 Z\F*) ,
(iii) J| = σφ

t, 1 6 R.

PROOF. ( i ) The uniqueness of σψ

c follows from Lemma Π.2.3. Let
M — W*(N, R, 0) be a continuous decomposition of M, and τ be a faithful
semi-finite normal trace on N such that τ°θ8 — e~sτ, seR. Let (u(s): seR}
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be the one parameter unitary group in M canonically associated with
the decomposition W*(N, R, 0) = M. We know that the dual weight
ω — f is dominant, and that ώu(9} = e~sω and Ff op-(χ) = p-oθ^^^x)
for every x in the center C of N and λ > 0. For a fixed c 6 Z\FM\
we put

δs = P^(ces) , 8 6 R .

It follows then that bs is a unitary in C and

Hence there exists a unique automorphism σc of Λf — W*(JV, Jϊ, 0) such
that

σe(au(8)) = b8au(s) , aeN, seR .

Thus we have shown that 5? exists for a dominant weight ω on M.
Now, let v be an isometry in M with w* — e e Afc = JV such that

9> = ώv. Observing that e is fixed under a?, we define an automorphism
a of Λf by

a(x) = v*σ™(vxv*)v , x e M .

Since the map: xeM— +vxv* eMe is an isomorphism of M onto Me which
brings a to σf and of to σf9 teR, we have

α(a;) = v*p=1(cλ)vx , x e M(σφ, {λ}) .

Thus we must show that

v*p=\a)v = p?(apM(φ)) , a e PM .

To this end, we may assume that a — PMW f°r some integrable ψ,
since pM(ir)9s generate PM. We have then

) by Theorem 1. 1.11,

by Lemma 1.1.6,

<P) by Theorem 1. 1.11,

Thus a satisfies the requirement for σφ

c.
(ii) We know that ω o δ? = ώ by construction. Thus σψ

c, namely
α, preserves 9? by definition.

(iii) If c = t, then c^ = λ**, so that we get

Pφ(CtpM(φ)) = λ** , λ > 0 .

Hence 5? — σf. q.e.d.

THEOREM 2.2. Let 9 be an integrable weight on M. If ae Aut (M)
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leaves Mφ elementwise fixed, then a — σφ

c for some c e Zl(FM}.

PROOF. Let ώ be dominant, and M = W*(N, R, 0) be the associated
continuous decomposition of M and {u(s}} the one parameter unitary
group in M appearing in the decomposition. First we assume that a
is an automorphism of M leaving N elementwise fixed. For each s e jR,
let bs = a(u(sy)u(8)*. By Theorem II.5.1, bs belongs to the center C of
N and

bs+t = bsθs(bt) , 8 , t e J R .

Furthermore, we have

OL(XU(S)} — bsxu(s) , x e N, s e R .

Hence, putting cλ = p^(b_Losλ)9 λ > 0, we get a = a?.
In the general case, there is an isometry u with uu* = e e N such

that φ = ώu. Suppose that a e Aut (M) leaves Mφ elementwise invariant.
Considering the automorphism: xeMe—>ua(u*xu)u* eJίe, we may assume
that a 6 Aut (Λfβ) leaves Ne elementwise invariant.

For every xeN9 and seR, we have

xa(eu(s)e}eu(s)*e — a(xeu(s)e)eu(s)* e

= a(eu(s)eθ_s(xey)eu(s)*e

— a(eu(s)e)θ_s(xe)eu(s)*e

— a(en(s)e)eu(s)*exeθs(e) ,

so that bs = a(eu(s)e)eu(s)*e e Ceθs(e). A direct computation shows that

b.+tθ.(e) = bβs(bt] , s,teR.

Thus there exists, by Proposition A.I, bf e Zg(R, He?) such that bs = b'8eθs(e),
seR. Define an a! 6 Aut (M) by

a'(xu(s)) — V8xu(s) , x e ΛΓ, s 6 /ί .

We have then

a(x) = a'(x) for every xeMe .

Putting cλ — ί?^(6-Log;), we have a! = σf, so that α = J?. q.e.d.

EXAMPLE 2.3. Let ΛΓ be an infinite semi-finite factor with separable
predual. We identify (PN, FN] with L°°(R+, d\) acted by the translation
of R* as in II.2. We then conclude the following:

( i ) For every c e Zl(FN) there exists a unique, up to scalar multi-
ple, unitary /eL°°(jβ?, eZλ) such that cλ - fFλ(f*\ λ > 0.

(ii) With c — d/ as in (i), and 9? — τ(hφ ) as integrable weight, we
have
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PROOF, (i) This is known.
(ii) We have first that σφ

t = Ad (ft*f)> 1 6 R. The integrability of φ
implies that the spectrum of hφ is absolutely continuous with respect to
the Lebesgue measure, so that f(hφ) = u makes sence. Let a be a
partial isometry in N(σφ

9 {λ}), λ > 0. We have then hfiahφ" = λ**α, £ e /ί,
so that a*h$a = (\hφ}

ua*a. Therefore, we get

f(hφ)af(hφ)* = af(hφ)*f(\hφ)a*a

Therefore, <?? and Ad (f(hφ}) agree on the set of partial isometries in
N(σ*9 {λ}), λ > 0. But any element of N(σ*, {λ}) is the product of a
positive element in Nφ — {hφ}' Γ) N and a partial isometry in N(σφ, {λ})
by polar decomposition. Thus σψ

c = Ad (f(hφ)). q.e.d.

This example shows what we deal with by considering σψ

c: it may
be called a "functional calculus" of the "generator" of the modular auto-
morphism group.

THEOREM 2.4. Let φλ and φ2 be faithful ίntegrable weights on an
infinite factor M with separable predual, and P — M® Fz. Put

2 2

9( Σ Xt.j ® β<f y) = φ^Xn) + φ2(x22), X = Σ «<,y ® β<,y 6 P .

We then conclude the following:
( i ) To each c e Zl(F*)9 there corresponds a unique unitary uc =

(Dφ2: DφJc in M such that

(ii) TΓ

, xeM, ce

, βlf c2 6 Z^ί7

PROOF. The integrability of φ follows from that of φί and φ2.
Noticing that 1 (g) eiti e P9, i = 1, 2, and <3T(# (g) eu) = σ?*(ί») ® β«, i = 1, 2,
we follow the arguments for the unitary cocycle Radon-Nikodym theo-
rem, without any alteration. q.e.d.

COROLLARY 2.5. Let M be an infinite factor with separable predual.
Let 6M denote the canonical homomorphism of Aut (Λf ) onto Out (M) —
Aut (M)/Int (M).



560 A. CONNES AND M. TAKESAKI

( i ) For every c e Z\FM), the element εM(σ^) of Out (M) is inde-
pendent of the choice of an integrable weight φ. Put δM(c) = ex(σ%).

( i i) δM is an extension of the modular homomorphism (SM(t) =
δM(t), t e R) and Ker δM = B\FM).

(iii) The range of δM is a normal subgroup of Out (M) with

άdM(c}a~l = 3M (mod (α)c) , a e Out (M) .

PROOF. ( i ) Trivial from the previous theorem.
(ii) The first half follows from Proposition 2.1(iii). Let ώ be a

dominant weight and c 6 Z\FM). Assume that σ? = Ad (u). Since σjf
leaves MU pointwise fixed, we have ueC^ by Theorem Π.5.1. It follows
then that

cλ = Pz(u)*FΪ(pϊ(u)) , λ > 0 .

The converse is proven the same way.
(iii) Let ώ be dominant as before, and a e Aut (M). Multiplying a

by an inner automorphism, we assume ώ o a = ώ, so that

p^1 o mod (a) °p^ = a\c- .

If x is an element of M(σ°, {λ}), then a~\x) e M(σ™, {λ}), because a and
σ" commute; hence

a o <7? o or\x) = a(p-\cλ)a~\x)) = a(p=l(cλ))x

= p=l (mod (oί)cλ)x . q.e.d.

THEOREM 2.6. Let M be an infinite factor with separable predual,
and %&Q

M the space of all faithful weights on M with the metric d de-
fined in Π.4. If c 6 Z\FM] is twice continuously differentiate in norm,
then there exist uniquely maps: φ e 3% —»σφ

c 6 Aut (M) and (φ, ψ) e %&°M x
2B^r->(jD<p: D^r)e ett(M), the unitary group of M, with the following
properties:

( i ) If φ is integrable, then σφ

ΰ satisfies condition (i) in Proposi-
tion 2.1. // φ and ψ are both integrable, then (Dφ: Dψ)c is given by
Theorem 2.4(i);

(ii) The both maps are continuous with respect to the norm to-
pologies in Aut (M) and U(Λf);

(iii) For each xeM, we have

σl(x) - (Dφ: Dγ\σ*(x)(Dφι D^

(iv) For each φlf φ2, φ3 e SS ,̂ we have

(Dφ,: Dφ3}c = (Dφ,: Dφ2}c(Dφ2: Dφ3)c

(Dφ,: Dφ2\ - (Dφ,:
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( v ) For any a e Aut (Λf ) and u e tt(M ), we have

(Dφu: Dγ\ - u*(Dφ:

(vi) If e19 c2 e Zl(FM) are twice differentiate in norm, then

(Dφ:

The uniqueness of these maps follows from Proposition 2.1 and the
density of integrable weights in 3B5/

LEMMA 2.7. Let c e Zl(FM) be as in the theorem. For any ε > 0
there exists Ύ] > 0 such that for any faithful integrable weight φ on M:

, \er\

PROOF. Without loss of generality, we may assume that φ is domi-
nant. Put bs — p^(ces}, s 6 R. Let {^(s)} be the one parameter unitary
group in M which, together with Mφ, generate M as a continuous de-
composition M = W*(Mφ, jR, (9). We then have

σψ

c(u(s}) = &Xs) , s 6 jR .

If / is a function in the Schwartz space J5^(JR), then the M- valued func-

S oo
e~ispf(p}bpdp e M is integrable by the twice differenti-

— 00
ability of {bp} and we have

xeM,

where we recall that the measures dp and ds are the Plancherel measures
on R. Put

as = \ e~ispf(p}bpdp , seR.

It follows then that

Ψ / \ ~~φ Ψ f \ \ / f/ N \ ψ

J—oo

Let g be a function in L\R) such that g(p) = 1 for p in a neighborhood
of 0. If /(O) - 1, then

S oo Γoo ^

-ooj_oo s i 0 5 -
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Hence we have

_ O θ - C Q

- Γ Γ ( frs) - «•)(«<* - s) - g(t))σl(x)dsdt
J— 00 J— 00

^ || as || ί" ί" ||/(s) - α. | | |flr(t - β) - g(t)\dβdt .
J— coj— co

Put λ(β) = ||/(s) — αβ||. Then h belongs to L\R). Hence there exists a
sequence {gn} in Ll(R) by [25; page 50] such that gn(p) = 1 for \p\<l/n
and

h(s)\gn(t - β) - gn(£)\dsdt-+Q as
o

If /(p) = 1 for I p I < 1/w, then we have

Thus the conclusion follows. q.e.d.

LEMMA 2.8. Lei c e Zl(FM) be as in Theorem 2.6. jPor αw?/ e > 0,
there exists 7] > 0 swcft tfcαt for every faithful integrable weights φ^ and
φ2 with d(φί9 φ2) ^ f) we have

\\(Dφt: DφJ0 - 1\\ £ G .

PROOF. We keep the notations in Theorem 2.4. It follows from
II.4 that d(φί9 φ2) ̂  η means 1 (x) e21 e P(σφ, [e~η, e11]). Hence, choosing η > 0
as in Lemma 2.7, we get

q.e.d.

LEMMA 2.9. Let c e Z\FM) be as in Theorem 2.6. Let φ be a
faithful weight of infinite multiplicity.

(a) {φn} is a sequence of faithful integrable weights such that
limΛ_>oo d(φ, φn) = 0, then the sequence {σψ

c

n} of automorphisms converges
to an automorphism, say σ%, of M.

(b) σφ

0 does not depend on the choice of a sequence {φn} and satisfies

φ o σφ

c = φ and σψ

c \Mφ = c .

PROOF. Since we have, by the definition of (Dφ: Dψ),

\\(Dφm: Dφύ. ~ (Dφ.l DφJ.\\ - \\(Dφml Dφn}6 - 1|| ,

it follows from Lemma 2.8 that {(Dφn: Dφ^c] is a Cauchy sequence of
unitaries in M. Put
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(Dφ: Όφ^G = uc^ lim (Dφn:

and

It follows also from Lemma 2.8 that (Dφ: Dφ^c does not depend on the
choice of a sequence {φn} but only on φ and φλ. By construction, we
have

{<£>„} be a sequence of faithful integrable weights given by φn =
φ(hn ) with hneMφ such that hn ̂  hn+1 and limn_βo | | fe» — 1|| == 0. We
have then, for any $eΛf+,

= lim φ(x1/2hnx
ί/z) — lim 9>Λ(αO

= lim <pM o σf •(») = lim

by the lower semi-continuity of 9?. Replacing c by c"1, we have φ(x) ^
9? o ffv-l(χ). Therefore, we get φ<>σl ~ φ. Let ψ be an integrable faithful
weight with d(φ, ψ) < e. Then we have Mφ c Λf(α^, [β~2e, β2£]). There-
fore, Lemma 2.7 entails the last assertion of (b). q.e.d.

PROOF OF THEOREM 2.6. With possible exception for (vi), all state-
ments for faithful integrable weights follow from Proposition 2,1, Theo-
rem 2.4 and Lemma 2.8. Let φ e SBSf be integrable and a e Aut (AT). It
follows then that

pφoa = mod (a)"1 o pφ o a

hence for each # 6 M(σφo(X, {λ}) we have

Hence we get the first part of (vi) for integrable weights. The last two
formulas for integrable weights follow from this and the usual 2 x 2 -
matrix arguments.

Let φQ and ^0 be arbitrarily fixed faithful integrable weights. For
each faithful weight φ of infinite multiplicity, we put

(Dφ: Όφ,\ = lim (DφΛ:

with a sequence {φn} of faithful integrable weights converging to φ in
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the metric d. We know that this does not depend on the choice of {φn}9

We define

(Dφ: DΫ). - (Dφ:

for a pair φ, ψ of faithful weights of infinite multiplicity. With sequences
{φn} and {α/rj of integrable weights converging to φ and ψ, we have

lim (Dφn:
W-*oo

= lim
ίi-»oo

= lim (Dφ.:

hence the above definition of (Z>£>: Dψ)e makes sense. Given e > 0, if
d(φ> TίΌ < f] with 27 > 0 in Lemma 2.8, then

\(Dφ.:

Therefore, if d(φ, φ') < η and D(ψ, ψ') < 27, then we have

}\(Dφ: Dir). - (Dφ'l Dlr')e\\

= \\(Dφ: Dφ,\(Dγ: Dφtf - (Dφr: Dφ,\(Dγ: Dφ.\\\ £ 2ε .

Thus, by Lemma 2.9, Theorem 2.4 and continuity, all statements for
faithful weights of infinite multiplicity hold.

Let φ be a faithful weight of infinite multiplicity and w be an
isometry with ww* e Mφ. We define

(Dφw: Dφ\ = w*σ*(w) .

If v is another isometry with vv* e Mφ such that φw — φv9 then we have

v*σΐ(v) - (Dφ,: Dφ)t - (Dφw: Όφ\ = w*σf(w) , t e Λ f

so that we have ΐw* eΛί^ and σφ

c(vw*} = ^w* by Lemma 2.9. Therefore,
v*<7?(tf) - w*σφ

c(w}. Thus (D^w: Dcp)c is well-defined.
If φ and ψ» are faithful weights of infinite multiplicity and v and

w are isometries of M with w* 6 Mφ and 'M W* 6 Λf^, then we define

(Dφv: Z?f Jc - (Dφ,: Dφ)c(Dφ: DΊr)0(Dψ, D φ)* .

It is then shown, by the similar arguments as above, that (Dφ9: Dψw)e

is well-defined. Since any faithful weight is of the form φv for some
φ of infinite multiplicity, (Dφ: Dψ )c is defined for a general pair φ, ψ
in SBi. We then define, fixing a faithful weight φQ of infinite multiplicity,

o?(a) - (Dφ: Dφ0}cσ^(x}(DφQ: Dφ)ΰ , x 6 M .
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It follows from the chain rule that σψ

c does not depend on the choice of
φ0. A straightforward argument shows that conditions (iv), (v), (vi)
and (v) hold.

Thus, the only thing remains to be shown is the continuity of
(Dφ:Dψ)c in general. We consider P = Mt&F^. It is easily seen that
for any φ, ψ e 2SJf we have

(D(φ (x) Tr): D(γ (x) Tr))β - (Dφ: Dψ)0 (x) 1

d(φ ® Tr, ψ (g) Tr) - d(φ, f ) .

Hence the continuity of (Dφ: D^)c on φ, ψ follows from the continuity
of two maps: (φ, ψ) 6 2BΪ, x SŜ  -> (φ (g) Tr, ^ (g) Tr) e 2S2- x 2B°p and
(φ (g) Tr, ψ* (g) Tr) -> CD(0> (x) Tr): D(ψ (x) Tr))c. The continuity of the map:
φ~+σψ

c is automatic after this. q.e.d.

EXAMPLE 2.10. Let N be an infinite semi-finite factor with separable
predual. As in Example 2.3, let c = dfe Z\FM) and φ = τ(hφ ) a faithful
weight on N. Then we have

(Dφ: Dτ\ =

We leave the proof to the reader.

COROLLARY 2.11. Let M be an infinite factor with separable predual.
Let G 6 Z\FM) be as in Theorem 2.6. Let φ be a faithful weight on M
and put

C(h) = (D(ψ(h')}: Dφ)c

for each non-singular self-adjoint positive operator h affiliated with
MΨ. We conclude the following:

( i ) c(h) falls in the center of {h}' Γ) Mφ;
(ii) CiC2(K) — C1(fe)c2(fe) for every twice differentiate cl9 c2 G Zl(FM).

PROOF. ( i ) Let P = M (g) F2 and

^Oii) + φ(hx22), x = Σ χij (8) β<,y e P .
i,3=ί

Let u — 1 (x) β21. We have then

c(K) (g) β21 = σf(u) .

Since erf (u) = hu ® β21, we have σf(u)u* e P^, so that

hence

c(Λ) (g) βn -
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which means that c(h) e Mφ.
If x 6 {h}' ΓiMφdMφΠ Mφ(h.}, then we have

x = σφ

e

(h'\x) - c(K)σφ

c(x)c(h}* = c(K)xc(h}* ,

so that c(Λ) e ({Λ}' n Mφ)' Π Mφ = the center of {h}' Π Af?.
(ii) This follows from (i) and Theorem 2.6 (vii). q.e.d.

We now apply Theorem 2.6 to a factor given by the group measure
space construction, and then compute the extended modular automor-
phism. Let M be an infinite factor with separable predual and φ a
faithful weight. Suppose that there exists a von Neumann subalgebra
N of Mφ with relative commutant N' Π M = C contained in N and a
continuous unitary representation u( ) of a separable locally compact
group G in M such that

u(g)Nu(g)* = N, geG;

By Theorem II.6.2, there exists a non-singular self-adjoint operator pg

affiliated with C such that

, teR,geG.

It is also easy to see, using N' Π M = CdN, that if a e Aut ( M ) leaves
AT elementwise fixed, then there exists a one-cocycle {α,} 6 Z\(β, ttσ) such
that

«(w(flO) = αXff) » 0 e G ,

where the action β of G on N, hence on C, is given by

βg(x) = u(g}xu(gT , xeN,geG.

Let {Γ, μ} be a standard measure space with C = L°°(Γ, μ), on which G
acts in such a way that

ft(«000 = afor1?) » xeC,geG,ΎeΓ .

We consider the action of G on Γ x Jfί defined by:

Γ,(% β) - (flry, s - log ft(τ)) , 76Γ, s6Λ, jf eG .

Let fe,(7) = - log ̂ (7), geG, ΎeΓ. By Theorem Π.6.2, the center C^
of the dominant weight ω = φ®ω on AT (8)^00 is identified with
jL°°(Γ x J2, j« (g) m)β, where m means, of course, the Plancherel measure
on JR.

COROLLARY 2.12. Iw the above situation, if ceZ\FM) is as in
Theorem 2.6, then the cocycle a 6 Zβ(G, Uc} corresponding to the extended
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modular automorphism a = aφ

c is given by the formula:

*iW = bkg(9-h)(Ύ, 0) ,

where b8 — p^l(ce-s)9 seR.

PROOF. For n = 1, 2, , put

Φn(t) ^ tan^ί , teR
n

s , - < 8 < -- .
2n 2n

We define an isometry wn of L\R) onto L2(—π/2n, π/2n) by

(wnξ)(s) = VΨ%s)ξ°Ψn(s) , - JL < s < 2- , ξ e U(R) .
2n 2n

Clearly we have

(wtt)(t) = VWJt)ξ o φn(t) , t e Λ, f 6 L2(-τr/2^, τr/2^) .

Let α> be the weight on F^ = 2(LZ(R)) such that

(Z>ω: Z> Tr)t - F, ,

where {U8} and {Ft} mean the one parameter unitary groups defined in
Chapter II. We have then

{(Dωwn: D Tr),f }(s) - (w* VtwΛξ)(s)

= e

ίtφ^ξ(s) .

Hence we get d(ωWn, Tr) = π/2n, so that ωWn converges to Tr uniformly.
Therefore φ (g) ωWn converges to φ (x) Tr uniformly; thus we get

(Dφ ® Tr: Dω)c = lim (Dφ (x) ωWn: Dω\
n— *oo

= lim 1 w

Let 7 ĉ = (Dφ (g) Tr: Dώ)c and ^w,c = (D«^ (x) ωWn: Dω)e. It follows from
the proof of Lemma 2.7 that

un)C 6 {&,, ( 1 (g) w*)<τf(l (g) wn): s, ί e JF2}" c C (g) L°°(Λ) ,

and that

uM(Ύ, s) = bΦn(8,_8(Ί, φn(s)} , 7 e Γ, s 6 Jβ .

Therefore, we get MC e L°°(Γ x E) and

w,(7, e) - δ ŝ(7, 0) ,
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where we use the fact that the differentiability of b in norm, together
with the cocycle property, implies the continuity of δs(7, t) in t.

We next have

σ?(u(g) (x) ΐ)(u(g)* <8> 1) = σϊ(u(g))u(g)* ® 1 = j3g(p«) (x) 1 e C (g) C ,

so that σ*(u(g) (g) l)(w(flr)* (g) 1) = d, belongs to C(x) L°°(R) = L°°(Γ x /?)
and we get

<Z,(7, β) = 6^(ff-ιr)(7, β) .

Since we have

α, (8) 1 = σ?®Tr(w(flO (g) l)MflO* (8) 1) = wβ

-
we have

α,00 = Mβ(7, *)<*,(% βXtoΓ^, β) - δ-.(Tι 0)δv,-ιr>(7, s^-aGΓ^, 0)

- &V,-ir>(% 0)
q.e.d.

IV.3. The exact sequence for the group of all automorphisms.
Given a factor M of type III with separable predual, we have constructed
various mathematical objects: the flow FM of weights, the fundamental
homomorphism ΊM of Out (M) into Aut (FM), the extension SM of the
modular homomorphism and a continuous decomposition M = W*(N, R, 0).
Putting these things together, we compute Out (M) — Aut (Af)/Int (Λf),
and generalize the exact sequence in [3; Chapter IV].

THEOREM 3.1. Let M be a factor of type III with separable predual.
If M — W*(N, R, ff) is a continuous decomposition of M, then there
exists a homomorphism 7 of Out (M) onto Out0,Γ (N) which makes the
following sequence exact:

{1} > H\FM) — Out (M) -Ϊ-* Out,,r (N) > {1} ,

w/^βrβ

Out^,Γ (JV) = {ε^(α): α e Aut (ΛΓ), α ŝ = β.α, 8 e R, τ o α; = τ} .

PROOF. Let ώ be the dominant weight of M dual to the trace τ
on jV with τ o 08 = e~sτ. By Theorem 2.2, if α: e Aut (M) leaves N point-
wise fixed, then a = σj? for some c 6 Zl(FM). By Corollary 2.5. (ii), α is
inner if and only if c e Bl(F*). Hence the map :̂ c e Zl(FM} ~+ εM(σ^) e
Out (M) gives rise to an isomorphism of H\FM) into Out (M) which will
be denoted by SM again.

Let a be an arbitrary automorphism of M. Then ω°a is again
dominant. By the uniqueness of a dominant weight, there exists a
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unitary ueM such that ώ ° a o Ad (u} — ώ. Hence, putting

Aut^ (M) = {a 6 Aut (M): ώ o a = ώ} ,

we have Out (M) = e^Aufe (If)). Let α 6 Aut^ (M). If a = άf for some
czZ\FM}, then aN~c by construction. If α|y = Ad(M) for some
t&ettCW), then we have α: o Ad (u)"1 \N = £, so that # o Ad (u)"1 — σf for
some c 6 Zl(FM} by Theorem 2.2. Hence the kernel of the homomorphism
7: a 6 Autΰ (Λf) — * ε^α:^) 6 Out (JV) is precisely the image of Z\FM] under
σ". Since we have

Aut^ (M) Π Int (M) = {Ad (%): u e U(N)} ,

7 gives rise to a unique homomorphism 7 of Out (M) into Out (N) such
that Ύ°εM = 7.

We examine the range of 7. Put

Aut0,Γ (JY) - {α 6 Aut (TV): dθ8 - ̂ 8α, s e R, τ o a = τ} .

Let {^(s)} be the one parameter unitary group in M which appears in
the crossed product decomposition M = W*(N, R, 0). Let a e Aufe (M)
and β — a\N. Since a and {07} commute, we have σf(a(u(s))) = e
so that αs = α(^(s))^(s)* e U(JV). It is straightforward to see that

as+t = aβs(at) , s, t e β

hence α 6 ZX/ί, U(Λ^)). By Theorem ΠI.5.1, we have a = b*θs(b) for some
δettCΛO. Thus we get α(w(8)) •= b*θs(b}u(s) = b*u(s)b, so that αoAd(6)
leaves u(s) fixed for every seR, which means that β° Ad(6)=αo Ad(6)|^
and {θs} commute. Since ώ°a — ω,a\N leaves τ invariant by the equalities
aj = x o Efc and E-°a = E^9 so that /3 o Ad (6) leaves τ invariant. Thus
we conclude the inclusion:

7(0ut (M)) c 6* (Aut,,r (ΛΓ)) - Out,fΓ (ΛΓ) .

Suppose β e Aut t f |Γ (JV). A standard argument shows that /S is ex-
tended uniquely to an a e Aut (M) such that a(xu(s)) — β(x)u(s), xeN,
seR. Trivially, we have a\N — β. Thus we have

7(0ut (M)} =) ε^(Aut,,r (ΛΓ))
q.e.d.

THEOREM 3.2. In the same situation as in Theorem 3.1,

Out0,r (JV) = {a e Out (ΛΓ): eN(θs}a = aεN(θs\ s e R, τ o a = τ} .

PROOF. Let C denote the center of JV. The unitary group U(N)
of N is a polish group with respect to the σ-strong* topology and U(C)
is a closed subgroup of U(N). We consider the pointwise convergence
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topology in Aut (N) with respect to the norm topology in N*. The
map Ad: u e tt(JV) — » Ad (u) e Aut (N] is a continuous homomorphism with
kernel U(C). Hence the naturally induced map Ad: u e U(N)/U(C) — >
Ad (%) 6 Aut (ΛΓ) is a continuous isomorphism from the polish group onto
Int (N). Hence Int (N) is a Borel subset of Aut (N) and the inverse
map Ad""1 is a Borel map from Int (AT) onto U(N)/U(C). Let T be a
Borel transversal of tt(JV)/U(C) in U(̂ ), and let π = ToXcK Then TT
is a Borel map from Int (N) into U(AO such that Ad (π(a)) = α for every
α e Int (AT).

Suppose a e Aut (Λf ) commute with Θ8, seR, modulo Int (M), that is,
s(θB)eN(a). Put A = α o 0β o α-1 o ̂ -! e Int (JV) and b8 = π(β8} e

seR. We have then

Ad (6.) o Θ8 = α o ^8 o α"1 , s 6 Λ .

By the one parameter group property of {aoθβoorl}9 we have

Ad(6A(δ*)) = Ad(6.+ί), « f t 6 Λ .

Put

φ, t) - b?bs+tθa(b?) e U(C) , s,teR.

By a direct computation, we get

c(r, 8)c(r + β, ί) = 0r(c($, ί))c(r, s + έ) , r, s, teR .

Hence c is a Borel unitary 2-cocycle of the flow {C, θ}. By the triviality
H%(R, tt(C)) = {0} of the second cohomology group of a flow, see Appendix,
we can find a U(c)-valued Borel function {d,} such that

c(s, t) = dfda+tθ8(df) , for almost s, teR .

Let αs = cί8&8, s 6 lϊ. We then obtain a U(Λr)-valued Borel function {α,}
such that for almost every s, t in jβ,

+ί = α8θ8(αt) , s, 1 6 R

By Remark IΠ.1.9, there exists αeZϊ(R, U(N)) such that α'8 = α8 for
almost every ssR.

By the triviality of Hl(R9 U(JV)), Theorem IΠ.5.1, we have an element
w e U(N) such that α8 = u*θ8(u), seR. Thus we get Ad (%*) o ^e o Ad (%) =
ao^oor1 for almost every se/ί. Namely, Ad(u)°α: and { 8̂} commute
in Aut (M) by continuity. q.e.d.

REMARK 3.3. The exact sequence in Theorem 3.1 does not split in
general.
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APPENDIX

PROPOSITION A.I. Let G and H be separable locally compact groups
and {Γ, μ] a standard measure space on which G acts ergodίcally. Let
E be a Borel subset ofΓ with μ(E] > 0. Put A = {(g, 7) 6 G x E: 07 e E}.
If b ίs an H-valued Borel function on A such that for every gly 02 e G
with μ(E Π g?E Π 0Γ10Γl#) > 0

δ(0ι02, 7) = b(glt 027)ί>(02, 7)

for almost every 7 e E Π gϊlE Γ) 02~
10Γ1 E> then there exists an H-valued

Borel function c on G x Γ such that

0(0, 7) = 6(0, 7) , (0,7)6 A ;

/o? ever?/ 0!, 02 6 G

<K0ιΛ, 7) - cfo, 027)c(02, 7)

/or almost every 76 A

PROOF. Let G0 be a dense countable subgroup of G. Let ΓQ—\JgeGQgE.
By ergodicity, we have μ(Γ — -Γ0) = 0. Hence we may assume Γ = Γ0.
Then, there exists a family {J57,: g e G0} of Borel subsets of E such that

Γ = \JgEβ, gEgΓ\hEh= 0 , g^h.
fire (70

Define a G-valued Borel function α( ) on Γ by

α(7) = 0 if 7egEg,

and put α>(7) = α(7)~
1
7 e E, and p(g, 7) = α(07)~

1
0α(7). We have then

7 - α(7)α>(7), fi>(07) - /o(0, 7)ω(7)

X0ι02, 7) = (̂0!, 027)!θ(02, 7) .

Furthermore, for each fixed 0eG, ^0(0, •) takes only countably many
values: indeed p(g, 7) e G0gGQ for every 7 6 Γ. Define

c(ft 7) - 6(/o(0, 7), ω(7)) , 0 6 G, 7 6 Γ .

Since we can choose E^ — E where 1 means the unit of G, we have
c(gt 7) = 6(0, 7) for (0, 7) 6 A. Furthermore, we have

c(0ι0«, 7) - b(p(gίg2ί 7), α>(7)) - b(p(g» gff}ρ(g,, 7), α>(7))

= b(p(glf 0,7), p(g» Ί}ω(Ί})b(p(g,, 7), α>(7))

= b(p(g19 0,7), ω(gjr))b(p(g» 7), ω(7))

= c(0w 027)c(02, 7)

for almost every 7 e Γ, where we use, in order to exclude a null set of
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7, the fact that p(gί9 g27) and p(g2, 7), 7 6 Γ, are at most countable.
q.e.d.

The authors learned that the following result had been proven by
L. Brown sometime earlier. We present, however, a proof for the sake
of convenience of the reader, since Brown's work is not yet available
in print.

PROPOSITION A.2. Let A be an abelian von Neumann algebra with
separable predual, and {at:te R] be an ergodίc one parameter automor-
phism group of A. Then for every n ^ 2, we have H*(R, UJ — {!}.

PROOF. By virtue of the representation theorem for flows, due to
Ambrose, Kakutani, Krengel and Kubo [12], [16], we may assume that
the flow {A, a] is built under a ceiling function from a single ergodic
automorphism. Let {Γ, μ) be a standard measure space equipped with
an ergodic transformation T. Let / be a positive Borel function on Γ.
Consider the abelian von Neumann algebra B = L°°(Γ x R, μ (x) m), where
m means the Lebesgue measure on R. We define a one parameter auto-
morphism group {βt} and an automorphism θ of B as follows:

βt(x)(Ύ, 8) = x(Ύ, s — t) , xeB , (7, s}eΓ x R , teR ,

θ(x)Cr, 8) - x(T-*v, s + /(7)) .

The representation theorem says that {A, a} ~ {Bθ, β} for a suitable
choice of Γ, μ, T, and /.

An Ti-cochain c e Cl(R, IXJ is by definition a unitary of L°°(Rn) (x) A
considered as a IX^-valued function on Rn. In particular, Cί(R9 UA) — UA.
For each n ^ 0, and c e C%(R, UA), the coboundary dc is given by the
formula:

dc(s19 , sn+1) = αβl(c(s2, , sw+ι))Φι + «2, s3, , s^+O"1- φ1? , sj(~1)%+1

= ^S1(Φ2, ' * ', »n+ι)) Π Φl, •••,»,' + S +l, , ̂ +1)
(~1)J'

X 0(8!, S2, ' ', S%)

Thus we obtain a cochain complex:

(1) VLA = C°a(R, ttj —Ci(Λ, tu) ^Cϊ(Λf ttj— ••• .

We have then by definition Hϊ(R, UJ = {the kernel of d in Ct(R, UA)}/{the
range of d}.

Let Un be the unitary group of L°°(Rn+1) ®B = L°°(Rn+1 x Γ). For
each c 6 Un, we define the coboundary dc by the formula:
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5=0

where £, indicates that the term £/ is missing. We then have a long
exact sequence:

For each w *> 0, we define an automorphism of L°°(Rn+1) (g) B, denoted
by θ again for the obvious reason, by the following:

Let π be a map of L00^) (g) A into L°°CRW+1) (g) 5 defined by the following:

π(x)(tQ, *»•"» *»> 7) = (̂*ι ~ *w *a - *ι, ••-,*»- **-» 7, ί0) ,

where we identify A with ί? .̂ It follows then that π is an isomorphism
of L~(Rn} (g) A onto (L°°(lί%+1) ® B/ which makes the following diagram
commute:

CO(Λ, tij -̂  σi(Λ, tij -̂  ---- ̂  σ:(Λ, nj

Moreover, we have π(Cn

a(R, UJ) = (U71)'9 = the fixed point subgroup of IT
under θ. Therefore, cochain complex (1) is isomorphic to the following
cochain complex:

Now, let C = Lβo(Γ9μ) and «(»)(7) = x(T~lΊ] for each xe(7. Putting
ε(x) = 1 ® a? e L°°(R) (g) C for each a? e C, we obtain an injective resolution
of the Z-module U0:

(4) {1} - ̂ -L+ir-^ϊl1-^ ---- ̂ u%-^> .

where Z acts on each group, of course, via θ and the injectivity follows
from the divisibility of the unitary group of a von Neumann algebra.
Hence the cohomology groups of cochain complex (3), hence (1), are iso-
morphic to the cohomology groups H<}(Z, Uc), n^l, (cf . [10; page 105]).
This means then that

H*a(R, UJ = Hf(

It is known, however, that

JffSCZ, Ua) = {1} , n ̂  2 .
q.e.d.
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The above result, or more precisely the proof, is known in homo-
logical algebra as Shapiro's lemma.
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