MULTIPLICATIONS ON PROJECTIVE SPACES

E. Rees

In this paper, we consider the collection of multiplications on projective spaces. The results of [1] imply that the only projective spaces that admit a multiplication are the real projective spaces P^n , for n = 1, 3, and 7. We describe the collection of multiplications on P^3 as a group and determine the number of multiplications on P^7 . C. M. Naylor [4] previously found the number of multiplications on P^3 .

1. Let $\phi: X \vee X \to X$ denote the "folding" map.

A multiplication on a space X is a map μ : $X \times X \to X$ such that $\mu \mid X \vee X = \phi$. Two multiplications on a space X are said to be homotopic if they are homotopic as maps relative to $X \vee X$.

M. Arkowitz and C. R. Curjel showed in [2] that if X is a finite CW-complex admitting a multiplication, then there exists a one-to-one correspondence between the set of homotopy classes of multiplications on X and the homotopy set $[X \wedge X, X]$. When X has a homotopy associative multiplication, $[X \wedge X, X]$ has a group structure.

LEMMA 1. Let M be a smooth, connected manifold of dimension n, and let M_0 be M with an open disc removed. If there exists a smooth embedding $f: M \to S^{m+n}$ with trivial normal bundle, then $S^mM \simeq S^mM_0 \vee S^{n+m}$.

Proof. Let N denote a closed tubular neighbourhood of the embedding, and let T denote the Thom complex of the normal bundle. T is N/ ∂ N by definition, and it is homotopically equivalent to S^m \vee S^m M. If D is a small disc of dimension m + n lying in the interior of N, the space T - D is homotopically equivalent to S^m \vee S^m M₀. The attaching map of D is homotopically trivial in S^{n+m} and therefore is also trivial in T. This proves that

$$S^m \vee S^m M \simeq S^m \vee S^m M_0 \vee S^{n+m}$$
,

and therefore we have that $S^m M \simeq S^m M_0 \vee S^{n+m}$.

I am extremely grateful to Dr. B. J. Sanderson for showing me this lemma. It enables us to avoid a rather long direct proof of the following statement (when n = 6).

COROLLARY 2. The covering map $\pi \colon S^n \to P^n$ is stably trivial when n=2 or n=6.

Proof. We prove the result for n = 6. The case n = 2 is similar (and easy to prove directly, anyway).

Embed P^7 in R^{15} . Since P^7 is parallelizable, the normal bundle is trivial. The space P^7 with an open disc removed is homotopically equivalent to P^6 , and the attaching map for this disc is $S^8\pi$. It follows from the proof of the lemma that $S^8\pi \simeq 0$.

LEMMA 3. If K is an n-dimensional complex, then S: $[K, S^m] \rightarrow [SK, S^{m+1}]$ is an isomorphism provided

Received December 19, 1968.

298 E. REES

(1)
$$n < 2m - 1$$
, (2) $n = 5$, $m = 3$, or (3) $n = 13$, $m = 7$.

Proof. Condition (1) is Freudenthal's suspension theorem.

For (2), look at the following exact sequence, obtained from the Hopf fibration $S^7 \to S^4$:

$$[SK, S^7] \rightarrow [SK, S^4] \stackrel{\partial}{\rightarrow} [K, S^3] \rightarrow [K, S^7].$$

The map ∂ is an isomorphism for dimensional reasons. However, the suspension map S splits the sequence, so that S is also an isomorphism.

To prove (3), we use the fibration $S^{15} \rightarrow S^8$ and proceed as in the proof of (2).

2. Let $\{X, Y\} = \lim[S^n X, S^n Y]$, the limit maps being suspensions. The following result is due to M. G. Barratt [3].

LEMMA 4. $\{P^2, P^2\}$ is a cyclic group of order 4 and is generated by the identity 1. The map $2\cdot 1$ is the composite

$$SP^2 \stackrel{p}{\longrightarrow} S^3 \stackrel{\eta}{\longrightarrow} S^2 \stackrel{i}{\longrightarrow} SP^2$$

where p collapses $SP^1 \subset SP^2$ to a point, η is the Hopf map, and i is the inclusion map. (2.1 is twice the identity.)

Proof. One can easily show that $\{S^1, P^2\}$ and $\{S^2, P^2\}$ both have exactly two elements. Hence, from the stable Puppe sequence of a map $f: S^1 \to S^1$ of degree two, we see that $\{P^2, P^2\}$ has four elements.

To complete the proof of the first statement, we show that $2\cdot 1$ is essential. The cofibre of $2\cdot 1$: $S^3\,P^2\to S^3\,P^2$ is the space $S^2\,P^2\wedge P^2$. If $2\cdot 1\simeq 0$, then $S^2\,P^2\wedge P^2$ would be homotopically equivalent to $S^3\,P^2\vee S^4\,P^2$. However, the Steenrod operation Sq^2 is nonzero in $S^2\,P^2\wedge P^2$ and zero in $S^3\,P^2\vee S^4\,P^2$, so that $2\cdot 1$ is essential.

Clearly, the Puppe sequence of f implies that $2 \cdot 1$ is the composition

$$S^3 P^2 \stackrel{p}{\rightarrow} S^5 \stackrel{g}{\rightarrow} S^3 P^2$$

where g generates $\pi_5 S^3 P^2$; the generator g is $i\eta$.

COROLLARY 5. (1) $[S^3 P^2, S^3] \cong \mathbb{Z}_4$.

- (2) $[S^3 P^3, S^3] \cong \mathbb{Z}_4 + \mathbb{Z}_{12}$.
- (3) $[P^2 \wedge P^2, S^3] \cong \mathbb{Z}_4$.
- (4) $[P^3 \wedge P^2, S^3] \cong \mathbb{Z}_4 + \mathbb{Z}_4$.

Proof. It is easy to see that $[S^3 P^2, S^3]$ has four elements. The essential composition $S^3 P^2 \stackrel{p}{\longrightarrow} S^5 \stackrel{\eta^2}{\longrightarrow} S^3$ can be halved, as the diagram

$$S^{3} P^{2} \xrightarrow{2 \cdot 1} S^{3} P^{2}$$

$$\downarrow p \qquad \uparrow i \qquad f$$

$$S^{5} \xrightarrow{\eta} S^{4} \xrightarrow{\eta} S^{3}$$

shows. The map f, an extension of η , exists because $2\eta = 0$. This establishes (1).

Isomorphism (2) follows from (1), because $S^3 P^3 \simeq S^3 P^2 \vee S^6$ by Corollary 2 and because $\pi_6 S^3 \cong \mathbb{Z}_{12}$.

The group $[P^2 \wedge P^2, S^3]$ is stable and has four elements. The group $[S^2 \wedge P^2, S^3]$ has two elements, the nontrivial one being $\eta \circ (1 \wedge p)$. To prove isomorphism (3), it suffices to show that the composition

$$S^2 P^2 \wedge P^2 \xrightarrow{p \wedge 1} S^4 \wedge P^2 \xrightarrow{1 \wedge p} S^4 \wedge S^2 \cong S^6 \xrightarrow{\eta} S^5$$

can be halved. This is an immediate consequence of the diagram

The extension h exists because $(1 \land p) \circ 2$: $S^3 \land P^2 \to S^3 \land S^2$ is null-homotopic.

The group $[P^3 \wedge P^2, S^3]$ is stable by Lemma 3. Isomorphism (4) now follows from the existence of the homotopy equivalence $S^2 P^3 \wedge P^2 \simeq (S^2 P^2 \wedge P^2) \vee S^5 P^2$, which is a consequence of Corollary 2.

THEOREM 6. $[P^3 \wedge P^3, S^3]$ is isomorphic with $\mathbb{Z}_4 + \mathbb{Z}_4 + \mathbb{Z}_4 + \mathbb{Z}_{12}$.

Proof. We look at the Puppe sequence of the map $\pi \wedge 1 \colon S^2 \wedge P^3 \to P^2 \wedge P^3$, namely

$$[SP^{2} \wedge P^{3}, S^{3}] \xrightarrow{p_{1}} [S^{3} \wedge P^{3}, S^{3}] \rightarrow [P^{3} \wedge P^{3}, S^{3}]$$
$$\rightarrow [P^{2} \wedge P^{3}, S^{3}] \xrightarrow{p_{2}} [S^{2} \wedge P^{3}, S^{3}].$$

We show that p_1 and p_2 are both zero and that the resulting short exact sequence splits. Corollary 2 and Lemma 3 imply that p_2 is zero. In the commutative diagram

$$[S^{2} P^{2} \wedge P^{3}, S^{4}] \xrightarrow{p_{3}} [S^{4} \wedge P^{3}, S^{4}]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$[SP^{2} \wedge P^{3}, S^{3}] \xrightarrow{p_{1}} [S^{3} \wedge P^{3}, S^{3}],$$

the vertical maps are boundary maps in exact sequences derived from the fibration $S^7 \to S^4$ and are epimorphisms. The map p_3 is zero; therefore p_1 is also zero.

Let K^5 be the 5-skeleton of $P^3 \wedge P^3$. Using Puppe sequences derived from $S^5 \to K^5 \to P^3 \wedge P^3$, we get the diagram

300 E. REES

$$[SK^{5}, S^{3}] \xrightarrow{q_{1}} [S^{6}, S^{3}] \rightarrow [P^{3} \wedge P^{3}, S^{3}] \rightarrow [K^{5}, S^{3}] \xrightarrow{q_{2}} [S^{5}, S^{3}]$$

$$\downarrow \Sigma_{1} \qquad \downarrow \Sigma_{2} \qquad \qquad \downarrow \Sigma_{3} \qquad \qquad \downarrow \Sigma_{4} \qquad \qquad \downarrow \Sigma_{5}$$

$$\{SK^{5}, S^{3}\} \xrightarrow{q'_{1}} \{S^{6}, S^{3}\} \rightarrow \{P^{3} \wedge P^{3}, S^{3}\} \rightarrow \{K^{5}, S^{3}\} \xrightarrow{q'_{2}} \{S^{5}, S^{3}\} ,$$

in which the maps q_2 , q_2' , q_1' are zero by stability. The map Σ_2 is a monomorphism; hence q_1 is also zero. The map Σ_3 is a monomorphism by the 5-lemma. It is a consequence of Corollary 2 that $\{P^3 \wedge P^3, S^3\}$ is isomorphic with

$${s^6, s^3} + {s^3 p^2, s^3} + {s^3 p^2, s^3} + {p^2 \wedge p^2, s^3}$$

which we have already shown to be isomorphic with $\mathbb{Z}_4 + \mathbb{Z}_4 + \mathbb{Z}_4 + \mathbb{Z}_{24}$. Because Σ_2 , Σ_3 are monomorphisms and Σ_4 is an isomorphism, we have proved the result.

COROLLARY 7. There are exactly 768 homotopy classes of multiplications on \mathbb{P}^3 .

Proof. The set of homotopy classes of multiplications on P^3 is in one-to-one correspondence with the group $[P^3 \wedge P^3, P^3]$. The space $P^3 \wedge P^3$ is simply connected; hence $[P^3 \wedge P^3, P^3]$ is isomorphic with $[P^3 \wedge P^3, S^3]$.

3. We now show how to enumerate the number of multiplications on P^7 .

Using the stable cohomotopy spectral sequence, we can prove the following lemma (compare [5]).

LEMMA 8. (1) $[S^5 P^6, S^7] = 0$.

- (2) $[S^6 P^6, S^7] = 0$.
- (3) $[S^7 P^6, S^7]$ has order 8.

LEMMA 9. (1) $[S^7 P^7, S^7]$ has order $120 \cdot 2^3$.

- (2) $[P^6 \wedge P^6, S^7]$ has order 4.
- (3) $[P^6 \wedge P^7, S^7]$ has order 2^5 .

The proof of Lemma 9 is similar to the proofs in Section 2, and we omit it. It uses the Puppe sequences, part (3) of Lemma 3, and Lemma 8.

THEOREM 10. There are exactly $120 \cdot 2^8 = 30720$ homotopy classes of multiplications on \mathbb{P}^7 .

Proof. We consider the exact sequence

$$[SP^{6} \wedge P^{7}, S^{7}] \xrightarrow{p_{1}} [S^{7} \wedge P^{7}, S^{7}] \rightarrow [P^{7} \wedge P^{7}, S^{7}]$$
$$\rightarrow [P^{6} \wedge P^{7}, S^{7}] \xrightarrow{p_{2}} [S^{6} \wedge P^{7}, S^{7}],$$

where p_2 is zero by Corollary 2 and Lemma 3. It only remains to show that p_1 is also zero.

Suppose p_1 is not zero. Choose $x \in [SP^6 \wedge P^7, S^7]$ such that $p_1 x$ is nonzero. The suspension map $S: [S^7 \wedge P^7, S^7] \to [S^8 \wedge P^7, S^8]$ is a monomorphism (it splits the homotopy sequence derived from the Hopf fibration $S^{15} \to S^8$); therefore $Sp_1 x \neq 0$. Lemma 3 and Corollary 2 imply that $S^2 p_1 x = 0$. The kernel of $S: [S^8 P^7, S^8] \to [S^9 P^7, S^9]$ is generated by the element $2\sigma - \sigma'$, where σ, σ'

generate the respective summands in $\pi_{15}S^8 \cong \mathbb{Z} + \mathbb{Z}_{120}$. Hence Sx has infinite order, but it lies in the finite group $[S^2P^6 \wedge \overline{P}^7, S^8]$, which is a contradiction. Thus $p_1 = 0$.

REFERENCES

- 1. J. F. Adams, On the non-existence of elements of Hopf invariant one. Ann. of Math. (2) 72 (1960), 20-104.
- 2. M. Arkowitz and C. R. Curjel, On the number of multiplications of an H-space. Topology 2 (1963), 205-209.
- 3. M. G. Barratt, Track groups. II. Proc. London Math. Soc. (3) 5 (1955), 285-329.
- 4. C. M. Naylor, Multiplications on SO(3). Michigan Math. J. 13 (1966), 27-31.
- 5. E. Rees, Symmetric maps. (To appear.)

The University Hull, England