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Computing Verisimilitude
KATARINA BRITZ and CHRIS BRINK

Abstract  This paper continues the power ordering approach to verisimili-
tude. We define a parameterized verisimilar ordering of theories in the finite
propositional case, both semantically and syntactically. The syntactic definition
leads to an algorithm for computing verisimilitude. Since the power ordering
approach to verisimilitude can be translated into a standard notion of belief re-
vision, the algorithm thereby also allows the computation of membership of a
belief-revised theory.

1 Introduction  Verisimilitude (or truthlikeness) concerns the ordering of theories
according to their closeness to the truth. In the context of this paper ‘the truth’ will
be some preferred theory, and thus verisimilitude becomes a parameterized ordering.
Originally the notion is due to Popper [LT], for whom it was anecessary ingredient in
his philosophy that science makes progress by discarding one theory in favor of an-
other which is closer to the truth. On Popper’s definition, one theory is closer to the
truth than another if and only if it has more true consequences and fewer false con-
sequences. However, Miller and Tichy |ater showed that Popper’s ordering
on theories was flawed in that al theories that have some false consequences are in-
comparable. A survey of the developmentsin verisimilitude since then can be found
in Brink [3].

Somewhat tangential to the context of philosophy of science, Brink, Heidema,
and Burger have introduced and studied the power relations approach to verisi-
militude (see [[&], [[6], [B]). This approach seems quite general, being embedded in
the study of power structures (asin Brink [E])), and having been linked up to domain
theory (as in Brink, Vermeulen, and Pretorius [[Z]) and more recently by Ryan and
Schobbens to belief revision (cf. [13]). Ryan and Schobbens show that given a suit-
ablenotion of verisimilitude we may definethe standard notion of belief revision from
it by sayingthat ¢ € T % ¢ if and only if ¢ isin every theory containing v which is
closestto T.

In this paper we extend the power relations approach to verisimilitude by ex-
hibiting the parameterized version in both asemantic and a syntactic context and cast-
ing the syntactic version in the form of an algorithm for computing verisimilitude.
Thisthen also yields an algorithm for computing belief revision.
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In Section Psection.2]we rephrase the relevant concepts from [E]. In Sec-
tion[3section.3we generalize the work in [[5] by defining a semantic order on propo-
sitional sentences relative to an arbitrary propositional sentence. This may be seen
as ordering sentences in a situation of incomplete information, or as ordering sen-
tences relative to agiven subjective truth. In Section[section.Zlwe give the syntactic
description of the semantic order described in Section[3section.3land turn this into
an algorithm. Section Bseciion Slgives an application to belief revision. The work
presented in Sections[2section.2 land [3section.3|has been extended to the case of in-
finitely many variables (see[l6], [). Our discussion will however be restricted to the
case of finitely many propositional variables, dueto the inherently finite nature of the
computational syntactic approach of Section[4seciion 4]

2 The power relations approach Let £ denote the propositional language gener-
ated by finitely many propositional variables py, po, ..., pn, and the usual connec-
tives v, A and —. Thetautology iswritten T and its negation 1. Propositional sen-
tences will be denoted by Greek symbols. Let § be any conjunction of literals such
that each variable appears exactly once in §. That is, § is a conjunction of propo-
sitional variables and negations of propositional variables of the form § = [—] p1 A
[=1p2 A ... A[=]pn. 8 makes aclaim about the truth or falsity of each atomic fact
in the language L. Each propositional variable represents an atomic fact. If p; ap-
pearsin §, then the truth of p; isasserted, and if —p; appearsin §, then the falsity of
p; is asserted. We say that § fully describes some possible world. We fix one such
possible world, caled t, asthereal world. t correspondsto the Truth as known by an
omniscient observer. t can also be written as avaluationt : L — 2, where 2 isthe
two-element Boolean algebra, with

t(p) = 1iff p;j istruein the real world
P)=1 0iff pi isfalsein the real world.

Each possible world can be identified in this way with some valuation w : L — 2.
We will, for the remainder of this paper, regard possible worlds as valuations. The
set of all valuations will be denoted by /.

The set of valuations that satisfy a propositional sentence ¢ is written M. A
valuation w is called amodel of ¢ iff w € My iff w(¢) = 1. Two sentences ¢ and
Y are called equivalent iff they have the same models. Two valuations u and w are
called i-equivalent, written u =; w, iff u(p;) = w(p;j) foral j #i.

Our aim in this section is to order sentences according to their closeness to the
Truth, by ordering their sets of models. These sets of valuations will be ordered in
terms of an order < on elements of the sets according to their closeness to the real
world t. Let uand w be valuations. u <; w reads“w iscloser to t than uis,” where
“closer” istaken to include implicitly the possibility “or equal.” It holdsiff w agrees
witht on at least all those propositional variableswhere u agreeswith t, and isdefined
asfollows:

Definition 2.1  Let t bethe real world, and u and w be any vauations. The binary
relation <y C W? is defined by:

u<gwiff (vp)u(p) =t(pi)) = (wp) =t(p)).
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This order on valuations can now be used to define averisimilar pre-order on sets of
models of sentences through the use of power relations. Brink [H] provides adetailed
account on power relations in the more general context of power structures.

For any binary relation over a set A, one can define a power relation over the
power set of A. We overload the symbol <; of DefinitionP-Tko use it for the power
relation it induces aswell. (The elements related to each other disambiguate the two
relations.) Let ¢ and v be sentences. ¢ <; ¥ reads " iscloser tot than ¢ is.”

Definition 2.2  For any sentences ¢ and v, the pre-order <; is defined by:
¢ <t ¥ iff (Vue Mg)[@v € My)[u <¢ v] and (Vv € My)(Fu € Mo)[u <{ v].

Brink and Heidema [[B] motivate this definition by showing that this order on sen-
tences exhibits many of the desirable properties of averisimilar order on theories as
formulated by Popper and others.

3 Semantic generalization We regard a theory as an assertion phrased in the lan-
guage of propositional logic over finitely many variables. The beliefs of the previous
section were ordered relative to the belief of an omniscient observer whose beliefs
describe a single possible world t. The verisimilar order then indicates which of any
two beliefs are in closer agreement with that of the omniscient observer who knows
the truth values of al atomic facts. In this section, we will order sentences accord-
ing to how closely they agree with an arbitrary third sentence. We call the sentence
relative to which we define the order 7, the models of t being any set of valuations,
instead of the singleton set {t}. If we wish to remain in a context where we still be-
lieve in the existence of an objectively observed Truth, T may be seen as describing
that truth partially. Any one of the possible worlds described by t may be the real
world. t therefore provides incomplete information about the Truth, and other sen-
tences are ordered relative to this incomplete description of the Truth. Alternatively,
if we are not concerned with an objectively observed Truth, we can view the order as
being a subjective ordering of beliefs relative to the beliefs stated by 7. Agents hav-
ing different beliefs can use this order to compare the beliefs of other agents to their
own.

An important concept in the ordering of theories is that of relevance. Schurz
and Weingartner [14] noted that the case against Popper’s original proposed order
depends upon introducing certain irrelevancies as consequences in the construction
of itsargument. By placing certain relevance criteria on the classical deductive con-
sequence relation, these irrelevant consequents can be disallowed. In [IE the rele-
vance criteria are purely syntactical. For example, irrelevant disjunctive weakening
isnot allowed: Theinferencefromoa - gtoa = gV yisnot valid, since y may be
irrelevant to both o and 8. A verisimilar order on theoriesis then defined in terms of
this restricted relevant deductive consequence relation, while remaining within the
framework of classical logic.

In Section[2section.?lsentences were ordered relative to asingle valuation t. If
that is the case, the sentence with model t pronounces upon the truth of all atomic
facts, and hence all atomic facts must be relevant when determining the verismilar
order. Further, sincethetruth valuesof all nonatomic factsarefunctionally dependent
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upon the truth of atomic facts, we need not be concerned about the truth values of any
nonatomic consequences of 7. The order on valuations (and hence also the order on
sentences) istherefore defined in terms of the truth values of all the atomic variables.
If, however, T isan arbitrary sentence, not all atomic variables are relevant.

Our notion of relevance is that of Ryan [IE where it is called natural conse-
guence. It isbased on the concept of monotonicity. We will use the concept of mono-
tonicity to define two orders on valuations, namely <, (inR4) and then <., whichis
based on < (in[3.11). The power order of <, then gives a parameterized verisimilar
order on sentences (in Definition 312}, similar to the power order defined in Defi-
nition 2221 We will also relate the order on valuations defined in Definition 3. 111to
an order on valuations defined in [2] and formulated in terms of the natural conse-
quence relation. This is done in Theorem [B.19]and the three lemmas preceeding it.

Definition 3.1 ([12])

1. A sentence ¢ ismonotonein an atomic proposition p; iff Yu e Mg andvw € ‘W
suchthat u =; w, If u(p;) < w(p;) then w € M.

2. A sentence ¢ isantitonein an atomic proposition p; iff Yu € Mg and Vw € W
suchthat u =; w, iIf u(p;) > w(p;) then w € M.

In other words, ¢ is monotone in a propositional variable p; iff increasing the truth
value of pj in 2 preserves satisfaction of ¢, and it is antitone in p; iff decreasing the
truth value of p; in 2 preserves satisfaction of ¢. (Note: [[12] uses the term “anti-
monotonic’ wherewe' veused ‘ antitone.”) Thevariablesinwhich asentenceismono-
tone (antitone) can also be characterized syntactically (see Barwise [2]).

Theorem 3.2 A sentence ¢ is monotone (antitone) in a variable pj iff there exists
some sentence v, written in disjunctive normal form and logically equivalent to ¢,
such that p; does not occur negatively (positively) in .

Proof:  Thisisaconsequence of Lyndon’s Homomorphism theorem (see|[2]), which
states that atheory islogically equivalent to a positive set of sentencesif and only if
it is preserved under homomorphic images.

For example, p A g is monotone in both p and g, but antitone in neither; pv —qis
monotone in p and antitone in g; p is monotone in itself, and both monotone and
antitonein g, and p v —p is both monotone and antitone in both p and g.

Two sets of propositional variables that we will frequently refer to, are the fol-
lowing.

Definition 3.3
¢+ ={pi | ¢isnot antitonein p;}, and ¢_ = {p; | ¢ isnot monotonein p;}.

Syntactically, ¢, istheset of al propositional variablesthat occur positively in every
disiunctive normal form of ¢. ¢_ are those variables that occur negatively in every
disjunctive normal form of . Note that [[L2] definesthe related sets ¢ and ¢~ asthe
sets of variablesin which ¢ is monotone and antitone respectively. We will however
mostly use their set-theoretic complements and have therefore taken these as defini-
tion for ¢, and ¢_ respectively. We use these sets to define an order on valuations
relative to an arbitrary sentence :
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Definition 3.4  Let t be any sentence and u and w be valuations. Then

u =z wiff (vpi € 7)[u(pi) = 1= w(pi) = 1] and
(Vpi € )[u(p) =0= w(p) =0].

Lemma35 If Mt = {t},thenu <, wiffu<; w.
Proof: Definition[2.1Jmay be rewritten as follows:

u<tw iff  (Vp)[(t(p) =1= (u(p) =1= w(p)=1))
and (t(p)) =0= (u(p;) =0= w(p) =0))].

Recall that each propositional variable occurs exactly once in the primitive conjunc-
tion 7, either negated or unnegated. If p; appearsunnegated in z, thent(p;) = 1, and
if pi appears negated in 7, then t(p;) = 0. Using the notation of Definition B3] the
definition can therefore also be written as follows:

u<twiff (vpi € 0)[u(pi) = 1= w(pi) = 1] and
(Vpi € T)[u(p) =0= w(p) =0].

Lemma3.6 =< isapre-order.

Proof: To show reflexivity, we check that for any valuation u, u <; u. Thisfol-
lows from Definition B.4] since (Vp; € t)[u(p) = 1 = u(p;) = 1] and (Vp; €
7)[u(pi) = 0= u(p) =0J.

To prove transitivity, let u <, vand v <; w. Thatis, (Vp; € t)[u(p) = 1=
v(pi) =1] and (Vpi € -)[u(pi) = 0= v(pi) = 0]}, and (Vpi € t)[v(p) = 1=
w(pi) = 1] and (Vpi € 7-)[v(pi) = 0= w(pi) = O]}. Hence (Vpi € t)[u(pi) =
1= w(p) =1 and (Vp; € 7)[u(pi) = 0= w(p;) = 0]}. Thereforeu <, w.

In DefinitionB.Zhel ow, we defineasentencewhichwecall u,. In Lemma3.8lve
show that the models of u, arethose valuationsthat are closer to  than uisaccording
to the order <.

Definition 3.7  For any sentence T and valuation u, u, is defined by:

ur = /\{pi| pi €t andu(p) =1} A A{=pi| pi € T andu(pi) =0}
Lemma3.8 Mu, isthe <,-upclosure of u.
Proof: We have to show the following:

Mu, = {v|u=;v}
= {v|(vVpi € t)[u(p) =1= v(p) = 1] and
(Vpi € T)[u(pi) = 0= v(p) =0]}.

U, isthe conjunction of all literals that appear in every disunctive normal form of ¢
and are satisfied by u. Therefore avaluation v satisfies u, iff for any literal | satisfied
by u that appear in every digunctive normal form of 7, v(l) = 1.

Lemma3.9 Mris=,-upclosed.



COMPUTING VERISIMILITUDE 35

Proof: We have to show that, for any sentence t and valuations u and w, if u <; w
andu € Mt, then w € Mz. Suppose u <, w and u € Mz. By DefinitionB34] for all
pi such that z isnot antitonein p;, if u(p;) = 1then w(p;) = 1. Andfor al p; such
that T isnot monotonein p;, if u(p;) = 0then w(p;) = 0. Therefore, for any p; such
that u(p;) # w(p;i), one of two cases holds: either u(p;) = 1 and t isantitonein pj,
or u(p;) = 0and r ismonotonein p;. Recall that u satisfies by assumption. In both
cases satisfaction of t ispreserved when changing the value of u( p;) tothat of w(p;).
Since u and w can only differ in finitely many variables, w € M.

Example3.10 Consider the sentence t = (p A —r) Vv (g A —r), generated by pro-
positional variables p, gandr. Themodelsof ristheset Mz = {110, 111, 010, 011}.
Further, 7, = {p,q} and 7 = {r}. The pre-order <, on valuations relative to 7 is
obtained asfollows: Let, for example, u = 000 and v = 100. Then, by Definition[3.4]
we must check that if u(p) = 1 then v(p) = 1, if u(q) = 1then v(q) = 1, and if
u(r) = 0 then v(r) = 0. Any two valuations can be ordered in this fashion using
Definition[3.4] giving rise to the pre-order below.

AN

100 010 111

AKX

000 101 011

001
One can see in this example that the set of models of ¢ form an upclosed set in the
order, as proved in Lemmal3.9] In order to contract these models of 7 so that they
are equivalent, we refine the relation <, to form the relation <, defined in Defini-
tion3 11 below. Our justification for using the same notation in DefinitionB11ksin
Definition2.Tlfollows just below the definition.

Definition 3.11 Let = be a sentence and u and w be valuations. Then u <, w iff
w e MtU Mu,.

Mt U Mu, isthe set of models of the sentence 7 v u,. If ¢ has a single model
t, each propositiona variable appears exactly oncein t, either negated or unnegated.
In this case the sets 7 and 7_ therefore form a partition of theliteralsin z. Namely,
they are the subsets of positive and negative literalsin 7. u, isthe conjunction of all
the literalsin T satisfied by u. Hence w is closer to t than u iff w agreeswith t on at
least those propositional variables where u agrees with t. Thisyields the same order
on valuations as defined in Definition2.1] Definition P.Tlis therefore a special case
of Definition[3.11] This justifies our choice of <, as an order on valuations relative
to an arbitrary sentence .
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Now that we have an order on valuations, it is easy to obtain an order on sen-
tences, aswas done in Section[Zsection.Z] The same power construction used in Def-
inition2.2}to order sets of valuations can be used.

Definition 3.12 Let 1, ¢ and ¥ be sentences. The pre-order <, isdefined by:
¢ < Y iff (Yue Mg)(Fv e My)[u <, v] and (Vv € My)(Ju € My)[u <; v].

In the remainder of this section, we relate the order on valuations we defined in
DefinitionBI1]to the order defined in [[12] and given in Definition B.14loel ow.

Definition 3.13 (I2]) A sentence v is a natural consequence of a sentence ¢ iff
Mo C My, ¥ Co_andyy Cg,.

Note, for example, that if « isanatural consequence of ¢ and p; does not occur pos-
itively (negatively) in ¢, then it may also not occur positively (negatively) in«. This
prohibits the introduction of irrelevant disuncts in consequences.

Definition 3.14 (I2])  Let r be any sentenceand u and w be valuations. Then w is
closer to t than u iff any natural consequence of t satisfied by u is also satisfied by
w.

Asin Definition[3.12] this order on valuations can be lifted to a power order on sets
of valuations, yielding averisimilar order on propositional sentences.

Definition 3.15 A sentence v is called logically stronger than a sentence ¢ iff ev-
ery valuation that satisfies v also satisfies ¢, and logically weaker than ¢ iff every
valuation that satisfies ¢, also satisfies .

In Lemmal3.18below we show that for any sentence T and valuation u, 7 v Uy is
thelogically strongest natural consequence of t satisfied by u. Thisimplies, aswewill
prove in Theorem[319] that the orders defined in Definition[3I1]and Definition[314]
coincide. Consequently, instead of considering all the natural consequences of a sen-
tence as required in Definition 3.14] we need only consider the logically strongest
natural consequence of the theory when determining which of two valuations arein
closer agreement with the sentence.

Lemma3.16 The natural consequences of t are precisely the <.-upclosed super-
sets of M.

Proof: Let ¢ be a natural consequence of t. Then Mg is a superset of Mz. Let
ue Mg and u <, w. We have to show that w € Mg. By Definition[3.4] (Vp; €
t)[u(p) = 1= w(p) =1 and (Vp; € 7-)[u(p) = 0= w(p) = 0]}, and by
Definition3.13] ¢, € 7, andp_ C 7_. Therefore (Vpj € p.)[u(pi) = 1= w(p) =
1] and (Vpi € ¢-)[u(pi) = 0= w(pi) = 0]}. Therefore u <, w. It follows from
LemmaBB.Qlthat w € Mg.

Conversely, let ¢ be any consequence of t such that Mg is a <,-upclosed set.
Suppose ¢ isnot anatural consequence of t. Then either o, € . orp_ € 7_. Let’s
assume ¢ Z 7,. That is, there exists some p; such that = is monotone in p; but ¢
isnot. Since ¢ is not monotonein p;, there exist some valuations u and w such that
u=sj wandu(p) < w(pj) andue Mg and w & Mg. Since Mg isupwardly closed
intheorder <; andu e Mg andw ¢ Mg, u £, w. ltfollowsfrom thedefinition of <,



COMPUTING VERISIMILITUDE 37

that (3p;j € w)[u(pj) = LA w(pj) = 0] or (3pj € -)[u(p)) = 0A w(pj) = 1]}.
Sinceu=; wandu(p;) < w(p;), pi € T—, contradicting the fact that t is monotone
in p;. Therefore ¢ must be anatural consequence of .

Lemma3.17 1V u,isanatural consequence of t.

Proof: Thelemmafollows directly from Lemmas|3.9)13.8] and|3.16] as well as the
fact that the union of two upclosed sets in a pre-order is upclosed.

Lemma3.18 1V u,isthelogically strongest natural consequence of T satisfied by
u.

Proof: The models of any natural consegquence of t form an upclosed set by Lem-
maB.16] That set must contain Mt since it is a consequence of t. Further, if it is
satisfied by u, then it must contain Mu,, since Mu, isthe upclosure of u. Any natural
consequence of t satisfied by u is therefore logically weaker than (or equally strong
as) TV U,. Theresult now follows from Lemmal3.17]

Theorem 3.19 u <, w iff for every natural consequence v of z, if u satisfies v,
then so does w.

Proof: Supposeu <, w, thatis, w € Mt U Mu,. Let ¢ beanatural consequence of
t satisfied by u. Then (Mt U Mu,) € My by LemmaB:I8] Hence w € M.

Conversely, suppose for every natural consequence y of t, if u satisfies ¢, then
so does w. In particular, if u satisfies T v u,, then w satisfies T v u,. Sinceu € Mug,
w satisfiest v u;. Thatis, u <; w.

4 Syntactic approach The verisimilar order on sentences defined in Definition2.2]
can also be defined in terms of two closure operations V; (down-closure) and A (up-
closure) on sentences (cf. [[E]).

Definition 4.1 The down-closure Vi of asentence ¢ with respect to aavaluation
t is the sentence with models {u | (v € Mg)[u <; v]}. The up-closure Ay isthe
sentence with models {v | (3u € Mg)[u <t v]}.

These operations can also be described in terms of the logical strength of ¢. The up-
closure of asentence ¢ isthelogically strongest sentencethat isboth logically weaker
than ¢ and can be described using only positive literals. The down-closure of ¢ isthe
logically strongest sentence that is both logically weaker than ¢ and can be described
using only negative literals. Lemmal4.2ldescribes how to obtain this description syn-
tactically.

Lemma4.2 ([B]) Iftisthevaluationthat assignsthevalueltoall positiveliterals,
then the down-closure and up-closure of any sentence ¢ written in disjunctive normal
form can be obtained as follows:

1 Ifo=_1,then Vip = Arp = L. Else

2. Replaceall positiveliteralsin ¢ with T to obtain asentencelogically equival ent
to Vip.

3. Replaceal negative literalsin ¢ with T to obtain a sentence logically equiva-
lent to Ap.
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Theorem[4.3ldefines the verisimilar order of Definition2.2lin terms of Definition[4.1]

Theorem 4.3 ([8]) Let t bethereal world, and let ¢ and ¥ be any sentences.

o <ty iff Mp € MViyrand My € MAp
iff MVip € MViy and MAy € MAgp.

The down-closure and up-closure of sentences can be described either semanti-
cally asin Definition[4Tlor syntactically asin Lemmal42] Theorem[Z.31herefore pro-
vides a description of the verisimilar order based on the syntactic form of sentences,
as opposed to the definition in terms of valuations of Definiti onl2] In Algorithm@
below we give this description. For any sentences ¢ and v, Algorithm[Z.4]determines
whether ¢ <¢ v, wheret isthe valuation that satisfiesthe sentencet = p1 A ... A Pp.

Algorithm 4.4 ([i8])

1. Write ¢ and v in digunctive normal form.
2. Derivethe sentences Vg, Vi, Atg and Ay, as described in Lemmald.2]
3. Check if Vip - Viyr and Ay = Agp. If S0, then ¢ <¢ v by Theorem[4.3]

Algorithm[4.4]works only if the order on valuations is relative to a single valuation
satisfying all positive literals in the language. In this section we will give a similar
algorithm whereby one can determine which of any two sentences are closer to an
arbitrary third sentence. Thiswill yield adescription of the verisimilar order of Defi-
nition[3:12]based on the syntactic form of sentences. Wefirst define the down-closure
V. and up-closure A, ¢ of asentence ¢ relative to an arbitrary third sentence z, in
termsof the pre-order <., defined in Definition[3.4] The same notation may be used as
in DefinitionZTlsince we know from LemmaB.5khat <, and <; coincide when Mt
isasingleton set. We then give an equivalent syntactic description of these closures
in Lemmal46]

Definition 4.5 The down-closure V¢ of a sentence ¢ with respect to a sentence ¢
is the sentence with models {u | (3v € Mg)[u <. v]}, and its up-closure A, ¢ isthe
sentence with models {v | (3u € Mg)[u =<, v]}.

Lemmad4.6 The down-closure and up-closure with respect to a sentence ¢ of any
sentence ¢ written in digjunctive normal form can be obtained as follows:

1L Ifo=1,thenV,p=A, 9= 1. Else

2. Replace with T every positive literal in ¢ in which 7 is antitone but in which
@ isnot antitone. Replace further with T every negative literal in which 7 is
monotone but in which ¢ is not monotone. The resulting sentenceis logically
equivalent to A ¢.

3. Replacewith T all positiveliteralsin ¢ inwhich rismonotonebutinwhich¢is
not monotone. Replacefurther with T all negativeliteralsinwhich risantitone
but in which ¢ isnot antitone. The resulting sentenceislogically equivalent to
V.
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Proof: (1) If ¢ isthe contradiction, the result is immediate by definition. For the
remainder of the proof we assume that ¢ is consistent.

(2) Call the resulting sentence &. We will provethat MA ;¢ € M¢ and then that
M& € MA,p. Let w € MA p. Then Ju € Mg withu <X, w, i.e.,, w € Mu;. By
Lemmal3.8]

(Vpi € Tp)[u(p) = 1= w(p) =1] and (Vpj € 7-)[u(pj) = 0= w(p;j) =0].

In the formation of &, all the positive occurrences of variablesin which ¢ is not anti-
tone and t is antitone were removed from ¢. £ isin digunctive normal form because
@ is, and these literals do not appear in &, so in al those positive literals in which &
is not antitone, t is not antitone in either. Therefore &, C 7. Similarly, - C t_.
Therefore,

(Vpi € éE)[u(p) =1= w(p) =1 and (Vpj € £)[u(p;) = 0= w(pj) =0].

That is, w € Mug. Each replacement during the formation of £ is areplacement of a
literal with T in asentence written in digunctive normal form and therefore weakens
the sentence logically. Therefore Mg C Mé&. Sinceu € Mg, u € M&. Any sentence
isanatural consequence of itself. Since u € Mg, & isanatural consequence of itself
satisfied by u. It follows from Lemma[3I8khat Mu: € Mé&. Therefore w € Mé§. So
MAzp C M§.

Conversely, supposep = §g VvV 81 V ... V 8h_1, Where each disunction §; issome
primitive conjunction, say i = po A P1 A ... A Pm—1. Consider any such conjunction
8. Replace any positive literal +pj in 8; in which r isantitone and in which ¢ is not
antitonewith T toform¢’. Let w € M¢'. If w € Mg then w € MA;¢. Otherwise, if
w & Mg, thenw isj-equivalenttosomeu € Mé§; € Mg. Since p; € t- andu(p;) =1,
by Definition[3.4Ju <; w. Therefore w € MA,¢. The argument for the deletion of
negative literalsis the same.

(3) Again, call the resulting sentence &. Let u € MV,¢. Then 3w € Mg with
U=, w,i.e,we Mu,. By Lemmal3.8]

(Vpi € tp)[u(p) =1= w(p) =1] and (Vp; € 7)[u(pj) =0= w(pj) =0],
ie.,

(Vpj € T)[w(pj) =1=u(pj) =1] and (Vp; € T)[w(pi) = 0= u(p;) =0].
Sinceé; Cr_andé_ C 1y,

(Vpj € ép)[w(p)) =1= u(pj) =1] and (Vpi € §_)[w(pi) = 0= u(pi) =0].

That is, u € Mwg. Sincew € Mg and Mg € M&, w € M&. It follows from this and
Lemma[3.18kthat Mw;: C M&. Thereforeu e Mg, and thus MV,¢ € ME.
Conversely, let ¢ = 89 v §1 V...V 8h_1, Whereeach diguct §; is some primitive
conjunct 8 = po A P1 A ... A Pm_1. Consider any such conjunct §;. To form §;,
replace with T any positive literal 4-p; in §; in which 7 is monotone and in which
@ isnot antitone. Let u € M§;. Thenuisj-equivalent to somew € M§; € Mg. Since
pj & t_ and w(p;j) = 1, by Definition[3.11lw € Mu,, i.e, u <, w. Therefore u
MV .¢. Theargument for the deletion of negativeliteralsissimilar. So Mé € MV, ¢.
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Theorem [4.7]shows that the verisimilar order on sentences defined in Defini-
tion[31Z] can be described in terms of the up-closure and down-closure of theories
defined in Definition[4.5] The theorem does not always hold when ¢ is the contradic-
tion; it is therefore formulated and proved only for consistent sentences. (If ¢ isthe
contradiction, the left hand side holds only when v is a so the contradiction, whereas
the right hand side holds whenever Ay - 1.)

Theorem 4.7  For any consistent sentences ¢, v and t,

o<y iff (MVyyNMz={}impliesMV.p C MV, ¥)
and (MA ¥ € MApU M1)
iff (Vey)Atk LimpliesVipk Vo) and Ay = (Arp) VT

Proof: Suppose¢ <, vand MV, yyN Mt ={}. Letue MV,p. Then3v € Mg with
U=, v. Sincep <, ¢ by assumption, 3w € My withv <, w. Thatis, w € Mv, U M.
Since MV, ¢y N Mt = {} and My € MV ¢, My N Mt = {}. Therefore w ¢ Mr.
Hencew € Mu,, thatis, v <, w. Thereforeu <, w by Lemmal3.6] Henceu € MV, .

Second, suppose ¢ <; V. Let w € MA . Then v € My with v <; w. SO
Ju € Mg withu <; v, i.e, v € Mu, U Mrt,i.e,u=<;vorve Mz If u=<;vthen
u <, w by Lemmal2.6] and therefore w € MA,¢. Elsev € M, and hence sois w by
LemmalB.9] Thereforew € MA o U Mr.

Conversely, supposethat (MV.yy N M1 = {} implies MV, € MV_v) and that
(MAY € MALpU M71). Letue Mg. If MV, N Mt # {} then 3v € MVy N Mr.
Sincev € M1, u <, v. Else MV, y N Mt = {}. Thereforeu € Mg € MV,¢p C
MV_.y. Sodv € My withu <, v. Henceu <, v.

Second, let w € Myr. Since MA ¥ € MA ¢ U Mt by assumption, w € MA ;¢
orw e Mrt. If we MA,¢p,then3u € Mg withu <, w, henceu <, w. Elsew € M,
and u <, w for any u € M.

Theorem[4.7]may be regarded as a generalization of Theorem[4.3] For suppose the
special case holdswhere T isthe conjunction of al positiveliterals, and Mt = {t}. We
have to show that [((V.¥) At L impliesV,p = V.¢) and Ay = (A @) Vv 1] iff
[V.p + Vo and Ay - (ALe)], using either Definition [ Tor[4E5Kor the up-closure
and down-closure operations, since we have aready shown that they are the same.
Sincet € Ap, (Ar@) VT =Awp. SOA Y (A) VT iff Ay = Arp. Further,
if t e My, then V¢ = T and hence both ((V.¢¥) At L implies V¢ - V.¢) and
(Voo = V) aretrue. Elsg, if t & My, then (V. ¥) At L andhence ((V.¥) ATk
1 implies V. - Vo) iff (V.0 - V). Theorem[4.Z]is therefore a generalization
of Theorem[£.3]

To conclude, here is the algorithm to determine which of two consistent sen-
tences ¢ and v are closer to an arbitrary sentence t. Contradictions may be dealt with
separately as a specia case.

Algorithm 4.8

1. Write ¢ and ¢ in disunctive normal form.
2. Cdculatety, 1, ¢, 0, ¥y and yr_.
3. Derive the sentences V¢, V., A,¢ and A,y as described in Lemmal4é]
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4. Check whether ((V:¥) At Limplies Voo = V. 4) and A = (Arp) Vv T,
If s0, then ¢ <, v by Theorem[4.7]

Therearetwo potential problemswiththisalgorithm. First, for thecalculationin (2) it
isassumed that literals do not appear redundantly in any sentence. That is, we depend
upon the syntactical form of asentence when determining its monotonicities. Second,
if (4) isto be computed using aresol ution-based theorem prover, the sentences should
have been in conjunctive normal form. In the case of single propositional sentences
this presents no real problem apart from efficiency, but it does not bode well for gen-
eralization to theories as sets of sentences, or to the predicate case. A theorem prover
based on negation normal form (asin Andrews [[1]) could eliminate this problem.

5 Application to belief revision  In Definition[3.11] we defined an order on valua-
tionsrelative to an arbitrary propositional sentence. In the context of default reason-
ing, such an order isknown asapreferencerelation. u <, w meansthat w ispreferred
to u with respect to the satisfaction of . A preferencerelation <, can be used to de-
fine anonmonotonic (not to be confused with our definition of monotone!) inference
relation p~, (cf. Shoham [[I5]). Asin the previous sections, we restrict ourselves to
propositional sentences, although the definition is usually stated more generaly.

Definition 5.1  Let 7, ¢ and ¢ be sentences. Then ¢ . v iff every <,-maximal
model of ¢ isamodel of .

Notethat <, isdefined in the opposite direction from that usually used in theliterature
on preference relations; all minimal elements in such papers therefore become our
maximal elements.

In Makison and Gardenfors [[9], the link between belief revision and default rea-
soning is argued to be the following: if t x ¢ is the sentence obtained by revising ©
with ¢, then v € M (T x @) iff ¢ ~, ¥. Using thisas definition of belief revision, one
can define a belief revision operator in terms of a preference relation < (cf. [[L3]).

Definition 5.2  Let 7, ¢ and  be sentences. ¢ € M (7 x ¢) iff every <,-maximal
model of ¢ isamodel of .

In the notation and context of this paper, the belief revision operator induced by the
preference relation <, can aso be written in terms of the verisimilar order on sen-
tences, provided <, is antisymmetric. In order to achieve this, we have to change
the pre-orders defined in DefinitionsB.4land[B.11linto partial ordersin the usual way:
define an equivalencerelation by u = v iff u <; vand v <; u (and similarly for <,),
and order valuations according to the equivalence classes to which they belong. In
the next theorem, we assume that this has been done.

Theorem 5.3  Let 7, ¢ and v be sentences. v € M(t* @) iff o <; @ A Y.
Proof: 1 isaconsequence of 7 x ¢

iff every <.-maximal model of ¢ isamodel of v
iff (Yumaximal in Mg)(3w € My)[u = w]

iff (Yumaximal in Mg)(3w € M (o A ¥))[u= w]
iff (Yue Mg)@w € M(p A ¥)[u <; w].
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Comparing this reformulation to the verisimilar order of DefinitionB.12] one can
see that the former isthe first half of the definition of the order ¢ <, (¢ A ¥). Since
M (g A ) € Mg, the latter half of the definition follows trivialy.

In the terminology of Definition[4.5] and as a consequence of TheoremBZ] 7 ¢ - v
iff thefollowing conditionismet: ¢ A ¥ must be consistent, and whenever ¢ A Y A T
isacontradiction, then V,¢ - V. (¢ A ¥). AlgorithmE8Imay in this way be applied
to check whether a sentence v is a consequence of t % ¢, where the belief revision
operator * isinduced by the preference relation <.

In the previous sections we used the preference relation <, to define a param-
eterized verisimilar order, also called <., as a generalization of [[5]. In this section
we rewrote the belief revision membership relation of Definition[.2]land noted that it
closely resemblesthis verisimilar order. Thissimilarity enabled usto apply the algo-
rithm obtained for computing verisimilitude to also compute membership of abelief-
revised theory. Verisimilitude seems the more general notion, since every belief-
revision calculation of the form v € t ¢ corresponds to a verisimilar ordering cal-
culation of theform ¢ <, £ where & islogically stronger than ¢, but not all verisimilar
orderings correspond directly to abelief revision calculation.

REFERENCES

[1] Andrews, P. B., An Introduction to Mathematical Logic and Type Theory: to Truth
through Proof, Computer Science and Applied Mathematics Series, Academic Press,

Orlando, 1986.[Zbl 0617.03001IMR 88g:03001][4]

[2] Barwise, J., editor, Handbook of Mathematical Logic, Sudies in Logic and the Foun-
dations of Mathematics, vol. 90, North-Holland, Amsterdam, 1977.[Zbl 0443.03001]
MR 56:15351]

[3] Brink, C., “Verisimilitude: views and reviews,” History and Philosophy of Logic,

vol. 10 (1989), pp. 181-201.[Zh[ 0674.03002 MR 90k:03003] ]

[4] Brink, C., “Power structures,” Algebra Universalis, vol. 30 (1993), pp. 177-216.
- e
[5] Brink, C.,and J. Heidema, “ A versimilar ordering of theories phrased in apropositional

language,” British Journal for the Philosophy of Science, vol. 38 (1987), pp. 533-549.
[Zbl 0676.03001 | MMMZE]

[6] Brink, C.,andJ. Heidema, “ A verisimilar ordering of propositional theories. theinfinite
case,” Technical Report TR-ARP-1/89, Research School of Social Sciences, Australian
National University, Canberra, 1989. [L][L]

[7] Brink, C.,J. J. C. Vermeulen, and J. P. G. Pretorius, “Verisimilitude viavietoris,” Jour-
nal of Logic and Computation, vol. 2 (1992), pp. 709-718.[Zb 0774.03010]
MR 94¢:03017] 1]l

[8] Burger, I. C., and J. Heidema, “ Comparing theories by their positive and negative con-
tents,” The British Journal for the Philosophy of Science, vol. 44 (1993), pp. 605-630.
MR 95e:03036111J4]l4.2]l4 3]i4 4]

[9] Makinson, D., and P. Gardenfors, “Relations between the logic of theory change
and nonmonotonic logic,” pp. 185-205 in The Logic of Theory Change, edited by
A. Fuhrmann and M. Morreau, Lecture Notes in Artificial Intelligence, vol. 465,

Springer-Verlag, Berlin, 1991. [ZB[ 0925 03130IMR 1006795] 5]



http://www.emis.de/cgi-bin/MATH-item?0617.03001
http://www.ams.org/mathscinet-getitem?mr=88g:03001
http://www.emis.de/cgi-bin/MATH-item?0443.03001
http://www.ams.org/mathscinet-getitem?mr=56:15351
http://www.emis.de/cgi-bin/MATH-item?0674.03002
http://www.ams.org/mathscinet-getitem?mr=90k:03003
http://www.emis.de/cgi-bin/MATH-item?0787.08001
http://www.ams.org/mathscinet-getitem?mr=94g:08002
http://www.emis.de/cgi-bin/MATH-item?0676.03001
http://www.emis.de/cgi-bin/MATH-item?0774.03010
http://www.ams.org/mathscinet-getitem?mr=94g:03017
http://www.ams.org/mathscinet-getitem?mr=95e:03036
http://www.emis.de/cgi-bin/MATH-item?0925.03130
http://www.ams.org/mathscinet-getitem?mr=1096795

COMPUTING VERISIMILITUDE 43

[10] Miller, D., “Popper’s qualitative theory of verisimilitude,” British Journal for the Phi-
losophy of Science, vol. 25 (1974), pp. 166-177.[Zb[ 0377.020071[1]

[11] Popper, K. R., Conjectures and Refutations, Routledge and Kegan Paul, London, 1963.
MR 27:239

[12] Ryan, M.D.,“Defaultsand revisionin structured theories,” pp. 362—373 in Proceedings
Sixth IEEE Symposiumon Logic in Computer Science (LICS), |EEE, Amsterdam, 1991.
BIBIBLBIBIE]

[13] Ryan, M. D., and P-Y. Schobbens, “Belief revision and verisimilitude,” Notre Dame
Journal of Formal Logic, vol. 36 (1995), pp. 15-29. [Zbl 0837.03008[MR 96k:03071

[14] Schurz, G., and P. Weingartner, “Verisimilitude defined by relevant consequence-
elements,” pp. 47—77 in What is closer-to-the-truth?, Rodopi, Amsterdam, 1987. B

[15] Shoham, Y., Reasoning about Change, MIT Press, Cambridge, 1988.[MR 90h:68081 5]

[16] Tichy, P, “On Popper’s definitions of verisimilitude,” British Journal for the Philoso-
phy of Science, vol. 25 (1974), pp. 155-188. [1]

Department of Computer Science and Information Systems
University of South Africa

Pretoria 0001, South Africa

email: ori '

Laboratory for Formal Aspects and Complexity in Computer Science
Department of Mathematics

University of Cape Town

Rondebosch 7700, South Africa

email: Ir_;brink@mths.uct.ac.za|



http://www.emis.de/cgi-bin/MATH-item?0377.02007
http://www.ams.org/mathscinet-getitem?mr=27:2393
http://www.emis.de/cgi-bin/MATH-item?0837.03008
http://www.ams.org/mathscinet-getitem?mr=96k:03071
http://www.ams.org/mathscinet-getitem?mr=90b:68081
mailto: britzk@osprey.unisa.ac.za
mailto: cbrink@maths.uct.ac.za

