14

Notre Dame Journal of Formal Logic
Volume 23, Number 1, January 1982

Acceptable Notation

STEWART SHAPIRO*

Mechanical devices engaged in computation and humans following
algorithms! do not encounter numbers themselves, but rather physical objects
such as ink marks on paper. Since strings are the relevant abstract forms of
these physical objects, algorithms should be understood as procedures for the
manipulation of strings, not numbers. Furthermore, mathematical automata,
such as Turing machines, which are the abstract forms of computation devices,
have only appropriately constituted strings for inputs and outputs. It follows
that, strictly speaking, computability applies only to string-theoretic functions
and not to number-theoretic functions. That is, a string-theoretic function is
said to be computable iff there is an algorithm that computes it.

Throughout the literature, however, computability is said to apply to
number-theoretic functions through notation. A notation d consists of a finite
alphabet, a solvable class of strings on this alphabet, called the class of
numerals, and a convention which assigns to each numeral x a natural number
dx, called the denotation of x. The following are common notations:

El. Stroke notation: The alphabet consists of a single character |, called a
“stroke”. The class of numerals is the entire class of strings on this alpha-
bet, including the null string. That is, a numeral in stroke notation is a
finite sequence of strokes. A given numeral is taken to denote the number
of strokes it contains. In what follows, for each natural number #, let n be
the stroke numeral for n.

E2. Arabic notation: The alphabet consists of the following ten characters:

(0, 1,2,3,4,5,6,7,8,9). The class of numerals consists of the ten single
character strings, together with all multiple character strings which do not

*I would like to thank an anonymous referee and the members of the Buffalo Logic Col-
loquium for helpful comments on earlier versions of this paper.

Received November 13, 1979, revised May 11, 1981

ACCEPTABLE NOTATION 15

begin with 0. The convention which assigns denotations to these_strings is
well-known. In what follows, for each natural number n, let n be the
Arabic numeral for n.

Let S be the numeral class for a notation d; let N be the class of natural
numbers. Each string-theoretic function f: § — S has a number-theoretic
counterpart fz: N = N relative to d, such that f;(dx) = df(x).

Notice that if the convention of d is not one to one, then f; may not be
well-defined and that if the convention of d is not onto then f; may not be
defined at every number. It is assumed, therefore, that a notation convention is
a bijection from S to N. Let d: N = § be the inverse of the convention of d. If
F: N~ N is a number-theoretic function, let F4: S - S be its string-theoretic
counterpart relative to d: F4(dX) = dF(X).

Finally, if F is a number-theoretic function, we say that F is computable
relative to d iff the string-theoretic F¢ is computable—iff there is a string-
theoretic algorithm that computes F¢.

Section 1 below contains two theorems which indicate that there are
different classes of computable number-theoretic functions corresponding to
different notations. It is shown, in particular, that the class of number-theoretic
functions which are computable relative to every notation is too narrow,
containing only rather trivial functions, and that the class of number-theoretic
functions which are computable relative to some notation is too broad contain-
ing, for example, every characteristic function. It becomes clear, moreover,
that not all notations are acceptable. The purpose of Section 2 is to formulate
and defend a formal criterion for notation acceptability and, thereby, a general
concept of number-theoretic computability.

1 Notice that each number-theoretic constant function is computable
relative to every notation and that the number-theoretic identity function is
computable relative to every notation. Notice also that each function which
differs from one of these at only a finite number of arguments is computable
relative to every notation (because a table of the finite exceptions and their
values can be included in an algorithm). The first theorem is that this list is
complete.

T1 The only number-theoretic functions which are computable relative to
every notation are almost constant functions: functions F where 3p3amViin >
m(F(n) = p); and almost identity functions: functions G where ImV¥n >
m(G(n) = n).

Proof: Let H be a number-theoretic function which is neither an almost
constant function nor an almost identity function. The task is to show that
there is a notation e such that H¢ is not computable. We use the following
lemma:

L1 There is a set P of natural numbers such that

(i) the set H'Y(P) — P is infinite
(ii) the set N — (P U H Y(P)) is infinite.

That is, there is a set P such that (i) the preimage of P contains infinitely many

16 STEWART SHAPIRO

numbers not in P and (ii) there are infinitely many numbers which are neither
in P nor in the preimage of P.

We first show that L1 entails T1. Let A be any solvable, coinfinite set of

Arabic numerals that has the same cardinality as P, and let ¢, . . . be an
enumeration of the elements of 4. Let B be a nonsolvable set of Arabic
numerals disjoint from A4, and let b,, . . . be an enumeration of the elements of
B. Finally, let ¢;, . . . be an enumeration of the Arabic numerals which are
neither in A nor in B. Notice that the latter two enumerations must be infinite
(but the first may be finite).
_ _Notation e is formed as follows: The numerals of e are the strings
Op, 1p, 2p, . . . The denotation of g;p is the /™ smallest element of P; the
denotation of b;p is the /™ smallest element of H"(P) — P; and the denotation
of ¢;p is the i™ smallest element of N — (P U H™Y(P)).

Suppose that H¢ were computable. The set of e-numerals that denote
elements of P is the set of strings {g;p}. Concerning computability, this set is
equivalent to A, and thus is solvable. By the assumption of H¢, then, the set of
e-numerals that denote elements of H !(P) is also solvable. The latter set of
numerals is equivalent to a set D of Arabic numerals such that B C D and
D C A U B. A decision procedure for D, however, can be combined with a
decision procedure for A to produce a decision procedure for B. This contra-
dicts the condition on B. Thus, H¢ is not computable. It remains to prove the
lemma.

Proof of L1: If there is a natural number » which has an infinite number of
preimages under H, then let P be the singleton {n}. Condition (i) follows from
the characterization of n and condition (ii) follows from the fact that A is not
almost constant.

Suppose, then, that each natural number has at most a finite number of
preimages under H. It follows that the range of A is infinite. Construct the
nested sequences P;, R; of finite sets of natural numbers as follows:

Py=Ro=¢
Stagen + 1:
If (a HYn)dP, U in}
(b) H'(n) "R, = ¢
(c) H(n)¢ P,
and (d) n ¢ R,,
then set Pyi; = P, U {n}, let r, be the smallest number not in the
finite set Pye; U H™Y(Pyey) UR,, and set R,eq =R, U lr,}.
Otherwise, set P+ = P, and R,,4+; = R,,.
Finally, let 7= U P, and R = U R,.
neN neN
To show, first, that P is infinite, suppose that it is finite. Let n be the
largest element of P. Notice that if m > n, then P =P,, = Py4q, SOR =R, =
R,+;. In particular, R is finite. Let g, be the largest element of R. Letg, be a
number such that if m > q,, then H™(m) is disjoint from P U R. Let g5 be a
number such that if m > g3, then H(m) ¢ P (this is possible because no natural
number has infinitely many preimages under H). Finally, let ¢ = max(n + 1,

ACCEPTABLE NOTATION 17

q1, 42, 93)- Since H is not an almost identity, there is a number s > g such thats
is in the range of H and H™Y(s) # {s}. It follows that conditions (a), (b), (c), and
(d) are all satisfied at stage s + 1 and, therefore, that s € Py.; and s € P. Since
s > q > n, this is a contradiction. Thus, P is infinite.

re (i): Suppose now that H™Y(P) — P is finite. Then there must be a number
n such that H™Y(P) — P = H'Y(P,) — P. Let m > n be an element of P. By (a),
there is an element s of H !(m) that is not in P,, U {m}. Since H(s) = m and
m > n, we have s ¢ HY(P,) and, a fortiori, s ¢ H(P,) — P. Sos ¢ H'Y(P) — P (by
the characterization of n). However, s € H™Y(P), so we must have s € P. Since,
by definition, s ¢ P,,, we must have s > m. But in this case, condition (c) is not
satisfied at stage s + 1. This contradicts s € P.

re (ii): Since R, always has the same cardinality as P,, R is infinite.
Notice that conditions (b) and (d) and the definitions of R,, R, and P entail
that R is disjoint from both P and H 1(P). Thus, the infinite set R is contained
in N - (P U H}(P)). This completes the proof of T1.

The following corollary is immediate:

C1 The only sets of natural numbers whose characteristic functions are
computable relative to every notation are finite sets and cofinite sets.

In contrast with this, many (but not all) number-theoretic functions are
computable relative to some notation:

T2 Let F be a number-theoretic function. There is a notation d such that
Fa jg computable iff there is a permutation T of the natural numbers such that
T™YFT is computable relative to stroke notation.

If one accepts Church’s thesis in the form (similar to that given by Turing) that
a number-theoretic function is recursive iff it is computable relative to stroke
notation, then T2 can be more concisely formulated:

T2 There is a notation d such that F? is computable iff there is a permuta-
tion T such that T™FT is recursive.

Proof (of T2): (a) Suppose that F is computable relative to notation d. Let
Po, Py, - - - be an effective enumeration of the numerals of d. Let T be the per-
mutation of the natural numbers such that 7(n) is the denotation in d of p,.
The following is a procedure for computing T !FT relative to stroke notation:

Given n, enumerate the list po, py, . . . py. Apply the algorithm for F4 to
DPn, and let g be the result. Then enumerate the list py, py, . . . until g
appears. Say q is p,,. Output m.

(b) Suppose now that there is a permutation 7 such that 77'GT is computable
relative to stroke notation. Construct notation e’ as follows: The numerals of e’
are the strings c, cl, cll, clll, etc. The denotation in e’ of cn is T(n). The follow-
ing is an algorithm for Ge':

Given cn, apply the algorithm for T7!GT (relative to stroke notation) to n
and let m be the result. Output cm.

This completes the proof. The following is an easy consequence of T2:

18 STEWART SHAPIRO

C2a For each set of natural numbers M there is a notation e such that the
characteristic function of M is computable relative to e.

At this point, the possibility that there are functions which are not com-
putable relative to any notation might be surprising. As an aside, the following
corollary is presented:

C2b There is a number-theoretic function which is not computable relative
to any notation.

Proof (outline): For each number-theoretic function F, let S(F) be the set of
natural numbers {nln # 0 and there is a natural number which has exactly »
preimages under F}. Notice first that if T is a permutation of the natural
numbers then S(F) = S(T"'FT). Notice also (by an extended version of Church’s
thesis) that if F' is computable relative to stroke notation, then S(F) is recur-
sively enumerable in the halting problem. It follows from this and T2 that if
S(F) is not recursively enumerable in the halting problem, then F is not com-
putable relative to any notation. A function J with this property is now pre-
sented. Letay, a,, a,, . . . be an enumeration of a set of positive integers which
is not recursively enumerable in the halting problem. Form the sequence {b;) as
follows: bg = ag — 1, bpysy = by + ay4q. Finally, let J(0) = . . . = J(by) = O,
Jbhot DN=...=Jb)=1,...,Jb, +1)=...=J(bys) =n+1,.... Notice
that S(J) is the set enumerated by {g;), and, therefore, that S(J) is not recur-
sively enumerable in the halting problem.

It seems that we have not, as yet, developed a general concept of number-
theoretic computability. To do this, of course, further restrictions must be
placed on notations. Clearly, many of the above notations are not acceptable,
but both Arabic notation and stroke notation are. In the next section, a formal
criterion for notation acceptability and (thereby) a general concept of number-
theoretic computability are developed.

2 Under normal circumstances, a person engaged in computation is not
merely following an algorithm. It is usually important, in particular, that the -
computist know the number-theoretic goal of the algorithm. This suggests two
informal criteria on notations employed by algorithms:

(1) The computist should be able to write numbers in the notation. If he
has a particular number in mind, he should (in principle) be able to
write and identify tokens for the corresponding numeral.

(2) The computist should be able to read the notation. If he is given a
token for a numeral, he should (in principle) be able to determine
what number it denotes.?

It is admitted that these conditions are, at best, vague and perhaps obscure.
Taken literally, for example, the phrase “have a number in mind” seems to
involve the possibility of de re knowledge of particular natural numbers inde-
pendent of notation. The phrase “determine a number” involves the possibility
of mentally determining a number with a given property, again independent of
notation. The following less problematic conditions are sufficient for present
purposes. Conditions (la) and (1b) follow from (1); condition (2a) follows
from (2).

ACCEPTABLE NOTATION 19

(la) If the computist is given a finite collection of distinct objects, then
he can (in principle) write and identify tokens for the numeral which
denotes the cardinality of the collection.

(1b) The computist can count in the notation. He is able (in principle) to
write, in order, tokens for the numerals denoting any finite initial
segment of the natural numbers.

(2a) If the computist is given a token for a numeral p and a collection of
distinct objects, then he can (in principle) determine whether the
denotation of p is smaller than the cardinality of the collection and,
if it is, produce a subcollection whose cardinality is the denotation
of p.

Let us say that a computist knows a notation d iff conditions (1) and (2)
hold for her with respect to d. It is easy to see, for example, that most people
know Arabic notation and can easily come to know stroke notation.

If a computist does not know a particular notation, then it is hard to see a
sense in which she understands the number-theoretic goal of an algorithm
which employs the notation. If, for example, an algorithm for addition uses a
notation which is not known by a computist and she is given two numerals in
the notation, she could not know that the algorithm determines the sum of the
denoted numbers. That is, the computist could not use the algorithm to add
numbers.

The following informal lemmas will be useful. Although the “proofs”
rely on conditions (1) and (2), they can easily be reconstructed to rely on
only (1a) and (2a).

IL1 Suppose that a person knows notations d and b. Then he can be
taught an effective procedure to translate d into b without substantially increas-
ing his mathematical knowledge. That is, a translation procedure is an immedi-
ate consequence of his knowledge.

Proof: The following is such a procedure: Given p, a numeral in d, read d to
find which number p denotes and write that number in notation .3

If it is agreed that every normal person knows (or can easily come to know)
stroke notation, then the following is immediate:

IL2 A person knows (or can easily be taught) notation d iff she knows (or
can easily be taught) either an effective procedure to translate d into stroke
notation or an effective procedure to translate stroke notation into d.

For the final informal lemmas, let us say that a person B can calculate a
string-theoretic function f iff B can be taught an algorithm P for f and B can be
taught that B realizes f, both without substantially increasing his mathematical
knowledge. That is, B can calculate f iff an algorithm for f is an immediate
consequence of his knowledge. Let s be the successor function.

IL3a If a person knows notation d, then he can calculate s°.

Proof: Suppose a person knows d. If he is given a numeral p in d, then (by (2))
he can find the number n denoted by p and (by (1)) he can find the numeral
denotingn + 1.

20 STEWART SHAPIRO

IL3b If a person can calculate s* and knows the numeral in d which denotes
zero, then he knows (or can easily come to know) d.

Proof: To write any number » in d, the person need only successively apply
the algorithm for s? to the numeral denoting zero n times. He can determine
the denotation of a numeral p by computing d0, s%(d0), s%(s%(d0)), etc., until p
is produced.

The formal criterion of notation acceptability is obtained by objectifying
the above concept of “knows” along the lines of IL3:

Notation d is acceptable iff s? is computable.
The following analogues of IL1 and IL2 are trivial:

T3 If notations d and b are acceptable, then there is an effective (string-
theoretic) procedure which translates d into b.

C3 Notation d is acceptable iff either there is an effective (string-theoretic)
procedure which translates d into stroke notation or there is an effective
(string-theoretic) procedure which translates stroke notation into d.

Finally, we say that a number-theoretic function F is computable iff there
is an acceptable notation d such that F is computable relative to d. The follow-
ing are immediate:

T4 F is computable iff F is computable relative to every acceptable
notation.

T5 Fis computable iff F is computable relative to stroke notation.

Theorem T35, together with the above formulation of Church’s thesis, entails
the general Church’s thesis:

CT F is computable iff F is recursive.

NOTES

1. The term ‘algorithm’ is understood here in its intuitive or preformal sense as an effective
procedure for computation. That is, it is not meant to be restricted to a particular algorithm
formulation, such as the Markov-formulation or the Post-formulation.

2. Following the (nonconstructive) notion of “ability in principle”, each of conditions (1)
and (2) implies the other. For example, if a computist can read a notation, then he can write
it. Indeed, if he has a number in mind, he can determine the corresponding numeral by
systematically enumerating and reading the numerals. A similar line of reasoning establishes
the converse.

3. Because both this procedure and that in the proof of IL3a essentially refer to numbers,
they are not procedures for manipulating strings. Therefore, as presented, they cannot be
executed by a machine. Some authors (such as Kreisel) make a distinction between human
computability and machine computability on similar grounds. In this case, however, it is
possible to give procedures (relying on conditions (1a) and (2a)) which do not involve
numbers.

Department of Philosophy
Ohio State University, Newark Campus
Newark, Ohio 43055

