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ABSTRACT. Given a normed space X we consider the hyperspace k(X) of all
non-empty compact convex subsets of X endowed with the Hausdorff distance.
We prove that if T : X — X is an (m, q)-isometry, then it is possible that
the map k(T) : k(X) — Ek(X), k(T)C := TC, is not an (m,q)-isometry.
Moreover, if k(X) is the Radstrém space associated to the hyperspace k(X),
then T : k(X) — k(X) is an (m, ¢)-isometry if and only if T : k(X) — k(X)
is an (m, q)-isometry.

1. INTRODUCTION

Throughout this paper, X is a real normed space and || - || its norm, L(X) the
class of all bounded linear operators T : X — X, m a positive integer and q a
positive real number, unless stated otherwise.

The notion of (m,g)-isometry in the setting of metric spaces was introduced
in [3]: amap T : E — FE, on a metric space F with distance d, is called an
(m, q)-isometry if

Z(—nm—i (T) d(T'z, T'y)?=0 (r,y€E). (1.1)
An (m,q)-isometry is called strict whenever is not an (m — 1, ¢)-isometry. Of
course, the (1,¢)-isometries are the isometries. This definition generalizes the
concept of m-isometry firstly introduced on Hilbert spaces by J. Agler [1]. Some
time after the notion of (m, ¢)-isometry on Banach spaces was defined by Bayart
2] and Sid Ahmed [7].

Date: Received: Dec. 15, 2014; Accepted: Jan. 14, 2015.

2010 Mathematics Subject Classification. Primary 54E40; Secondary 47B99.

Key words and phrases. Radstrom space, m-isometry, hyperspace, wighted shift operator.
110



(m, q)-ISOMETRIES ON AN HYPERSPACE 111

In [4] it was introduced a notion of m-isometry on certain hyperspaces of a
Banach space. In this paper we study (m, q)-isometries on the hyperspace k(X)
of all non-empty convex compact subsets of a normed space X. Given an operator
T € L(X) we consider the map k(T') : k(X) — k(X), defined by k(T)C :=TC.
It is possible that T" is an (m,q)-isometry but k(7' is not an (m, q)-isometry.
More precisely, we prove that any weighted shift operator S,, € L(f2) which is
a (2,2)-isometry induces a map k(S,) : k(fa) — k(¢3) which is not an (2,2)-
isometry.

Using a construction by Radstrom we associate to k(X) the normed space

l@, being k(X) a subspace of l@ We prove that T : k(X) — k(X) is an
(m, q)-isometry if and only if T : k(X) — k(X) is an (m, ¢)-isometry.

2. THE HYPERSPACE k(X)

Given a real normed space X, we consider the hyperspace
k(X):={C C X :0 # C compact convex} .

For C,D € k(X) and « scalar, we write C + D :={z+y: 2z € C,y € D} and
aC = {ax : z € C'}. Some properties of the class k(X)) are given in the following
proposition:
Proposition 2.1. For C,D,E € k(X); \,u > 0 and « scalars,

(1) C+ D € k(X)
(2) (C+D)+E=C+(D+FE)andC+D=D+C
B)C+E=D+E=C=D
(4) aC € k(X)
(5) a(C+ D) =aC+aD and (A + p)C = \C + uC
Proof. The property (3) is [6, Lemma 2]. The other properties are simple. O

We introduce the norm of C' € k(X):

|C]| == sup ||| .
zeC

Proposition 2.2. For C,D € k(X) and « scalar,
(1) IC]] = 0 == C = {0}
(2) [|[€+ D <[IC+ D]
3) llaCll =[]l

Proof. Routine. OJ

The class k(X) is endowed with the Hausdorff distance h: given C, D € k(X),
we put

h(C,D):=inf{e >0: C C D+eBx and D C C+¢Bx},

where By is the unit closed ball of X. In the next result we collect some basic
facts about the distance h.

Proposition 2.3. For C, D, E € k(X) and « scalar,
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(1) h is a metric on k(X); moreover, if X is a Banach space, then k(X) is
complete.
(2) h(C+E,D+FE)=h(C,D)
(3) h(aC,aD) = |alh(C, D)
(4) h(C,{0}) = C]]
Proof. The property (1) is well known and (4) is clear. In order to prove (2),
notice that, for every € > 0, we can write
hWMC+E,D+FE)<e = C+ECD+E+eBxand D+ FECC+ E+¢eBx
— CCD+eBxand D C C+¢eBy
= Rh(C,D) < e,
by Proposition 2.1 (3). Analogously, h(C,D) < ¢ = h(C + E,D + F) < «.
Therefore, (2) is true.
Now we prove (3). We have that the equality is obvious if & = 0. Assume
a # 0. Then
h(aC,aD) <e = aC C aD +eByx and aD C aC 4+ eBx
— O CD+a 'eBx=D + |a| 'eBy
and D C C +a 'eBx = C + |a| 'eBy
— h(C,D) < |a| e
— |alh(C,D) <ce.
Analogously, |a|h(C, D) < ¢ = h(aC,aD) < e. Consequently, (3) holds. O

Observe that the property (2) in the above proposition depends on the fact
that F is bounded and that both sets C'+ By and D + By are convex closed,
since C' and D are convex compact (see [0, Lemmas 2 and 3]).

It is obvious that we can identify X with {{z}: 2 € X} C k(X). For z,y € X
and « scalar we have that {z} + {y} = {z + y}, a{z} = {az} and h({z},{y}) =
|z — y||. Notice that, in general,

WG, D) <|[C=DJ (C,D e k(X))
and it is possible that h(C, D) < |C' — D||. For example, h(C,C) =0 < ||C —C||

whenever C' is not a singleton.

3. MAPS ON k(X)

We say that a map T : k(X) — k(X) is linear if, for C, D € k(X) and «
scalar,

T(C+D)=TC+TD and T(aC)=aTC.
Given T : k(X) — k(X) linear we define the norm of T by

C
iTi= s TGy e
{0}£Cek(X) 1Cl Cek(X),lIC|=1
Hence, for every C' € k(X), we have that ||TC| < ||T|||C||. We say that T is
bounded if | T < oo.



(m, q)-ISOMETRIES ON AN HYPERSPACE 113

The following results are very similar to analogous facts about linear operators
between normed spaces and we omit the proof.

Proposition 3.1. Let T : k(X) — k(X) a linear map. The following assertions
are equivalent:

)
) T is continuous at {0}

) There exists M > 0 such that, for every C € k(X), | TC| < M||C||
) T is bounded

We denote by L(k(X)) the class of all bounded linear maps 7 : k(X) — k(X).

Proposition 3.2. For T,S € L(k(X)) and scalar «,

(1) T+S e Lk(X)) and [T+ S| < ||T] + ||S]|
(2) aT € L(k(X)) and |[aT|| = |of || T]
(3) TS € L(k(X)) and || TS| < ISl

Proof. Routine. O
Given T € L(X) we define the map
E(T): k(X)) — k(X) , kK(T)C:=TC.

Obviously, the restriction of k(7) to X is T: k(T){x} = T{z} = {Tx}, for any
r e X.

Proposition 3.3. Let T € L(X). Then k(T) € L(k(X)) and ||k(T)| = ||T].
Proof. For C € k(X), we have that || T'C|| < ||T||||C||, hence

k(T)C TC
= s DAL, AT <y
oy2ceex) O] oy2cekx) lIC]
Moreover Tz irc|
x
|T|| = sup < on IE(T)||
ozzex || {0}#£C€k(X) 1C]
and the proof is completed. 0

Proposition 3.4. Let T € L(X). Then T is an isometry if and only if the map
k(T) is an isometry.
Proof. 1t is enough to observe that the equalities
LDl = lICll = [ITC]
are equivalent to that both k(7') and T are isometries. O

Our main interest is the study of (m, ¢)-isometries (m > 1 integer, ¢ > 0 real)
on the hyperspace k(X). Recall that the general definition was given in (1.1).
For T : k(X) — k(X) the condition (1.1) is equivalent to

i(—nm—i (m) WTC, T'D) =0 (C,D € k(X)). (3.1)

- 1
=0
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The equivalence given in Proposition 3.4 can not be extended to (m, g)-isometries,
although an implication is true.

Proposition 3.5. Let T' € L(X). If the map k(T) is an (m, q)-isometry, then T
is an (m, q)-isometry.

Proof. 1t is enough to observe that any restriction of an (m, ¢)-isometry to an
invariant subset is also an (m, g)-isometry and that 7" is the restriction of k(7T)
to X as explained before. O

The converse of above proposition is false, as we show in the next example.

Example 3.6. Let S, : {5 — {5 the weighted shift operator on ¢y with weight
sequence w = (Wy)n>1 € loo. That is, for x = (z,)n>1 € lo,

Swt = Sy(x1, 29, x3...) = (0, w121, Woka, W3T3...) .
If S, is a strict (2,2)-isometry, then k(S,) is not a (2, 2)-isometry.
Proof. We put « := |wy|?. Then, for n > 1 [4, Remark 3.9(1)(b)]

an —(n—1)
an—1)—(n—2)"

|wn|2 =

hence

200 — 1 3o — 2

2
and |ws|® = 50 1
We have that o # 1 since S, is not an isometry, and « > 1 since S,, is a (2, 2)-
isometry ([4, Remark 3.9(1)(b)], [5, Corollary 2.3]).

Let (e,)n>1 be the canonical basis of f5. Take z = e; and y = Aeg, such that A

is a scalar with

!wz\Q =

OZ2

200 — 1~

1< |M\?<
We obtain
2> =1, [|Swz|? = a, |S2z]® =20 — 1,

20 — 1 3a — 2
182y = ==
(6%

lyl1* = IA 1Swyll® = A1

a
Consider the segment

C=lr,y={te+(1—-t)y:0<t <1} €k(ly) .

Then
ICI1* = sup [ftz+ (1 - t)y|
0<t<1
= sup ||(,(1 —t)),0,0,0...)|]?
0<tL1
= sup (¢ + (1 —¢)°|AP)
0<t<1

= AP,
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since 1 < |A|%2. Moroever,

1S,C|*? = sup [[(0,wit,ws(1 —1t)A,0,0,0..)|

0<t<1

= sup (Jwi*t* + Jwa*(1 = 1)*|A]%)
0<t<1

200 — 1

= sup (at® + a (1 =)\
0<t<1

= «

and
I1S2C|1> = sup ||(0,0,wiwst, wows(1 — ), 0,0,0...)||
0<t<1
= sup (Jwiws*t* + [wows* (1 — £)*|AP°)
0<t<1

3a— 2
= sup ((2a— 1)t* + c
0<t<1 a

= 2a—1.

(1= )*|A1)

We have that
h(k(Sw)?C, k(Sw)*{0})* = 2h(k(Sw)C, k(S,){0})* + R(C, {0})* =

= [[k(Su)*CII* = 2|k(Su)CI* + [CII* = 20 — 1 = 20+ AP = [A]* = 1 £ 0,
because of 1 < |A]%. By (3.1) we obtain that S, is not a (2, 2)-isometry. O]

—

4. THE RADSTROM SPACE k(X))

Radstrom [6] proved that k(X) endowed with the Hausdorff distance can be

isometrically embedded in a normed space k(X) in such a way that addition in

— —

k(X) induces addition in k(X) and multiplication by scalars in k(X) induces
multiplication by scalars in k(X).

Now we give a description of the Radstrom space associated to the hyperspace
k(X) (see [6]). On k(X) x k(X) we consider the equivalence relation (C, D) ~
(E,F) <= C+ F =D+ E, where C,D,E,F € k(X). The class of (C, D) is
denoted by [C, D].

The quotient space

@ _ E(X) x k(X)

~Y

is a normed space with the following: for C, D, E, F € k(X) and A > 0 scalar,
I[C. D =h(C, D), [C. D]+ [E,F]=[C+E,D+ FJ,

—_—

From this, the distance between two classes of k(X)) is given by

o~

r([C,D],[E,F]) =||[C,D] - [E,F]|=||[C+ F,D+ E]|=h(C+F,D+E).
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Moreover the map ¢ : k(X) — l@ defined by ¥C' := [C, {0}], is an isometric
embedding of k(X) into k(X); in fact, we have that ¢)(C' + D) = ¢(C) + (D),
P(AC) = A (C) and [0 () = [|C].

Given a map 7T : k(X) — k(X), we define

T k(X) — k(X) , TIC,D]:=[TC,TD].
Notice that the restriction of 7 to k(X)is T.

Proposition 4.1. Let T : k(X) — k(X) a linear map. Then
(1) T is linear
(2) T bounded =T bounded and ||T|| = ||7T]-

Proof. (1) Straightforward.

(2) As T is restriction of T, we have that ||7| < || 7. Now we show |7 >
. For this purpose, first we prove
T||. For thi fi

WTC,TD) < ||T|h(C,D) (C,D € k(X)). (4.1)

Fix C,D € k(X). Let € > h(C,D). Then C' C D +eBx and D C C + eBx.
Hence TC C TD +eTBx and TD C TC + T By, where

TBx:= | J T{b}.
beBx
(Observe that T By is not always defined because of By ¢ k(X) if X is infinited-
imensional). Notice that from 7{b} C ||T]|||b]|Bx C ||T|/Bx, we obtain T Bx C

|7T||Bx and consequently TC C TD + ¢||T||Bx and TD C TC + ¢||T||Bx.
Therefore h(TC,TD) < ¢||T||. Hence (4.1) follows. From this

ITI = sup |ITIC,Dl|

lC.Dl|<1

= sup [[[TC,TD

h(C,D)<1

< sup [[T|A(C, D)
h(C,D)<1

= |71
So the proof is completed. O

Proposition 4.2. Let T € L(k(X)). The following assertions are equivalent:

(1) T is a strict (m, q)-isometry
(2) T is a strict (m, q)-isometry

Proof. For C; D € k(X) and 1 < k < m, we have the following equalities

IT*[C, D]|| = ||[T*C, T*D]|| = h(T*C,T*D) .
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Consequently, T is an (m, ¢)-isometry, that is it verifies (3.1), if and only if T
verifies

S (M)IT Dl =0 (€D € kX))

that is, T is an (m, q)-isometry. From this, it is obvious that 7T is a strict (m, q)-
isometry if and only if 7 is also a strict (m, ¢)-isometry. O
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