MULTIPLICATIONS ON PROJECTIVE SPACES
E. Rees

In this paper, we consider the collection of multiplications on projective spaces.
The results of [1] imply that the only projective spaces that admit a multiplication
are the real projective spaces P?, for n=1, 3, and 7. We describe the collection of
multiplications on P3 as a group and determine the number of multiplications on P7.
C. M. Naylor [4] previously found the number of multiplications on P3.

1. Let ¢« XV X — X denote the “folding” map.

A multiplication on a space X is a map p: X XX — X such that p l XV X =4¢.
Two multiplications on a space X are said to be homotopic if they are homotopic as
maps relative to X v X,

M. Arkowitz and C. R. Curjel showed in [2] that if X is a finite CW-complex ad-
mitting a multiplication, then there exists a one-to-one correspondence between the
set of homotopy classes of multiplications on X and the homotopy set [X A X, X].
When X has a homotopy associative multiplication, [X A X, X] has a group struc-
ture.

LEMMA 1. Let M be a smooth, connected manifold of dimension n, and let My
be M with an open disc vemoved. If there exists a smooth embedding f: M — Smtn
with trivial normal bundle, then S™M ~ S™M M,V SPtm

Proof. Let N denote a closed tubular neighbourhood of the embedding, and let T
denote the Thom complex of the normal bundle. T is N/@N by definition, and it is
homotopically equivalent to S™ Vv S™ M. If D is a small disc of dimension m +n
lying in the interior of N, the space T - D is homotopically equivalent to
Sm\/ SMmM,. The attaching map of D is homotopically trivial in S?*™ and there-
fore is also trivial in T. This proves that

STMy\/ STM ~ SV 8™MMg Vv sHtm

and therefore we have that S™M ~S™M M,V Sntm,

I am extremely grateful to Dr. B. J. Sanderson for showing me this lemma. It
enables us to avoid a rather long direct proof of the following statement (when n = 6).

COROLLARY 2. The covering map w: S™ — P is stably trivial when n =2 or
n = 6.

Proof. We prove the result for n = 6. The case n =2 is similar (and easy to
prove directly, anyway).

Embed P7 in R15. Since P7 is parallelizable, the normal bundle is trivial.
The space P7 with an open disc removed is homotopically equivalent to P6, and the
attaching map for this disc is S87. It follows from the proof of the lemma that
S8r ~ 0.

LEMMA 3. If K is an n-dimensional complex, then S: [K, S™] — [SK, s™*1] s
an isomorphism provided
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(1) n<2m -1, (2) n=5, m=3, or 3) n=13, m="1.
Proof. Condition (1) is Freudenthal’s suspension theorem.
. Fox:1 (2), look at the following exact sequence, obtained from the Hopf fibration
St — S
0
[sK, s7] — [SK, s%] % [k, s3] — [k, §7].

The map 0 is an isomorphism for dimensional reasons. However, the suspension
map S splits the sequence, so that S is also an isomorphism.

To prove (3), we use the fibration S15 — S8 and proceed as in the proof of (2).

2. Let {X, Y} =1im[8"X, S"Y], the limit maps being suspensions. The follow-
ing result is due to M. G. Barratt [3].

LEMMA 4. {P2, P2} is a cyclic group of order 4 and is genevated by the
identity 1. The map 2-1 is the composite

spz B g3 M g2 1 gp?,

where p collapses SPL C SP2 to a point, n is the Hopf map, and i is the inclusion
map. (2-1 is twice the identity.)

Proof. One can easily show that {8!, P2} and {S%, P?} both have exactly two
elements. Hence, from the stable Puppe sequence of a map f: sl — gl of degree two,
we see that {P2, P2} has four elements.

To complete the proof of the first statement, we show that 2-1 is essential. The
cofibre of 2-1: 83 P2 — §3 P2 is the space S2P2 A P2, If 2-1 ~ 0, then S2P2 A P2
would be homotopically equivalent to S3 P2V S¢P2, However, the Steenrod opera-
tion Sq2 is nonzero in S2P2 A\ PZ and zero in S3 P2V S4P2, so that 2-1 is essen-
tial.

Clearly, the Puppe sequence of f implies that 2-1 is the composition
s3pz B g5 £ g3p2

where g generates 7 5S3 P2; the generator g is in.
COROLLARY 5. (1) [S3P2, 83|~ Z,.
() [s3P3, 83|~ Zy+Zy>.
(3) [P2AP2,S3]~22Z,.
(4) [PPAP2, 83|~ 2Z,+7Z,.
Proof. It is easy to see that [S3 P2, 83] has four elements. The essential com-

2
position 83 P2 £ 85 . 33 can be halved, as the diagram

S3 PZ __2._1.> S3 p2

Y

§p —1 » gt —T 5 g3
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shows. The map f, an extension of 7, exists because 27 = 0. This establishes (1).

Isomorphism (2) follows from (1), because 3 p3 ~ s3p2 gt by Corollary 2
and because 74 83 ~ Z, .

The group [P2 A P2, 83] is stable and has four elements. The group
[S2 A P2, $3] has two elements, the nontrivial one being 5 © (1 A p). To prove iso-
morphism (3), it suffices /to\lshow that the composition

2 p2 A p2 &34/\1)2 l./lg.sll/\sz ~ g6 __n_,.35

can be halved. This is an immediate consequence of the diagram

s2p2apz — BAL g4 £ p2 IAD gt ag2
ln/\l
2-1 s3 A p? n /A1
iA1 1Ap
SZPZ\/r\PZ h > S3}<SZ

The extension h exists because (1Ap)o2;: 83 A P2 — 83 A 82 is null-homotopic.

The group [P3 A P2 S3] is stable by Lemma 3. Isomorphism (4) now follows
from the existence of the homotopy equivalence S2P3 A P2~ (S2P2 A\ P2)V §5P2,
which is a consequence of Corollary 2.

THEOREM 6. [P3 A P3, 83] is isomovphic with Zy+Z 4+ Zg+Z1;.
Proof. We look at the Puppe sequence of the map 7 Al: S2 A P3 — P2 A P3,
namely

Py
[sP2 A P3, s3] — [ AP, S%] — [PP A P2, §°]

)
— [PZ2AP3 S3] — [s2 AP3, s3],
We show that p; and p, are both zero and that the resulting short exact sequence

splits. Corollary 2 and Lemma 3 imply that p, is zero. In the commutative diagram

P3
[s2P2 A P3, 5%] ——> [s* A P3| %]

N

1
[sP2 A P3, 83] —> [83 A P3, S3],
the vertical maps are boundary maps in exact sequences derived from the fibration
S7 — 8% and are epimorphisms. The map p3 is zero; therefore p; is also zero.

Let K5 be the 5-skeleton of P3 A P3, Using Puppe sequences derived from
S® - K® - P3 A P3, we get the diagram
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q; a2
[sk®,s’] — [s%,8%] — [PPAP3, s3] — [K% 8% — [, s

21 22 23 24 Zs5

! ]

q; 4z
{sKk>, 83} — {s6,s3} — {pP3AP3 83} — {K5 83} — {s5, 83},

in which the maps q», g2, 4] are zero by stability. The map Z, is a monomor-
phism; hence q; is also zero. The map Z3 is a monomorphism by the 5-lemma. It
is a congequence of Corollary 2 that {P3 A P3, 83} is isomorphic with

{st, 83} + {s3p?, 83} + {s3P2, 3} + {P2 A P2, S3}
which we have already shown to be isomorphic with Z4 4+ Z4 + Z4 + Z 4. Because

22, Z3 are monomorphisms and Z4 is an isomorphism, we have proved the result.

COROLLARY 7. There are exactly 168 homotopy classes of multiplications
on P3.

Proof. The set of homotopy classes of multiplications on P3 is in one-to-one
correspondence with the group [P3 A P3, P3]. The space P3 A P3 is simply con-
nected; hence [P3 A P3, P3] is isomorphic with [P3 A P3, S3].

3. We now show how to enumerate the number of multiplications on P7.

Using the stable cohomotopy spectral sequence, we can prove the following
lemma (compare [5]).

LEMMA 8. (1) [S®P®, S7]=0

(2) [s6 P®, s7] =0.

(3) [S7 P®, S7] has order 8.

LEMMA 9. (1) [S7P7, §7] has order 120-23 .
(2) [P® A PC S7] has order 4.

(3) [P6 A P7, 87] has order 25.

The proof of Lemma 9 is similar to the proofs in Section 2, and we omit if. It
uses the Puppe sequences, part (3) of Lemma 3, and Lemma 8.

THEOREM 10. There are exactly 120-28 = 30 720 homotopy classes of multi-
plications on P7 .

Proof. We consider the exact sequence
p
[sP A P7, 871 =L [T APT, §T] — [PT AP, §7]
P2
— [P APT,ST] — [8® AP, §7],

where p, is zero by Corollary 2 and Lemma 3. It only remains to show that p; is
also zero.

Suppose p; is not zero. Choose x € [SP® A P7, S7] such that p; x is nonzero.
The suspension map S: [S7 A P7, 7] — [s8 A P7 SS] is a monomorphism (it splits
the homotopy sequence derived from the Hopf flbratlon S5 — §8): therefore
Sp; x # 0. Lemma 3 and Corollary 2 imply that s? p; X = 0. The kernel of
S: [88 P7, s8] - [S9P7, §7] is generated by the element 20 - ¢', where o, o'
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generate the respective summands in 7,5 S8 ~ Z + Z)20. Hence Sx has infinite
order, but it lies in the finite group [S2 P® A P7, S8], which is a contradiction. Thus
p; = 0.

REFERENCES
1. J. F. Adams, On {he non-existence of elements of Hopf invarviant one. Ann. of
Math. (2) 72 (1960), 20-104.

. M. Arkowitz and C. R. Curjel, On the numbeyr of multiplications of an H—spaée.
Topology 2 (1963), 205-209.

. M. G. Barratt, Track groups. II. Proc. London Math. Soc. (3) 5 (1955), 285-329.
. C. M. Naylor, Multiplications on SO(3). Michigan Math. J. 13 (1966), 27-31.

5. E. Rees, Symmetric maps. (To appear.)

[\V)

>~ W

The University
Hull, England






