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Ontologically Minimal
Logical Semantics

UWE MEIXNER

Abstract  Ontologically minimal truth law semanticsare provided for various
branches of formal logic (classical propositional logic, S5 modal propositional
logic, intuitionistic propositional logic, classical elementary predicate logic,
free logic, and elementary arithmetic). For al of them logical validity/truth
is defined in an ontologically minimal way, that is, not via truth value assign-
ments or interpretations. Semantical soundness and compl eteness are proved
(in an ontologically minimal way) for a calculus of classical elementary predi-
catelogic.

1 The am of this paper is to develop a workable semantics for various branches
of logic that is minimal in its ontological assumptions. Reference will be restricted
asfar asthisisfeasible to linguistic entities (including finite, but not infinite sets of
linguistic entities); these will figure as linguistic types, which are assumed to be un-
problematic abstract entities. (This assumption may be questioned, of course, but it
will not be questioned here.) |f it becomes necessary to go beyond linguistic entities,
then the enlargement of ontological scope will be kept as small and as unproblem-
atic as possible. The reader is advised that he or she will find here a presentation of
semantical methods which are compatible with ontological minimality taken in the
sense described but not new interpretations of the logical constants. All interpreta-
tions formulated in the paper are well known, and the central semantical concept is
in fact simply truth. Hence, indeed, well known truth conditions for the logical con-
stants will be presented here; but these are well known truth conditions with a dif-
ference to them: they carry aslittle ontological weight as possible. (Sticking to truth
conditions distinguishes my approach from proof-theoretic semantics which charac-
terizeslogical constants—in a sense completely—by Gentzen-style introduction and
elimination rules.)

The envisaged ontological frugality differs sharply of course from the opulence
of model-theoretic semantics, especialy of the model-theoretic semantics of modal
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logic (possibleworlds, setsof possibleworlds, etc.). Thisformidable ontological ma-
chinery invoked is not otiose. Rather it is responsible for the unquestionable power
of model-theoretic semantics. Nevertheless, can we not do without it (at least in some
central areas of logic)?

A motivation similar to the one displayed in this article can be found in Le-
blanc [4]. 1 would like to stress two differences between Leblanc’s approach and
mine, and between truth value semantics and ontologically minimal semantics gen-
eraly. Both arelogical semantics, that is, semantics employed for the foundation of
logical systems. But ontologically minimal semantics does even without truth value
assignments which are essentia to truth value semantics, and a fortiori it does with-
out sets of truth value assignments, which in addition to truth value assignments are
essential to truth value semanticsfor modal logics. Truth value assignments, if speci-
fied for infinite sets of (atomic) sentences, are functionswith infinite domains, that is,
infinite sets of ordered pairs. Thisistoo much for ontologically minimal semantics.
It does, moreover, without infinite sets of object language sentences; Henkin proofs
of completeness are thus out of the question. (It does without” these entitiesin the
sense that they are not quantificationally referred to; they are not values of metalin-
guistic variables.) Full-blown model-theoretic semantics (with ontological imagery
taken seriously or not) and truth value semantics have in common the unscrupulous
use of infinitary set theory, which will be avoided here.

It will be shown here how logica validity is to be defined in the framework
of ontologically minimal semantics (OMS) for a representative range of object lan-
guages without talk of “assignments’ or “interpretations.” Completeness proofsin
OMS (here called “proofs of 2-completeness’) hinge on the possibility of standard-
izing metalinguistic deductions demonstrating the logical validity of someformula F
to such an extent as to be able to translate them (in awide sense of “trandate”) into
a proof of F in the calculus concerned. Along these lines a completeness proof in
OMSfor acalculusof classical elementary predicatelogic (including truth-functional
propositional logic) will be given (in Section[5).

Frege defined logic as the science concerned with the laws of being true. Curi-
oudly, logic in its standard practice, though being indebted to Frege in so many ways,
is at variance with Frege's definition of it: on the object language level the concept
of truth does not occur at al (and if it does, it is redundant), yet on the metalanguage
level there are no laws of truth, but rather (recursive) definitions of truth. The differ-
ence is clear: laws of truth are themselves true, whereas definitions of truth can be
only more or less adequate to certain standards.

OMSin general will be ontologically minimal valence law semantics, but | will
develop (to some extent) only a particular branch of it, namely ontologically mini-
mal truth law semantics (truth is one vaence, but not the only valence; provability is
another). The central act of the ontologically minimal truth law semantics of agiven
language isthe stating of the truth lawsin Frege's sense of that language with as few
ontological commitments as possible. Frege of course, meant by “die Gesetze des
Wahrseins’ not al laws of truth (not, for example, “if ‘Boisadog’ istrue, then ‘Bo
isan anima’ is true’), but only the laws of truth for the logical constants. Hence
the truth laws in Frege's sense of a given language are the truth laws for the logical
constantsin it (relative to that language: in the meaning they havein it).
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However important from a general philosophical point of view it is that model-
theoretic semanticsis ableto define the truth predicate for so many languages (indeed
thisisitsoriginal raison d' ére), adefinition of truth is unnecessary for capturing the
logic of not a small number of these languages. The essential things are their truth
laws, not their truth definition. A truth definition must also provide truth conditions
for the basic (smplest) sentences of a given language; those truth conditions, how-
ever, in many cases, have no bearing on its logical principles (not even in the case
of the language of classical elementary predicate logic). So, why bother? Because
we do not have a grip on the truth laws without having the truth definition? Thisis
evidently not true; it israther the other way round.

| suggest that the distinction between a lexi-logical and an onto-logical (inter-
preted) language is to be sought in this: the truth laws of alexi-logical language can
be completely stated without referring to other than linguistic entities (hence they can
be stated within the framework of OMS); thisis not the case with an onto-logical lan-
guage. It will be shown in this paper for several languages that they are lexi-logical
in the sense of the definition given, most notably for the language of modal propo-
sitional logic (and, in afootnote, for the language of elementary arithmetic). Others
will prove to be onto-logical.

2 Thebasic concepts of truth law semantics can be conveniently introduced and ex-
emplified in the simple case of truth-functional propositional logic (mutatis mutandis
the remarks here apply to al the logical languages considered). The object language
L1 iscongtituted as follows:

1 pp,p’,... aetheatomicformulasof L4;
2. if sand s areformulasof L4, then —sand (s — §') areformulas of L;
3. al formulas of £, are expressions according to[1land[2]

Theformulas of L, aretaken to be in some way interpreted; thusit is more ap-
propriate to speak of “sentencesof £,” instead of “formulasof £,.” Obvioudly, truth
laws can be formulated only for an interpreted language. In particular, “—" is taken
to be synonymousto “it isnot the case that,” “—" istaken to be synonymousto “ ma-
teridly implies,” and the atomic sentences of £, are each taken to be synonymousto
some sentence of ordinary language.

The metalanguage (and the meta-metalanguage) hasvariables x, y, z, Z, . . . for
the sentencesof £, initsuniverseof discourse. The sentencesof £ figureinthe met-
alanguage (and in the meta-metal anguage) astheir own names (outer bracketsare usu-
aly omitted), and “—" and “—" figurein the metalanguage as functional expressions
which form names of sentences of £; from names of sentences of £1. The metalan-
guageincludesthetruth predicate: T[x] (whichisused inthe meta-metalanguage asa
functional expression forming namesfor sentences of the metalanguage out of names
for sentences of £,). The metalinguistic logical means are classical first-order pred-
icate logic with identity and description, plus the logic of finite sets (including finite
sequences), plusthe purely syntactical principleswhich aretrue of £, (itssyntactical
description), plusthe principle of compl eteinduction on the number of occurrences of
basiclogica constantsin sentencesof L4, onthelength of proof inacalculusrelative
to L4, and, if necessary, on other syntactical parameters. The metalinguistic logical
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means needed for the purposes at hand can be precisely specified and are here pre-
supposed as being precisely specified (but | will not bother to go through the moves);
consequently | can presuppose a precise notion of what constitutes a (truth conserv-
ing) logical deduction or derivation in the metalanguage.

The metalinguistic quantifiers are “vx” and “3x.” Binding strength diminishes
from left to right in the sequence: “not,” “and,” “or,” “if, then,” “iff” (the latter are
taken in the sense of material implication and equivalence).

The truth laws for “=" and “—" relative to £, are completely and succinctly
stated thus:

T(Ly,—,—)

L= YX(T[—X] iff not T[X])
L1 —  YXVY(T[x— y]iff not T[X] or T[y]).

Thisisthelogic of £1; thereisnomoretoit (but it can beformulated in adiffer-
ent, albeit—aswe shall see—lesscomplete manner). Thelogic of £, ssimply contains
the truth conditions (relative to £,) for classical negation and material implication.
But note that these truth conditions are not, as is normally done, stated in the con-
text of arecursive definition of “x is true under the truth value assignment f”; they
are stated without reference to truth value assignments as general (true) laws for the
sentences of L.

A calculus X relativeto L1 consistsin afinite number of axiom schemata and
afinite number of basic rule schemata which are syntactically adequate for sentences
of L, (either axiom schemata or basic rule schemata may be missing), and whose
instantiations are understood to be sentences and sequences of sentences of £, only.
All and only sentences of L1 fitting an axiom schema of X are taken to be axioms
of K: sentences of £, unconditionally generable in K. All and only sequences of
sentences of L1 fitting a rule schema of K are taken to be basic rules of X, each
stating that a certain sentence of £, is generable in XK if certain other sentences of
L, (maybe only one other) are generablein it.

A well known example of acalculusrelativeto £, is:

K1

A1 A— (B—= A

Ao (A (B—-C)— ((A—>B)— (A= Q)
As; (—A— —-B)—> (B— A)

Ri AA— BFB

To give an extremely different example: the calculus X, that has no rule schemata
and whose only axiom schemais

B; A

isalsoacalculusrelativeto L4, acaculusinwhich every sentenceof L1 isgenerable.

The truth law transformation of a calculus X relativeto L1, TLT(X), ismore
effectively described by examples rather than by a definition (which can, of course,
be given).
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TLT(X 1)

TLT(A1) VYXVYT[X— (Y — X)]

TLT(A2) VYXYWZT[(X— (Y= 2)) > (X—= ¥) = (X— 2))]
TLT(A3) VYXVYT[(—=X— —y) = (Y — X)]

TLT(Ry) VxVy(if T[x] and T[x — V], then T[y])

TLT(X 2)
TLT(By) VXT[X]

We are now ready to introduce the central semantical notions that concern the
relations of an L4-calculusto the L4-truth laws. Let K be acalculusreativeto L;.

D; X isl-sound := TLT(X) islogically derivable [in the precise sense defined
by the presupposed specification of the metalinguistic logical means] from
T(Ly, =, —)

D, K is2-sound:=Vx(if xisgenerablein K, then T[X] islogically derivablefrom
T(L1, =, —))

D3z X isl-complete:= T(Lq, —, —) islogically derivable from TLT(X)

D4 XK is2-complete ;= Vx(if T[X] islogically derivable from T(L4, —, —), then
xisgenerablein X)

The definition of 2-soundness and 2-completeness become more familiar if we re-
place “T[X] islogically derivable from T (L4, =, —)” by “x islogicaly valid’:

Ds xislogicaly valid := T[x] islogically derivable from T (L1, =, —).

In general, a sentence of alanguageislogically valid iff the metalinguistic sen-
tence saying that it has the valence concerned can be logically derived from the va-
lence laws of that language. Hence, if the valence concerned istruth, asit is here, a
sentence of alanguageislogically valid (or logicaly true) iff the sentence saying that
itistrue can belogically derived from thetruth laws (thelogic) of that language. This
appears to be a completely adequate definition schemafor logical validity/truth. Dg
issimply aspecification of that schema: adefinition of logical validity for £, that, in
accordance with the aims of OM S, does without the usual quantification over nonde-
numerably many truth value assignments (functions that are themselves infinite sets)
to the atomic formulas of L.

In the spirit of Ds we have:

Dg xislogicaly consistent := not T[x] is not logically derivable from
T(Ll, -, —))

TLT(X 1) can easily belogically derived from T (L1, —, —); hence K 1 is 1-sound.
X », on the other hand, is not 1-sound: the negation of TLT (X ,) can belogically de-
rived from T (L4, —, —). T[—p] iff not T[ p] by £1—; hencenot T[—p] or not T[ p];
hence 3y not T[y]. Thus K, could be only 1-sound, if T(L1, —~, —) werelogically
inconsistent (if a sentence and its negation were logically derivable from it), which it
is not.

Since K 1 is1-sound, itisalso 2-sound: any proof in X 4 for x can (in an obvious
manner) be trandated into alogical derivation of T[X] from TLT (%X ;); hence by the
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1-soundness of K, T[X] islogically derivablefrom T(L1, -, —) if Xisgenerablein
X 1. But K, isneither 1-sound, nor 2-sound: —(p — p) canbegeneratedin X »; but
if T[-(p — p)] were logically derivable from T(Lq, -, —), T(L1, —, —) would
be logically inconsistent, which it is not.

There is no L;-calculus K which is 1-complete: if T(L, -, —) were logi-
cally derivablefrom TLT (%K), 3y not T[y] would haveto belogically derivable from
TLT(X) (as we have seen above). But TLT(X) itself is logically derivable from
VyT[y]: given our specification of the concept of acaculusrelativeto L4, thetruth
law transformation of any such calculusistrivially derivable from VyT[y]; hence 3y
not T[y] would haveto be alogical truth (of the metalanguage), whichitisnot. Thus
itis seen that every L1 calculusisin a manner an incomplete statement of the truth
laws of L4, as has been indicated above.

Both K ; and X , are, however, 2-complete. Thisistrivial inthe case of XK »; not
sointhecaseof X ;. If weassume co-extensionality for calculi relativeto L1 between
2-compl eteness and its analogue in truth value semantics, the 2-compl eteness of X ;
is already not to be doubted because we have proofs for the fact that %, possesses
the anal ogue of 2-completenessin truth value semantics: every sentence of £, which
is true under all truth value assignments to the atomic sentences of £; is generable
in % 4. But the co-extensionality of the two concepts for all calculi relative to £,
remainsitself to be proved; thisisleft for another occasion. Here the 2-completeness
of K, will be proved directly within the framework of OMS. The general strategy of
proofs of 2-completeness has been sketched in Section[L] The actual proof, whichis
an application of that strategy, isincluded in the demonstration of the 2-completeness
of the calculus of elementary predicate logic K g in Section[5]

Thereisan approximation to 1-completeness which isintroduced by the follow-
ing definition (X being an L4-calculus):

D; X is3-complete := T(Ly, —, —) islogically derivable from TLT(K) + the
atomic restriction of T(L4, —, —).

The atomic restriction of T(L4, —, —) isobtained by restricting £L;—and £; — to
atomic sentences of £,. Thereisreason to hold that 3-completeness is a good ap-
proximation to 1-completeness. the atomic restriction of T(L,, —, —) isasmall and
in a clear sense fundamental part of the total content of T(Lq, =, —). If T(Ly, —,
—) can be obtained from TLT (X)) by presupposing the small foundation of the for-
mer, this can be rightly regarded as a close and hence good approximation to 1-
compl eteness.

In particular cases not even the entire atomic restriction of T(Ly,—, —) is
needed as a stepping-stone (as it were) for obtaining T(Lq, =, —) from TLT(X).
Soitisinthe case of K 4: for showing that X ; is 3-complete the atomic restriction
of L1, VX(if At(x), then (T[—xX] iff not T[X])), is sufficient.

1. vxvy(if T[x — Y], thennot T[x] or T[y]) islogicaly derivablefrom TLT(R).
2. Vx(if T[X], then not T[—X]): assume T[X] and T[—X], hence by V2VyT[—-z —
(z—y)] (whichfollowslogically from TLT (% ;), since—~A— (A — B)isgen-
erablein K 1) and TLT(Rq): VyT[y]; but thiscontradicts Vx(if At(x) and T[x],
then not T[—X]): becauseof At(p), weabtainnot T[ p] or hot T[—p], hence3y
not T[y]. (The purely syntactical principlestruefor £,—for example the syn-
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tactical principle just used, At(p)—belong to the metalinguistic logic; hence
metalinguistic logical derivability isto be taken as defined relative to them.)
3. Vx(if not T[x], then T[—X]):

e Induction basis: Vx(if At(x) and not T[X], then T[—X]);

e Induction step: assume Vx(if £(X) < n and not T[X], then T[—X]) (in-
duction assumption: IA); £(x) isthe logical degree of x, the number of
occurrences of basic logical constants in x; At(x) := £(x) = 0; assume
(2 =n+1;

(@) z= —y; assumenot T[Z]; hencenot T[—Y], henceby IA T[y]; A—> ——A
(that is, al its instantiations) can be generated in K ;; hence VXT[x —
—=X] canbelogically deduced fromTLT (X ;); henceby TLT(R1) T[——Y],
hence T[—Z];

(b) z= (y — Y); assume not T[Z]; hence not T[y—Y']; from not T[y —
y7] by TLT(A;) and TLT(Ry), not T[y']; hence T[—y'] by IA; from not
Ty — Y] by VXVZT[—Xx — (X — Z)] and TLT(R) not T[—y]; hence
T[y] by IA; from T[y] and T[—y] by TLT(R,) and VXVZT[Xx — (=Z —
—(X — Z))], which is logically derivable from TLT(% ;) since A —
(=B — —=(A— B))isgenerablein K1, T[—(y — Y], hence T[—2Z].

4. Vxvy(if not T[X] or T[y], then T[x — y]): assumenot T[x], hence by[BIT[—X],
henceby VX' VZT[-X — (X—2)] and TLT(R;) T[x — V]; assume T[y], hence
by TLT(A;) and TLT(Ry) T[x — V].

It has become clear in this proof that the following L1 calculusis also 3-com-
plete.
K3

AL A— (B—> A

A, -A— (A— B)

A; A— ——A

A, A»> (-B— —-(A— B))
Ri AA— BFB

Moreover K 3 is 1-sound and 2-sound in contrast to % ,. But in contrast to & 4
K 3 isnot 2-complete: All the axiom schemata and the basic rule schema of X 3 be-
long to intuitionistic propositional logic; hence ——p — p cannot be generated in
X 3, whereas T[-—p — p] can be logically derived from T(L1, —, —). Thuswe
can have 3-completeness without 2-completeness in a perfectly sound £4-calculus.

Can we aso have 2-completeness without 3-completenessin such an £4-calcu-
[us? Indeed we can:

K4
AL —Aj
R, A/ A— —B+-B
R;y AA—-—(B—-CFB—->C

X 4 isas sound as X 1, and al proofsin %1, which is 2-complete, can be recon-
structed in K 4, using instead of R; the appropriate special version of Ri: Ry, or
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R3. (No atomic sentence of £, can be generated in K 1, €lse every sentence of £,
could be generated in it.) Hence K, is 2-complete. But it is not 3-complete; if
T[—p]and T[—p' — p], then T[ p] can belogically derived from T (L1, —, —); but
it cannot be logically deduced from TLT (% 4) together with the atomic restriction of
T(Lqy,—,—); TLT(R,) and TLT(R3) are of no help, since p is an atomic sentence
of £1.

Thusthe notions of 3-completeness and 2-compl eteness are independent of each
other even relative to 2-soundness combined with 1-soundness. It is not clear which
of the two concepts of (semantical) completeness is the more important. It seems
that the most satisfactory 1/2-sound L1-calculi are those which, like K 1, are both 2-
complete and 3-compl ete, whereas those which are either only 3-complete (like K 3)
or only 2-complete (like X 4) are somewhat “strange.”

Thereisan L4-calculus which is 2-sound, but not 1-sound.

Ks

Al ~A— ———A
Al =A— —-A
RY ~A— -B+-A—-B

But X 5 isclearly neither 3-complete nor 2-complete. We shall seein the next section
that there is a standard modal calculus that is 2-sound and 2-complete which can be
regarded as being 3-complete but not 1-sound.

3 Consider now the modal language £, which is obtained from £, by adding as
alogical constant the one-place sentence-forming operator “L.” “L” istaken to be
synonymous to “it is analytically necessary that.” We refer the metalanguage to £,
instead of L1 and enrich it by the operator N of analytical necessity; this means that
the metalinguistic logical means comprise in addition the usual S5-axioms and S5-
rule for N (the Barcan-formula, that is, if VX NA[X], then NVx A[X], is provablein
the resulting system).

It may be well to emphasize that the metalinguistic use of modal operators is
entirely legitimate.? All other logical concepts introduced into an object language
areunscrupulously used (usually in adifferent syntactical guise) in the metalanguage,
too. Why make an exception for modal notions? Perhaps because they are less clear
than other logical concepts. Obscurenessis especially associated with the iteration of
modal operators, and possible worlds semantics is thought necessary for clearing it
up. But no possibleworld semanticsisnecessary for justifying the singleall-sufficient
iteration law for N (analytical necessity): if not NA, then N not NA. For if Sisnot
analytically true, then the sentence not NSisitself analytically true. Similarly, no
possible world semantics is necessary for justifying (or refuting) iteration laws for
other modal operators, if the meaning of such operatorsis sufficiently specified. Take
K, “itisknownthat,” intheminimal classical sense, that is, inthesenseof “itisfirmly
[nondispositionally] believed [by a specified person at a specified time] and being the
case that;” then it can be immediately seen that if KA, then KK A is correct for the
operator K, but not if not KA, then K not KA.



MINIMAL SEMANTICS 287
Thetruth lawsfor “—,” “—,” “L” relative to L, are completely stated thus.
T(L2, =, —, L)

L= NVX(T[—X] iff not T[X])
Ly —  NVXVY(T[x — y]iff not T[X] or T[y])
Lol NVX(T[Lx] iff NT[x])

T(Lq, —, —) could also have been formulated by prefixing N to £L,—and £, —; but
this would have been a redundant complication. In contrast, introducing “N” must
not be omitted from L,—, £, —, and £L,L; otherwise these truth laws would be-
comeinapplicablein possibility contexts, that is, in contextsintroduced by P := notN
not. Their application in such contextsisunavoidable (for exampletoget T[—L(p —
—p) = —=L=pD.

Thefollowing isawell known example of acalculusrelativeto £, (axiom and
basic rule schemata previously used are now to be referred to L»):

Ke

A —Asz

A, LA A

As L(A— B) — (LA— LB)
Ag =LA— L—=LA

R1

NR AF LA.

The truth law transformation of X g as far as the axiom schemata are concerned is
straightforward. TLT (Ag), for example, is NVXT[—-Lx — L—Lx]. But thereissome
perplexity as to the truth law transformations of R; and NR because there are two
candidates for TLT(R1):

1. Nvxvy(if T[x] and T[x — V], then T[y]);
2. Nvxvy(if NT[x] and NT[x — V], then NT[y]);

and there are two corresponding candidates for TLT(NR):

1. Nvx(if T[X], then T[LX]);
2. NVX(if NT[x], then NT[LX]).

2lislogically equivalent to Vxvy(if NT[X] and NT[x — ], then NT[y]) aswell as
to NYxVy(if NT[x] and NT[x — V], then T[y]); 2  islogically equivalent to Vx(if
NT[X], then NT[LX]), and to N¥x(if NT[x], then T[LX]).

Although shifting “ N” from the beginning of the principle to the place in front
of “T” makes no difference in the case of the truth law transformations of the axiom
schemata of K g, VXVy(if NT[x] and NT[x — V], then NT[y]) isof courselogicaly
weaker than[L] and Vx(if NT[x], then NT[Lx]) logically weaker than 1’. The strong
truth law transformation of X 4 is obtained by adding[1land 1’; but the strong truth
law transformation seems to miss the intended meaning of NR. The weak truth law
transformation of X g, on the other hand, is obtained by adding[2land 2’; but it seems
to misstheintended meaning of R;. What we cannot do, however, isto mix principles
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in an ad hoc manner (that is, combine[Llwith 2), since the truth law transformation
of a calculus has to be uniform and effectively generable.

Identifying TLT (X ¢) with the strong truth law transformation of & g makes K g
3-complete but not 1-sound, whereasthe alternative to thismakes X g 1-sound but not
3-complete. But no matter which we choose, X g is 2-sound and 2-complete. This
IS no surprise, since 2-soundness and 2-completeness require in their definition no
interpretation of the calculusin terms of truth; hence TLT (K g) isirrelevant for the
question whether K g is 2-sound, respectively 2-complete.

The 2-completeness of K g isknown under the assumption of the coextensional -
ity for Lo-calculi between 2-completeness and its model-theoretic anal ogue because
we have proofs that X g has this model-theoretic analogue of 2-completeness. To
prove the 2-completeness of K g directly in OMS is a difficult task which will not
be undertaken here (and it cannot be undertaken here, since | do not have a proof;
| have, however, succeeded in proving the 2-completeness of the standard proposi-
tional $4-calculusin OMYS). Thedifficulty consistsin finding a standardization of any
metalinguistic deduction of T[x] from the truth laws of £, which is such that it can
be tranglated in an effective manner into a proof of xin K.

The proof of the 2-soundnessof X g isnot entirely trivial andillustratesthetrans-
lation procedure, inverse to the one in proofs of 2-completeness, which is centra to
proofs of 2-soundness. Assume x can be generated in X g; the proof can be trand ated
into alogical deduction D of T[X] from T (L, =, —, L).

the proof in K g deduction D

1y 1LNT[y1]

2. Y7 2.NT[y]

n. X n. NT[X]
n+ 1. T[X]

If step k inthe K g-proof isan axiom of K g X/, thenstepkin D isjustified by TLT(S)
(Sbeing an axiom of schema K g) whichislogically deduciblefrom T (L4, —, —, L).

If step k in the K g-proof is obtained from previous steps by Rj, then step k in
D is obtained from previous steps by YxVy(if NT[x] and NT[x — y], then NT[y]),
whichislogicaly deducible from T (L, =, —, L).

If step k in the K g-proof is obtained from a previous step by NR, then step k in
D isobtained from aprevious step by Vx(if NT[x], then NT[Lx]), whichislogically
deduciblefrom T(L,, —, —, L).

Stepn+1lin D isalogica consequence of step n.

If we choose to identify the truth law transformation of X g with its strong truth
law transformation, % g becomes an abnormal calculus: it is not 1-sound, though it
is 2-sound and 2-complete, and even 3-complete. This may seem to be an argument
precisely against this choice, since X g is a standard modal calculus which nobody
finds abnormal in any way. But in fact NR, which makes % g not 1-sound given its
strong truth law transformation, is not so central to modal calculi as it appears to be.
In the following calculus precisely the same sentences of £, can be generated asin
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K6, yet it does not contain NR.
K7

Ci L(A— (B— A))

C, LA (B> 0C)— (A= B)— (A= Q)))
Cz; L((FA— —=B)— (B— A))

Cs L(LA— A

Cs LA— A

C¢ L(LL(A— B)—> (LA— LB))

C7; L(-LA— L=LA)

Cs LA— LLA

Ri AA— BFB

For K ;7 we have the following (straightforwardly) derivable rule schemata:

DR; LAF A
DR, L(A— B), LAF LB;
DR3 LAK LLA.

Cg caninfact be omitted from the list of axiom schemata of X 7, sinceit isgenerable
from the rest.

Every proof for x in K can be trivialy reconstructed as a proof for x in K,
since K 7 iscontained in K g; and every proof for x in K ¢ can be reconstructed as a
proof for x in &7 (X g is not, however, contained in K 7: NR cannot be derived in
K +; there is no way to abtain the following instantiation of NR in K ;: p+ Lp).

the proof in K¢ the proof in K ;

1. Y1 1. Lyl

2. ¥ 2. Ly,

n. x n. Lx
n+1 x

If step k in the K g-proof isan axiom of K g, then step k in the K ,-proof isan axiom
of K.

If step k in the K g-proof is obtained by R, from previous steps, then step k in
the K ,-proof is obtained by DR, from previous steps.

If step kinthe K g-proof is obtained by NR from a previous step, then step k in
the K ;-proof isobtained by DR3 from apreviousstep. Thefinal stepinthe K ;-proof
is obtained from its n-th step by DR;.

Although X ; is 1-sound, 2-sound, and 2-complete, it is not 3-complete, not
even on the basis of its strong truth law transformation: From T (Lo, —, —, L) we
get T[—Lp]or T[Lp]; but this cannot be gotten from TLT (%X ;) + the atomic re-
striction of T(L,, —, —, L), since neither p — Lp hor p — —Lp is generable in
XK. Again, from T(L,, -, —, L) wegetif NT[p— p], then T[L(p — p)]; but
there is no way to obtain this from TLT(% ;) combined with the atomic restriction
of T(Ly, =, —, L). (The atomic restriction of L,L, for example, is NVx(if At(x),
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then (T[LX] iff NT[x])), whichislogically equivalent to Vx(if At(x), then N(T[Lx]
iff NT[X])), since we have as syntactica—counted as logical—principles for L3
NVX(At(x) iff NAt(x)) and NVx(not At(x) iff N not At(x)).)

4 Thisshort sectionisintended to sketch the manner in which OM S dealswith non-
classical logics. Limitation of space demandsthat we concentrate on setsof truth laws
only; calculi are left aside.

Consider now alanguage L3 that is like L1 except for the fact that among its
logical constants are also “&” (*and”) and “v” (*or”). Thelogical constants of L3
have an epistemic meaning. Accordingly the metalanguage, which isnow referred to
sentences of L3, containsinstead of N the modal operator K: “it is known (to a par-
ticular person, at aparticular time) that.” The metalinguistic logical means comprise
in addition the S4 axioms and $4 rule for K. Asin the case of N it isto be denied
that the logic for K needs possible worlds semantics (or any other model-theoretic
semantics), however useful for other purposes, for the justification of its principles.

An epistemic meaning can be accorded to the logical constants of L3 in many
plausible ways. | consider four of them, each exhibiting a certain single “method.”
There are uncountably many variations that can be obtained by the mixing of princi-
ples, inwhich even aclassical principle, like Kvx(T[—X] iff not T[X]), could be com-
bined with anonclassical one, for example KVxvy(T[xV y] iff K(T[x] or T[y])); for
special purposes this may not be uncogent.

1-T(L3,—, —,&,V)

1L3—  KVX(T[—X] iff not KT[X])

1L3— KVXVY(T[x— V] iff not KT[x] or KT[y])
1L3& KVYXVY(T[x& y] iff KT[x] and KT[y])
1L3v  KVYXVY(T[x Vv y]iff KT[x] or KT[y])

2-T(L3, =, —, &, V)

2L3—  KVX(T[—X] iff K not T[x])

2L3— KVXVY(T[x — y]iff K(not T[X] or T[y]))
2L3& KVXVY(T[x& y]iff K(T[x] and T[y]))
2L3v  KVYXVY(T[xV y]iff K(T[X] or T[y]))

3T(Lz,—,—,&,V)

3Lz~ KVYX(T[—X] iff K not KT[X])

3Lz — KVYXVY(T[x— V] iff K(not KT[x] or KT[y]))
3L3& KVYXVY(T[x& y]iff K(KT[X] and KT[y]))
3L3v  KYXVY(T[x VY] iff K(KT[X] or KT[y]))

4T(Ls,—, =, &, V)
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4L3—  KVYX(KT[—X] iff K not KT[x])

4L3 — KYXVY(KT[x— y]iff K(not KT[X] or KT[y]))
4L3& KVYXVY(KT[x& y] iff K(KT[x] and KT[y]))
4L3v  KYXVY(KT[xV y] iff K(KT[X] or KT[y]))

Some comments.

The different methods lead in part to the same results; 3L3 &, 2L3 &, and
143 & arelogicaly equivalent, and so are 3L3V and 1L3V.

In4-T, whichislogically derivablefrom both 1-T and 3-T, the valence of truth
has in fact been replaced by a different valence: known truth. 4-T isthe codi-
fication of intuitionistic propositional logic in an epistemic interpretation.

2-T isverificationistic propositional logic. It has anontrivial modal character,
since T[p' — ((p— p) — p’)] cannot be logically derived from it, whereas
VXT[Xx — ((p— p) — X)] islogically derivablefrom 1-T, 3-T, and 4-T.
Although 1-T, 3-T, and 4-T are clearly not logically equivalent, | conjecture
that the very same sentences of theform T[s] (or KT[g], it does not matter) are
logically derivablefrom them; thusthey constitute three different but—asfar as
logical validity is concerned—equivalent bases for intuitionistic propositional
logic.

5 Let us now move on to an (interpreted) language £, adequate for classical ele-
mentary predicate logic.

object-constants of L4 (OCs): a,a,a”’,...;

predicate-constants of L4 (PCs): F, F/, F”, ... (infinitely many for each num-
ber of places);

variablesof L4 (Vs): 0,0,0",...;

atomic sentences of L4 (ASs): for example, F'(a, @);

sentences of L4 (Ss):

1. ASsareSs,

2. if xand y are Ss, then —x and (x — y) are Ss;

3. if xisa S containing in certain specified placesthe OC b, and v aV not
occurring in x, then (v)x[v/b] isaS;
4. Ssareonly expressions according to (1 — (3).

X[v/b] is the expression resulting from X, if b is replaced by v at the specified

placesin x. (For concrete applications of the substitution operation: in case x is part
of alarger expression, it may be necessary to mark it as the substitution context, if
there is ambiguity; moreover, the places of substitution may need to be marked, if
not understood to be all the places where b occurs.)

Weuseb, c,d, d, ... asmetalinguistic variablesfor OCsand u, v, w, w’, ... as

metalinguistic variables vor Vs.

“ ”
-,

In the unusual case that quantification in L4 is substitutional the truth laws for

=" ()" relativeto L4 will simply look like this:

T(Ls, =, =, ()
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Lg— VX(T[—xX] iff not T[X])
Ls—  YXVY(T[Xx— y]iff not T[X] or T[y])
L4()  YxXVbVu(if bin xand v not in x, then (T[(v)X[v/b]] iff YCT[X[c/b]])).

Suppose, however, quantification in L4 is nonsubstitutional, say, classical. It
may seem that the adequate representation of quantification in the classical sense
is an unsolvable problem for OMS. But in fact the difficulty can be quite elegantly
overcome by using the notion of virtual object-constants of £4. The virtual object-
constants of £, can, from the point of view of model-theoretic semantics, be thought
of as being those objectsin the universe of discourse of L4 that are not named by an
OC (the OCstout court arethereal OCs); henceavirtual OC is(normally) not an ex-
pression, but rather a nonlinguistic object, the moon, for example, in case the moon
isinthe universe of discourse of L4 butisnot named by an OC. Henceif every object
in that universe of discourse is hamed by an OC, then there are no virtual OCs; but
the truth laws of £ ,—aquantification being classical—leave it open whether there are
objects in the universe of discourse not named by an OC. The OCs together with the
virtual OCs, whether there are such or not, are the potential OCs (of Lg).

Since we may have virtual OCs, we also may have virtual sentences of L.
These are obtained by substituting a virtual OC for an OC in some sentence of L4
(that is, in somereal S). The result may be expected to be nothing that can be written
on ablackboard. Think of the above example of avirtual OC, the moon, and think of
substituting it—of course not in aphysical sense—for “a” in“F(a).” What resultsis
amixed sequence, i.e., acertain finite set, of linguistic entities and one nonlinguistic
entity, which isindeed nothing that can be written on a blackboard; for the moon it-
self would have to appear in the now indeed physical token-sentence written on the
blackboard. The virtual Sstogether with the Ss are the potential Ss.

Although it should be clear from what has been said so far, | wish to stress that
virtual OCsare not bizarre new entities and that they are not model-theoretic variable
assignmentsin disguise (but the concept of virtual OCs makesit possibleto dispense
with those); they are simply objects in the universe of discourse of L4 to which has
been assigned an unusua role, namely to do the syntactical and semantical work of
(normal, real) OCs.

Now let x,y, z, Z, ... refer to the potential sentencesof L4, and b, c,d, d’, ...
to the potential object-constants of £4. With this modification the above formulation
of the truth laws of L, isadequate if quantificationin L4 isclassical. Except in the
unusua casethat L4 hasan OC for every nonlinguistic object it speaks about which
we exclude by saying that £, speaks about all real numbers and the moon, we have
the situation that nonlinguistic entities have to be quantificationally referred to in the
formulation of the truth laws of £4. Hence L4 is an onto-logical, not alexi-logical
language.

The language L5 of free logic with existence predicate, which is otherwise like
L4, isaso onto-logical. But how can free logic be represented in OMS? Thus: (real)
OCs of L5 may be nonreferring; if they do not refer, they are called “fictive,” else
“genuine”; only they are called “fictive” or “genuine.” Virtual OCsof L5 are defined
as above; the virtual and genuine OCs of Lg are precisely the nonfictive OCs of Ls.
Potential OCs and Ss of L5 are defined as above, and they are what the respective
variablesrefer to in the truth laws of Ls. We then have:
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LsE  Vb(T[ED] iff bisnot fictive)
Lg() VYxvbVu(if binxand v not in x, then (T[(v)X[v/b]] iff Vc(if cisnon-
fictive, then T[x[c/b]]))).

But back to L4. Consider the following £L4-calculus:

Ks

A1 —As

PA (v)Alv] — A[b] (b an OC)

R1

PR B— Alb]+-B— (v)A[v] (banOCnotin B— (v)A[v])

X g is 2-sound:

Proof of xin Kg: (1) Logical derivation of T[X] from T (L4, =, —, ()): (2)
1y 1 Tyl

n. X n. T[X]

If stepkin (1) isanaxiom, thenstepkin (2) isobtained by thetruth law transformation
of the corresponding axiom schema, which truth law transformationislogically deriv-
ablefrom T (L4, —, —, (). Thisisclear in the cases A;—-A3. Asfor PA, TLT(PA)
is Vxvbvuvc(if b in x and v not in x, then T[(v)X[v/b] — x[c/b]]); this can easily
be deduced from L4 — and L4( ). And how is TLT(PA) employed to obtain T[y]
for an instantiation y of PA? Let, for example, this instantiation be (0)F’(0,a) —
F'(a, a); thisisidentical to (0)F'(a”, a)[o/a’] — F/(a”,a)[a’/a"]; sincea” isin
F'(@’,a) and o not in F'(a”, a), we obtain by TLT(PA) T[(0o)F'(a”, a)[o/a"] —
F@”’,a)[a/a"]], thatis, T[(0)F’(0,a) — F’(a’,a)]. (The OC doing the work a”
doesin the example is always understood to be replaced everywhere where it occurs;
it hasto be appropriately chosen.)

If step kisobtainedin (1) from previousstepsby R4, then step kisobtainedin (2)
from previousstepsby TLT(R;) whichislogically derivablefrom T (L4, —, —, ()).

If step k is obtained in (1) from a previous step by PR, then step k is obtained
in (2) from aprevious step by TLT(PR) which islogically derivable from T (L4, —,
—, ()): TLT(PR) isVYxVyVbVu(if bin x and v not in x and VcT[y — x[c/b]], then
T[y — (v)X[v/b]]); assume b in X, v not in X, YcT[y — X[c/b]]; hence by L, —
ve(not T[y] or T[x[c/b]]), hence not T[y] or VcT[x[c/b]], henceby L4() not T[y]
or T[(v)X[v/b]], hence by L4 — T[y — (v)X[v/b]]. And how is TLT(PR) em-
ployed to copy in (2) the transition made by PR in (1)? We assume for the previous
step y — Z[b'] in (1) from which step k in (1), that is, y — (u)Zu] [u not in Z[b'],
else (u)Z[u] would not be a sentence of L4] is obtained by PR [hence b’ isnot in
y — (WZu]]: that T[y — Zb']] islogicaly derivable from T (L4, —, —, ()); this,
clearly, is merely an induction assumption; hence YcT[y— Zc]] is logically deriv-
able from T (L4, =, —, ()) (b’ does not occur in YcT[y— Zc]], else it would aso
occur iny — (u)Z[u]); let ¢’ be some appropriate OC in an appropriate Z' such that



294 UWE MEIXNER

ve(Z[c] = Z[c/c’]) and Zu] = Z[u/c’] (udoes not occur in Z, else it would also oc-
curin Zb']); henceVvcT[y — Z[c/c']] islogically derivable from T (L4, —, —, ());
hencewe haveviaTLT (PR) that T[y — (u)Z[u/c']], thatis, T[y — (u)Z[u]] islog-
icaly derivablefrom T (L4, =, —, ()).

K g is2-complete:

Suppose T[x] can be logically deduced from T (L4, —, —, ()); then there is
a standard deduction of T[x] from T (L4, =, —, ()): start with not T[x] and, di-
minishing object language complexity in each step by using T (L4, =, —, ()), con-
struct a deduction tree containing a contradiction in each branch.* Again an ex-
ample will be more effective in describing a standard deduction from T (L4, —,
—, (1)) than aformal definition (which can of course be provided): T[(0)(F(0) —
F”(0))— (—(0)=F(0) - —(0)—F"(0))] isto be standardly deduced from T (L,
-, =, ().

One of its standard-deductionsfrom T(L4, —, —, ()) is:

not T[(0)(F(0) — F”(0)) —
(=(0)—F(0) - —(0)—F"(0))] 1

T[(0)(F(0) — F"(0))] 2(1, Ly —)
not T[—(0)—F(0) — —(0)—=F"(0)] 3(1, L4 —)
T[—(0)—F(0)] 43, Ly —)
not T[—(0)—F"(0)] 53, Li—)
T[(0)—=F"(0)] 6(5, L4 —)
not T[(0)—F(0)] 74, L4 )
not T[—F (b)] 8(7, L4( ), banew variable)
T[—-F"(b)] 9(6, L4(), instantiation by b)
T[F(b)] 10(8, L4 —)
not T[F”(b)] 11(9, L4 —)
T[F(b) — F"(b)] 12(2, L4(), instantiation by b)
13a1(12, L4 —) not T[F(b)] T[F”(b)] 13bl(12, L4 —)

If T[X] islogically deducible from T (L4, =, —, ()), then it is standardly de-
ducible fromit. Thisisthe presupposition on which the proof of the 2-completeness
of K g rests. In casethis presupposition seems unwarranted (to meit is evidently cor-
rect), compare it first with the rather more problematic presuppositions on which a
Henkin proof is based, and then judge again. (Moreover, the metatheoretical logical
means can be specified in precisely such amanner that the “presupposition” becomes
provable, if proof is required.)

Each branch of astandard deduction of T[X] from T (L4, —, —, ()) (inthe ex-
ample there are two) can be mechanically trandated into a X g-derivation (that con-
tains some redundant steps) of —((0) F(0) — (0)F(0)) (or ancther contradiction of
the form —(B — B) containing no OCs):

T[y] becomes y, and not T[y], —y. The derivation steps, if not derivation as-
sumptions, are justified by the K g-provable rule schemata—(A — B) - A, = (A —
B) - —-B,-—AF A, A A, (v)A[v] - A[b]; A,—A}+ Bisused for justifying the
last step.

—(A — B) + A corresponds to L4 — on not T[x — V] resulting in T[x];
—(A — B) =B corresponds to L4 — on not T[x — V] resulting in not T[y];
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—— A A corresponds to L4— on not T[—X] resulting in T[X]; AF A corresponds
to L4— on T[—X] resulting in not T[X]; (v)A[v] - A[b] corresponds to L4() on
T[(v)x[v]] resulting in T[X[b]]. Thefirst step is an assumption; “assumption” intro-
ducing anew OC correspondsto L4( ) onnot T[(v)X[v]] resulting in not T[x[b]] (b
anew variable); “assumption” correspondsto L4— on T[X — Y], whether resulting
inthe branchinnot T[X] orin T[y].

Thus the lefthand branch of the above standard-deduction translates into:

1  —((0)(F(o)— F"(0)) —
(—(0)—~F(0) = —(0)—F"(0))) ass.

2 (0)(F(o) — F”(0)) 1,-(A—> B FA
3 =(=(0)—F(0) - —(0)—F"(0)) 1.-(A— B)-—-B
4  —(0)—F(0) 3;-(A—> B FA
5 —==(0)=F"(0) 3;-(A— B)~-B
6 (0)—F"(0) 5, ——=AkF A

7 —(0)—F(0) 4; A+ A

8 ——=F(a) ass.“a” anew OC
9 =F’(a) 6; (v) Alv] = Alb]
10 F(a) 8, ——AF A

11 —=F"’(a) 9;AFA

12 F(a) — F’(a) 2; (v) Alv] = Alb]
13 —=F(a) ass.

14 —((0)F(0) — (0)F(0)) 10, 13; A, —A+ B.

The second derivation which trandates the righthand branch of the deduction
looks like the first, except that at the end we have:

13 F’(a) ass.
14 —=((0)F(0) — (0)F(0)) 13,11; A,—A} B.
Hence:
(@ —((0)(F(0)— F"(0)) = (=(0)=F(0)>—(0)—=F"(0))), ~—F(a), ~F(@ ~
—((0)F(0) — (0)F(0))
(b) —~((0)F(0) - F"(0)) — (—=(0)—F(0) - —=(0)—~F"(0))), ~—F(a), F"(a) +
—((oF(0) — (0)F(0))

Now for X g, as should be well known, the following metatheorems can be
proved which suffice to get rid of all assumptions except the first in each K g-rule
corresponding to a K g-derivation translated from a branch of a standard deduction
of T[X] from T (L4, —, —, ().

1. X,—-AFC; X,BFC; hence: X, A— B C.
2. X, AF- B; X+ A; hence: X} B.
3. X,—=A[b] - B; bnotin X,—(v)A[v], B; hence: X, =(v)A[v] -+ B.

Apply finaly:
4. X,—~AF —(B — B) hence X+ A (which isalso provablefor X g).

In the case of our example: “1” means (0) (F(0)— F”(0)) — (—(0)—F(0) —
=(0)=F"(0)); “11" isshort for =((0) F(0)— (0) F(0)). By[Ifrom (a) and (b): —I,
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—-—=F(@), F(@—F'(aF II; hencebylleince—-l ,——F@F F@ — F’(a) (see
the above derivation), =1, —=—F(a) + | 1; hence by [B]—I, —=(0)—F(0) - | I; hence
by[2] since =1 - —(0)—=F(0) (see the above derivation), —I + I1; hencefinaly by 4
F .

An important comment needs to be added to this proof of the 2-soundness and
2-completeness of K g. Itisnot an uninteresting transl ation between two formal sys-
tems: the truth laws of £4 and the metalinguistic logic on the one hand, X g on the
other hand. For, X g, though 1-sound, is not 1-complete; hence the semantical con-
tent of the truth laws of L, isgreater than the semantical content of X g, represented
by TLT (K g); hencethesetruth laws cannot betrandated into X g. Although thetruth
laws of L4 specify the meaning of the logical constants of £, completely—without
any ontological luxury—% g does not. Nevertheless K g recursively enumerates pre-
cisely the sentences x of L4, for which T[X] can be logically derived from the truth
lawsof L4. Thishasbeen shown inan ontologically minimal way, in particular, with-
out the construction of maximal consistent sets of sentences of L4 (and the proof, |
should say, isin no manner trivial or uninteresting). Moreover, since 2-completeness
and 2-soundness and the concept of logica truth involved in them (see D,, D4 and
Ds in Section[1) are presumably provably co-extensional to the corresponding con-
cepts of model-theoretic semantics, the 2-compl eteness and 2-soundness of K g have
presumably the very same content as the corresponding concepts of model-theoretic
semantics. (I say “presumably” because the co-extensionality of the corresponding
conceptsremainsto be proved; but it ishard to see how it could fail to obtain.) Given
this, what more can you ask for concerning the content of 2-completeness and 2-
soundness?

A soundness and compl eteness proof in OM S, however, cannot show (by itself)
that a certain calculus adequately characterizes a certain ontological structure (a cer-
tain set of models); this must be so, sincein OMS no such structures are considered.
But the match between a calculus and a set of models is a matter of the relation be-
tween language and ontol ogy, and it isthus outside the scope of the semantics of logic
in the strict sense, which alone | claim to be adequately treatable in OMS.®
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NOTES

1. Despite this announcement my paper should not be taken as a defense of nominalismin
the spirit of Field [[[J. In fact, | am far from being a nominalist. But two questions have
to be clearly separated.

(@) How much ontology is necessary for the foundations of logic?

(b) How much ontology is necessary for giving a natural account of the semantics of
natural language?

The answer to the second question isin my view: intensiona ontology in a nonexten-
sional framework (that is, with properties, relations, and states of affairs as basic inten-
sional entities). Such an ontology will of course also provide a natural account of logic
(see Meixner [E]), but it is not necessary for its foundation in its central areas, that is,
for the foundation of logic in the strict sense (tenselogic, for example, isin my view not
logic in the strict sense; neither, | contend, is set theory).

2. Notice, however, that neither logical truth nor logical consistency for L, will here be
defined in terms of N—something that is advocated in Field (but Field isusing a
different modal operator, which presumably ismore“austere” than N). They are defined
asfor L;.

3. See Hughes and Cresswell [B], p. 49. The proof is abbreviated and given in a calculus
containing NR. But NR isin fact not employed in it, and it can easily be seen to be re-
congtructiblein %, (without LA — LLA).

4. Thisideaisinspired by the proof treesin Smullyan [6].

5. Inthisfinal note the truth laws for the arithmetical language L are stated. The OCs (of
Lg) are0, 0%, 0**, .. .; OCsaretermsof Lg (Ts); if tandt’ areTs, thenn(t), (t+1t') and
(t x t') are Ts; Tsare only expressions generable by the preceding clauses. The PCs (of
Lg) are“="and “ <,"” each two-placed. If tandt’ are Ts, then (t =t') and (t < t’) are
atomic Ss (of Lg); atomic Ss are only expressions generable by the preceding clause.
Therest of the description of Lgisasfor Lg.

Metalinguistic variablesfor Ss, OCsand Vsareasfor L4; weuset, t', t”, ... asvariables
for Ts. x-b designates the star-sequence of the OC b. If i and i” are star-sequences, then
(i)* is the prolongation of i by one star, (ii’) is their concatenation, and (i!i’) is their
multiple concatenation; the concatenation of i and i’ is obtained by simply connecting
i and i’; the multiple concatenation of i and i’ is obtained by first repeating i row under
row until i” appearsin the vertical direction, and then by connecting all rowsin one row
(incasei or i’ isthe empty sequence, (i!i’) isitself the empty sequence). It isclear how
to verify that one star-sequence is shorter than another.

T(Le,—,—,(),Nn,+, xX)

Le—  YX(T[—X] iff not T[X])

Le— VYXVY(T[x— y]iff not T[x] or T[y])

Le() VYxVbVu(if binxand v notin x, then (T[(v)x[v/b]] iff VCcT[x[c/b]]))
Lg < VbVe(T[b < ] iff x-b is shorter than *-C)

Leg= Vbvc(T[b = c]iff x-bisidentical to *-c)

Legn  YxXVb(if O(x-b)* in x, then (T[x[n(b)/0(x-b)*]] iff T[X]))

Le+  YxVbvc(if O(x-b* -c) in x, then (T[X[(b+ c)/0(x-b* -c)]] iff T[X]))
Lex  YXYbVc(if O(x-bl % -c) in x, then (T[X[(b x ¢)/0(x-b! «-c)]] iff T[X]))
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UWE MEIXNER

Lgisalexi-logical language: itstruth lawsdo not refer to nonlinguistic entities. 1t would
be a mistake to conclude from this that arithmetic is accorded a syntactical interpreta-
tion in Lg (“Numbers are star-sequences, including the empty star-sequence. Succes-
sor, addition and multiplication are operations on star-sequences’). This interpretation
is not forbidden by T(Lg, —, —, (), n, +, x), but the truth laws of alexi-logical lan-
guage contain no information whatsoever about what thislanguage “isabout.” They are
ontologically neutral. The very same truth laws would hold if the universe of discourse
of Lewereadenumerably infinite set of possible tomatoes on which the OCs are one-to-
one mapped by some arbitrary reference-function; and the very same truth laws would
hold if the OCs referred to nothing at all.
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