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1. INTRODUCTION

Many papers in differential equations have studied the asymptotic equivalence of
the solutions of two differential equations (see the references). This paper is another
contribution in this area. We shall consider the linear equation

(1) dy/dt = A(t)y
and a perturbation of this equation
(2) dx/dat = A(t)x + 1(t, x).

In a recent paper [3, Theorem 1], F. Brauer and J. S. W. Wong considered the
problem of establishing a correspondence between the bounded solutions of equations
(1) and (2). Their result covers the case where the linear system (1) is, in general,
uniformly conditionally stable. We use Schauder’s fixed-point theorem and impose a
certain restriction on the nonlinear term f in (2), as was done in [3].

In equations (1) and (2), the symbols y, X, and f denote n-vectors, A is a con-
tinuous n X n matrix defined for values of t in I =[0, ), and f is continuous on
I X R, We denote by Y(t) the fundamental matrix of (1) that satisfies Y(0) =1,,,
where I, is the n X n identity matrix. Let P; (i =1, 2) be supplementary projec-
tions, and define

& (t;s) = YO)P; Y Hs) (i=1,2).

The symbol || - || denotes some convenient norm of a vector or matrix,

To determine bounds on the solution vectors of (2), we introduce two positive
scalar functions Y = Y(t) and ¢ = ¢(t) that are continuous on I. In Theorem 1 we
require that ¥ and ¢ satisfy the condition

[ v rwewat = =

A vector function z = z(t) is called Y-bounded if there exists a positive constant M
such that

lv-ltz@)|] <M (eI,
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The results of this article extend known results of W. A. Coppel [5, Chapter V],
R. Conti [4], and V. A. Staikos [10] in several distinct directions. The references
[4], [5], and [10] establish the existence of a bounded solution of a differential equa-
tion; our results indicate, in some sense, the number of such solutions. Our results
allow more general nonlinearities than were previously allowed. Also, the introduc-
tion of the function Y permits the discussion of y¥/-bounded solutions of (1) and (2),
as opposed to just bounded solutions. In the last section of this article, we give
examples that illustrate the generalizations obtained by using the functions ¥ and ¢.

The introduction of the pair Y, ¢ also has applications in the area of stability;
see [6], [7].

2. A REMARK ON THE HYPOTHESES

To motivate the choice of our hypotheses, we investigate the relationship between
two sets of hypotheses that have been used. N. Onuchic [8], [9] used hypotheses (H).

(H) For each positive constant M, there exists a continuous, nonnegative, real-

[>e]
valued function hy(t) satisfying the inequality ‘S‘ hp(t)dt < . Moreover,
0

£, =) < hy(®)

for all (t, x) (t € I, ||x| < Mm).
Brauer and Wong used hypotheses (C).

(C) There exists a real-valued function w(t, r), continuous and nonnegative for

(t, r) € I X1, nondecreasing in r for each fixed t € I, and satisfying the condition
[2e]

S w(t, A)dt <o for all » (0 <1 < =), Moreover,
0

£, =) < ott, [x[D.

We point out that Onuchic does not require the functions h M(t) to be continuous.

Hypotheses (C) and (H) are equivalent. It is easy to see that condition (C) im-
plies (H); take hy(t) = w(t, M). To establish the converse, we construct the function
w = w(t, r) in the following manner. For each positive integer n, consider the func-
tion h (t). For t € I, define H, (n=1, 2, ---) inductively as follows:

Hyt) = hi(t), Hy(t) = max {h,(t), H,, ()} @=2,3, -).

We now define w = w(t, r) on appropriate strips of the first quadrant. Let € be a
positive number (0 <& <1);for each r (0 <r <1 -¢) and each t (t > 0), let

w(t, r) = Hy(t).
For a fixed positive integer n andfor t € I and r € (n - &, n - £/2], define
wlt, r) = H(t) - 26”1 [H,(t) - Hyy )] (r - n+g).

Iftelandre (n-¢/2,n+1-¢g), let
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wit, r) = H_,,(t).

It follows from the definition of w that condition (C) is satisfied. Therefore, condi-
tion (H) as used by Onuchic and condition (C) as used by Brauer and Wong are equiva-
lent.

Motivated by the discussion above, we use an analogue of the comparison condi-
tion (C). In particular, we require that the perturbation term f in (2) satisfies the
inequality

(3) lo-1) i, x)|| < wit, |¥-tt)x|),

where w(t, r) is a continuous function on I X I and is nondecreasing in r, for each
fixed t. We shall impose further restrictions on the function w when they are re-
quired.

3. MAIN RESULTS ON ¥-BOUNDEDNESS

The following result was motivated by a theorem of Coppel [5, p. 74, Theorem 10].
By using Schauder’s fixed-point theorem [5, p. 9], we can allow a more general per-
turbation term f than is considered in [5].

THEOREM 1. Suppose there exist supplementary projections Py, P, and a
constant K > 0 such that for each t (t > t,), the inequality

t )
0

holds. Suppose that inequality (3) holds. Furthermore, let y)(t) = supg> t w(s, A),
and assume that lim;_, o ) (t) = 0 for each » (0 <A < ). Then, corvesponding to

each Y-bounded solution y = y(t) of (1), there exists a Y-bounded solution x = x(t)
of (2) with the property that

(5) [ x(@t) - y®)|| = o)) (t— ).

Conversely, to each Y-bounded solution x = x(t) of (2) theve corvesponds a Y-
bounded solution y = y(t) of (1) such that (5) holds.

Proof. For each p > 0, define the Y-ball

By p = {z| z is continuous on [ty, ©) and sup ||y -lt)z@t)| < p}.
’ t >to o

Let y be a ¥-bounded solution of (1) such that y € Bz[/,p- For x in Bx,!/ 2p» We de-
fine ’

t o
(6) Tx(t) = y(t) + St & |(t; s)i(s, x(s))ds - jt &,(t; 5)i(s, x(s))ds .
0

We require that 'yzp(to)K < p. It follows that T maps By 2, into itself, because
relation (6) implies the inequality
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[Tx®)] < [0 +v5pk) KIWt) < 209(t).

Next, we show that T is continuous. Let x, {xn}:f:l belong to By, », and sup-
pose {xn} converges uniformly to x on compact subintervals of I. Rélation (6) im-
plies that

t
Irxa® - T < et o)l - 165, 26 - 165, x(s))]] s
to

(7)
+ S &, (t; s)| - [I£(s, x(s)) - £(s, x(s))]| ds.
t

Fix € > 0, and choose t; (t; > tg) sufficiently large so that v2p(t1) < €/4K. On the
interval [tg, t;], the sequence {x,} converges uniformly to X; this, together with
the continuity of f, implies that there exists an N > 0 such that

o L(t) [1(t, xn(1)) - £k, x(®))|| < /2K (t € [tg, t1], n> N).
The use of these results in (7) leads to the inequality
[ Tx,t) - Tx@®)| < ew(t) (@>N).

Since Y/(t) is continuous on I and & is arbitrary, the sequence {Tx,} converges
uniformly to Tx on compact subintervals of [t,, «).

The functions in the image space TB%Z p are uniformly bounded for each t,
since TBy 2p C By.2p - Because z = Tx is a solution of the nonhomogeneous linear
equation

z' = A(t)z + £(t, x(t)),

the derivatives of the functions in TBy 2p are uniformly bounded on every finite in-
terval. Thus, the functions in TBy 2p are equicontinuous on every finite interval.

Schauder’s fixed-point theorem now establishes that the mapping T has a fixed point
in By 2. This fixed point is a ¥-bounded solution of (2).

To verify that (5) holds, we need the relation

| YO P1]| = ow(t)) (&t — =),

o0
which is a consequence of Lemma 1 of [6] and the hypothesis S vl t) o(t) dt = »

(actually, the proof in [6] needs to be modified to include the projection P ).
Fix € > 0, and select t, (t, >t;) such that

t
(8) ) e || S Y- 1(s)i(s, x(s))] ds < e/2 (t>t,).
to

The choice of t; guarantees that
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)

St & (t; s)i(s, x(s))ds - f ,(t; s)i(s, x(s))ds
ti t

(9)
<Kygplty) <e/4 E>t).

From (6), (8), and (9) we obtain the inequalities
t
[x® - y&)| < [¥@P, | § ¥ (e)5(s, x6D] ds +Krpplty) < ewit)
to
for sufficiently large t; hence (5) is satisfied.

To verify the last statement of the theorem, consider a {/-bounded solution
x = x(t) of (2). Define

t o
10) O =xO- | @ 9Ks, xNds+ | s, 9)1(s, x()ds.

Definition (10) and previous arguments show that y is a ¥-bounded solution of (1)
that satisfies (5). This concludes the proof of Theorem 1.

Example. In general, the condition lim; _, yA(t) = 0 in Theorem 1 may not be
replaced with the condition that v, be bounded. The solution of the differential
equation

dx/dt = -x +x2% (t>0)
through the point (t,, x4) is
t t
x(t; tg, xg) = xge 0[xo(e 0. ef)+et]"L.

Corresponding to each bounded solution x of (2) with xg < 1, there exists a bounded
solution y of (1) such that

(11) |x(t) - )| = o(1) (t— )

to-t
(take y(t) = xge 071 - x0]"! as the solution corresponding to x(t; tg, xo)). How-
ever, the solution x(t; ty, 1) =1 of (2) has no corresponding y such that (11) is
satisfied.

The next result is closely related to known results of Conti [4] and Staikos [12]
who considered the existence of a bounded solution of (2). Again, our generalizations
are in two directions: an improvement in the allowable nonlinearity in (2) and the

[>e]
introduction of the functions ¥ and ¢. Instead of the condition S o)y Lt)dt = »

of Theorem 1, we use a similar hypothesis.

THEOREM 2. Suppose there exist supplementary projections P,, P, and a
positive constant K such that
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¢ 1/q

1/g o
( f 21 &5 ) et ds) * (S @2 s)o(s)]® ds)
(12) to .

< Kylt) (>t 1<q <),

Suppose that (3) holds and that the function w satisfies the condition

0 .
(13) S WP(t, N)dt < o  (0<a<e, pleql=1),
0
o0
Furthermore, assume ‘S‘ o Ht) Yy Ut)dt = . Then, corrvesponding to each -

bounded solution y = y(t) of (1), there exists a Y- bounded solution x = x(t) of (2)
such that condition (5) is satisfied. Conversely, to each Y- bounded solution x of (2)
therve exists a Y-bounded solution y of (1) such that (5) holds.

Proof. The proof uses Schauder’s fixed-point theorem and resembles the proof
of Theorem 1. We indicate the necessary modifications.

As above, suppose y is a ¥-bounded solution of (1) in BlP,P , and define

t

19 T =y + |

&, (t; 5)1(s, x(s))ds - S &, (t; 8)(s, x(s))ds.
tO t

By virtue of (13), we may choose ty sufficiently large so that
0 1/p

(15) (5 wP(s, 2p)ds) < p/K.
t
0

Using (14) and (15), one can show that Tx € BI,D,Zp'

To establish that the mapping T is continuous, fix € > 0, and select t; > ty such
that

oC
5 wP(s, 2p)ds < &P /4PKP,
t1

¥ {x,}n.1, % belong to By 2p and {x,} converges uniformly to x on compact in-
tervals of [ty, ), then there exists an N > 0 such that

(16) o~ L) | £(t, x(v) - £(t, x@)]| < e/2K[t; - to]”P (t € [to, t1], n > N).

From (14), (16), and Hdlder’s inequality, we obtain the inequalities

t 1/p
[ Tx(t) - Tx ()] < K[ S ¢P(s) || (s, x(s)) - i(s, x(s))||P dSJ
to

. 1/p
+ ZK[ S wP(s, 2p)ds ] <eylt) m@>N).
t]



ON ASYMPTOTIC EQUIVALENCE OF BOUNDED SOLUTIONS 359

This shows T is continuous.

The equicontinuity and uniform boundedness follow as in the proof of Theorem 1.
Again, Schauder’s fixed-point theorem is applicable; hence, there exists an x in
By 2p such that Tx = x. A direct verification shows that x is a y-bounded solution

of (2).

To complete the proof, we must verify (5). First, we need a modification of some
known lemmas (for example [4, Theorem 2], [5, p. 68], or [6, Lemma 1]) to show that

(17) IY@) P, || = owt)) (t— ).
Define
h(t) = ¢%t) | Y@ P "%,

We consider the identity

t t
18) Y®P, § neas= | 6710 ¥E) P v P Y (5)ols) 67 () ¥(6) Py ds.
to to

Using the H6lder inequality in (18), we find the inequality

t -1/q t
(19) [y®)p, | < (St h(s)ds) (St &1t s)o(s)|* ds)
0 0
t

To establish (17), it suffices (in view of (12) and (19)) to show that ¢(t) = S h(s)ds

1/q

to
satisfies the condition lim; _,« {(t) =. From (19), it follows that
(20) @I 1P Y@ P, | 71) < Ko 1) wit).
Substituting

[ag/at]™ /9 = |[x®) P, 7 (1)

into (20), we find that
dg/dt > K™ 4¢3 v ) ¢(t).

Integrating from t; (t; > ty) to t, we obtain the inequality

t
(21) g(t) > ¢(ty)exp [ K™ S ¢3(s)y~YUs)ds } :
ty

o0
Our assumption S ¢d(t) Y ~Ut) dt = «~ now implies that lim;_,,, {(t) = o, which
establishes (17).
According to (13), for each &€ > 0 we can choose t; > to such that

o 1/p
{ S wP(s, 2p)dsj| < g/2K.

t)
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By virtue of (17) there exists a t, > t;, such that
t)
v O lYor, ) { Yo, x()] as < e/2.
to

Using these two inequalities, we obtain from (14) that

o l/p

t
| xt) - y®| < [|Y@w e,| St I Y-Ys)i(s, x(s)] as +K[ Sc wP(s, 2p)ds
0

1

which establishes (5).

To establish the converse, let x be a given y-bounded solution of (2). One sees
easily that

t )
g0 = x0) - | 2,6 916, x(eNds + o, 9)1(s, x(s)as
to t

is a Y-bounded solution of (1) that satisfies (5).

Remark. The analogue of Theorem 2 where ¢ and ¢ are constants and
p =1, q =« has already been obtained by Brauer and Wong [3, Theorem 1].

If additional requirements are placed upon the expression on the left-hand side
of (12), then further information may be obtained about the solutions. The next theo-
rem considers the case where the solutions of (1) and (2) belong to the Banach space
L7 [tg, ©) (1 <r < w).

THEOREM 3. Assume that the hypotheses of Theovem 2 ave satisfied. Further-
more, suppose that the function ¥ -10, where 0 = o(t) is given by

1/q

t l/q )
o(t) = (S @, s) ¢(s)”qu) + (‘S‘ | @,; s)cb(s)”qu) ,
to t

belongs to L [ty, ©). Then, co'rrespondmg to each solution y = y(t) of (1) for which
yly belongs to L™ [ty, ©) N L™ [to, w), there exists a solution x = x(t) of (2) such
that Y~1x belongs to LT [tg, ©) N L*® [to , @) and (5) is satzsfzed Conversely, if
x = x(t) is a solution of (2) with y-1x € LT [ty, ©) N L™[ty, =), then there exists a
solution y = y(t) of (1) with -1y € LT [tg, ) N L®[tg, =), and (5) is satisfied,

Proof. The conclusions of the theorem that involve the space L* [tg, «) follow
from Theorem 2. The remalnder of the proof demonstrates that w" x belongs to
LT [ty, «) provided ¥~y belongs to L” [ty, «), and conversely. Equation (14), with
Tx = x, gives the correspondence between the solutions x and y:

t )
x(t) = y(t) + St B, (t; 8)£(s, x(s))ds - St ®,(t; s)i(s, x(s))ds .
0

By HoOlder’s inequality, we obtain
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0 l/P
(22) Ix®)] < [y®] +0(t)(5 w¥(s, 2p)ds) ;
t

0

here we have assumed that x belongs to B:,D,Zp . Since the product of 1,(/'1 and the

right-hand side of (22) belongs to L™[ty, «), the function ¥ ~1x belongs to
LT [ty, ©). The converse follows similarly.

4. EXAMPLES

In this section, we give two examples to indicate some advantages that are ob-
tained by introducing the scalar functions ¥ and ¢. We compare the results obtain-
able for Theorem 1 in the case where ¥ = ¢ =1 and in an instance where the func-
tions Y, ¢ are chosen more judiciously. Example 1 shows that by specifying the
function ¢ properly, we cannot only strengthen the asymptotic growth condition (5)
but also improve the hypothesis (3), which relates to the perturbation term f, over
the case ¥ =1. Example 2 similarly points out that a suitable choice of the function
¢ allows a more general perturbation term f than the case ¢ =1, It is clear that
the introduction of the function ¢ does not alter the conclusion (5) of the theorem as
the function ¥ does; the function ¢ can only serve to weaken the required hypotheses
on f.

Example 1. Consider the linear equation
(23) dy/at = -2t +t )y @t >1)
and the nonlinear perturbation of (23)
(24) dx/dat = -@t+t Hx+at)x®  (E>1),

where a(t) is continuous for t > 1 and r > 0.
2
The solutions of (23) are of the form y{t) = ct-le-t"  for some constant c.

First, we indicate the nature of the hypotheses of Theorem 1 for the choice
Y =¢ =1. Since the relation

t
2 2
t~le-t S e® sds = o(l) (t— =)
1

holds, (4) is satisfied. The condition lim¢_, o, 7, (t) =0 (0 <X < =) for the particu-
lar choice f(t, x) = a(t)xT reduces to the condition

(25) lim a(t) = 0.

t— oo

If condition (25) is satisfied, Theorem 1 implies that corresponding to each bounded
solution y of (23), there exists a bounded solution x of (24) such that

(26) |x(t) - y@)| = o(1) (&t — ),

and conversely.
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The choice Y(t) =t-1, ¢(t) =1 still implies that (4) is valid. In this case, the
specification of the function w in (3) and the condition lim;_, y)(t) = 0 lead to the
hypothesis lim, ., a(t)t™* = 0. This is a weaker condition than (25), since r > 0.
Also, the corresponding solutions x and y of (23) and (24), respectively, satisfy the
condition '

|x(t) - yt)| = o(t-!) (t— =),

which is a stronger result than (26).

Example 2. We consider the equations

(27) dy/dt = -2ty  (t > 0)
and
(28) dx/dt = -2tx+a(t)x" (t>0),

where a(t) is continuous and r is a positive number. The solutions of (27) are
2
y =ce ! where c is a constant. As in Example 1, inequality (4) is satisfied for
Yy =¢ =1, since

t

2 2
0< et 5 e’ ds < 1;
1

and if we require condition (25), then the hypotheses of Theorem 1 are satisfied.
However, if one takes y =1 and ¢(t) = 2t, then (4) still holds, but we may replace
(25) by the weaker condition limy_, . t~!a(t) = 0.
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