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Syntax and Semantics of the Logic £},

CARSTEN BUTZ

Abstract  In this paper we study thelogic £}, which isfirst-order logic ex-
tended by quantification over functions (but not over relations). We give the
syntax of thelogic aswell asthe semanticsin Heyting categories with exponen-
tials. Embedding the generic model of atheory into aGrothendieck toposyields
completenessof £} with respect to modelsin Grothendieck toposes, which can
be sharpened to compl etenesswith respect to Heyting-valued models. Thelogic
L}, isthe strongest for which Heyting-valued completenessis known. Finally,
werelate thelogic to locally connected geometric morphisms between toposes.

1 Introduction  In this paper we study aspects of completeness of the logic £},
which is intuitionistic first-order logic extended by quantification over functions.
Thislogic may be seen as well as A-calculus enriched with first-order logic. The de-
tails of the syntax are given in Section[2]

The logic £}, is of interest for many reasons: it is reasonably powerful and
(therefore) incomplete with respect to models in Sets. But the logic £}, is com-
plete with respect to Heyting-valued models. In fact, the infinitary variants £,
are the strongest logics we know that are complete with respect to Heyting-valued
models. Secondly, the logic £, characterizes a class of geometric morphisms be-
tween Grothendieck toposes which are amost locally connected: we show that if
the inverse image f* of a geometric morphism f: ¥ — ‘£ between Grothendieck
toposes preserves the internal £}, -logic of the topos Z, then it is open and each
(f/e)*E/g — ¥F/¢+g hasan E-indexed |eft adjoint.

Thefirst two sections discussthe syntax and semantics of thelogic £ ,. Models
of £} -theories naturally live in Heyting categories with exponentials (that is, carte-
sian closed Heyting categories). After relating thelogic to locally connected geomet-
ric morphisms we present some completeness results in Section[5] £ is complete
with respect to models in Grothendieck toposes, therefore as well complete with re-
spect to models in cartesian closed Heyting categories. A recent covering theorem
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for Grothendieck toposes implies that it is enough to look at Heyting-valued mod-
els to get completeness. The last section contains some remarks about the infinitary
variants £}, .

We assume familiarity with basic notions of categorica logic, see, for exam-
ple, Lambek and Scott [[14] or Freyd and Scedrov [[9]. The results presented here are
closely related to those found in Awodey and Butz [[2]. In fact, they give a detailed
exposition of one of the completeness results presented there. In case of pure typed
A-calculus, amore detailed exposition can be found in Awodey [[1].

Our overdl presentation isin the line of categorical model theory, as was done
for geometric logic in Makkaki and Reyes [[15] and for first-order logic in Butz and
Johnstone [B]. One of the more prominent theories which can be formulated in the
logic L7, is SDG, synthetic differential geometry (see Kock [[L3]). In contrast to this
we do not intend to do proof theory here, as was one of theitemsin [[14].

2 Syntax We begin by describing the syntax of the logic £%,. Given a set type
of basic sorts A, B, ..., the set tyia* of derived types is the closure of type under
products and exponentials.

type* = A|Yx Z|Z".

Thus, the only differenceto full higher-order logic isthe absence of the type of propo-
sitions Q.

Definition 2.1 A A-signature S consists of a list type, of basic types and sets
const, funct, and rel 5 of constants, functions, and rele atl on symbols, where each
of these symbolsis typed over type*.

Since type* has built-in product types, we can assume that all functions and relations
areunary. Asusual, wewrite expressionslikec: A, f: Z — Y, or RC Y toindicate
the typing.

Next we define the sets term(Y) of terms of type Y, which depend on a given
A-signature S.

1. Eachsetterm(Y) containscountably many variablesof typeY, and expressions
like y: Y have their obvious meanings.

2. If cisaconstant of type Y, itisaterm of type Y. If t isaterm of type Y, and
f:Y — Zisafunction symbol, then f(t) isinterm(2).

3. Ifty eterm(Yy) and t, € term(Y>), then (t1, to) isaterm of type Y; x Y,. Con-
versaly, if tisinterm(Yy x Y»), then 1t isaterm of type Yy, and ot isaterm
of type Ya.

4. If tisaterm of type Y and « € term(ZY), then «(t) isaterm of type Z. If tis
aterm of type Z (possibly containing the free variable y: Y), then Ay.t(y) isa
term of type ZY.

The formulas are generated by the following rules.
1. If t; and t, are terms of the sametype, thent; = t, isaformula
2. If RC Yisareation symbol andtisaterm of typeY, then R(t) isaformula
3. Thelogical constants L. and T are formulas. If ¢ and ¢ are formulas, so are
—o, oAV, @V Y, and g — .
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4. If p(y) isaformula(possibly containing thefreevariable y: Y), then Vy: Yo(y)
and 3y: Ye(y) areformulas.

If we type the formulas by the (imaginary) type €2, these term and formula forming
operations can be summarized in the familiar way:

Y Yl X Y2 Yl Z ZY Q
Cc (g, to) 7T1f a(t) AY.L(Y) t=t
f(t) R(®)
1, T
Ay oV Y
P, —> Y

Vyp(y), 3yp(y)

wherec.Y, f: Z — Y, RC Z, and the subterms are of type

z Y1 Y. Yi1xY, zY Q

t,t tq to t o 0,V
t(y) @(y)

For each finite set X of variableswe define adeduction relation - x between formulas.
If wewritean expression p x qitisawaysassumed that the free variablesoccurring
on both sidesare contained inthe set X. Below, -y p abbreviates T x p,and p+ @
standsfor pH4 Q. Asin we group the rulesinto different classes.

Structural rules
11 pFx p.
12 pkxqgandqgbxrimpliesptxr.
13 pFx gimplies p =xyqy; O
14 o(y) Fx ¥(y) impliesp(b) Fx\y ¥ (D),
provided that y is a variable of type Y and b is aterm of type Y with
no free occurrence of variables other than those in X \ {y}. It isbeing

assumed that b issubstitutablefor y in both sides, that is, no freevariable
in b becomes bound after substitution.

Logical rules
21 pEx T, LEkxp.
2.2 rx pAqiffrbEx pandrbxq; pvqbxriff pExrandqgbxr.
23 pkExq—riff pAqkxr.
24 pExVyy(y) iff plExuy v(Y); 3yy(y) Bx piff ¥(y) Fxuy P
Extralogical axioms
31 FVYZY1 X Yo (2= (m12Z, 122)).
3.2 FVZYi X YoVZ Y1 x Yo (Z2=7 — (mzZ=mZ A72Z2=157)).
33 FVYiIY1IVY2i Yo (Y1, Y2) = Y1 A oY1, Y2) = Vo).
34 (Comprehension) + Vy: Y[AY.t(Y)](y) = t(y).
35  (Extensionality)  Vf:ZYVg ZY((Vy:Yf(y) =g(y)) — f =0).
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Axioms for equality

41 Fyy=Y y=Yhyy Y=Y
Y1=Y2AY2=Y3b(y.y,.ys} Y1 = VY3

4.2 y=Y Fuyy f(y) = f(y), foreachfunctionssymbol f:Y — Z;
y=1Y F.y} R(Y) «<— R(y), foreachrelationsymbol RC Y.

The calculus defined so far is intuitionistic. The deduction relations -5, are defined
by adding the logical rule
TEx pv—p.

In general, wewrite T = p (or T x p) for derivability in the calculus with added
axiomst rfortinT. Incase T consists of just oneformula, thetwo notions{z} - p
and 7 - coincide, sothat T - p just extends our definition of . Similar calculi as
above for full second-order logic can be found in Boileau and Joyal [(] and in [[14].

3 Semantics It should be clear from the syntax that the right categories hosting
models of £}, -theories are (w-) Heyting categories with exponentials (i.e., cartesian
closed Heyting categories or logoi with exponentials in the language of [@]). Recall
that a Heyting category isaregular category C that has, in addition to finite intersec-
tions of subobjects, unions of finite families of subobjects. Moreover, pulling back
subobjects along a fixed morphism has aright adjoint. (It follows that the lattice of
subobjects of each object in C isaHeyting algebra, and thisHeyting algebra structure
is preserved under pullbacks.) The most prominent examples of Heyting categories
with exponentials are el ementary toposes, in particul ar, Grothendieck toposes.

Let C be a Heyting category with exponentials. An interpretation M of a A-
signature S in C assigns first of al to each basic sort A e types an object AM,
This assignment extends naturally to al types, by (Y x Z)M) = YM) x z(M) gnd

(ZVYM = 7Y™ " Eurthermore, the interpretation M assigns a global element
c™M:1 — YM) for each constant ¢: Y in consts, afunction f(M):yM __, z(M)
for each function symbol f:Y — Z in functs, and a subobject R™) — YM) for
each relation symbol R C Y inrels. Using the structure of the category C, we ex-
tend this interpretation to arbitrary terms and formulas. In particular, for a formula
Y(V.Y) (Y= (Y1,...,Yn) Of typeY = VY1, ..., Y) we get a subobject

— — < (M

v v -y
As usual, we say that M is amodel of aclosed formulat (M = 1) if {- | 7} —
@™ = 1. isthe top element in the Heyting algebra of subobjects of 1.. Thisway
we get a sound notion of models.

M M
=Y1( )x'--erﬁ ).

Proposition 3.1 (Soundness)  The deduction relation = is sound for the notion of
modelsjust defined, that is, for any set of £ -formulas T and any A-formulaz, T - ¢
impliesT = t.

One of our main goals will be to prove the converse of Proposition[3.1] that is, com-
pleteness. Next we turn the class of models of a theory in afixed Heyting category
C with exponentialsinto acategory. A morphism h between S-interpretations M and
M’ is afamily of maps thy: Y™ — Y™}y e , satisfying the following three
conditions:
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for al types Y1, Yo € MS
2. Fordl Yand Zin M*S the following two diagrams commute:

YM) 5 (ZY)yM) LAY (ZY)M) 7o) "2 o
el le C/Orﬁl lﬁrﬁ
(M) (M) Yy(M) o (7Y y(M)
Z = z (2™ - (2Y)

where const is the transposed of the projection map 75 Z) x Y& —» Z2(),
3. Themaps {hy}ygype* preserve the interpretation of constants, function and re-
lation symbols. For example for aconstant c: Y this means that

h
yM) — 5 (M)

M) )

1

commutes.

For the following definition we remind the reader of the forcing relation IF in C
(usually only defined if C is atopos): For a A-formula y(y:Y), for U in E, and
for generalized elements a: U — Y™ we write U I y(ay, ..., an) if the map

(a1, ...,an):U — y™ factors through {y | ¥(y)}M) — vy,
Definition 3.2 Let M and M’ be two S-interpretationsin C. A morphism of S-

structures h:M — M’ is called an £}, -homomorphism if for each £} -formula
¥ (V:Y) and generalized elements o1 U —> Y™

UlFy(ag,...,an) implies Ul y(hy, oo, ..., hy, oan).

Wedenoteby Mod” (T, C) the category of modelsof T in C, with morphismsthe £ -
homomorphisms. Note that the condition of the definition isequivalent to thefollow-
ing: h: M — M’isa £’ -homomorphismif and only if for eachformulay (y: Y) the
composite hy o i:{y | Y(¥)}M — Y™ s Y™ tactors through (v | v (¥)}M",
viz.

v(M) —>7(M/)
VIv@IM = ==y | yy)M.

4 A topos theoretical characterization of £}, Recall that a geometric morphism
f: F — E between Grothendieck toposesis called locally connected (or molecular
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in Barr and Paré [3]) if the inverse image f* commutes with [ [-functors. Equiva-
lently, f islocally connected if and only if for al E in E the inverse image of the
induced geometric morphism f/g in

Flexg —= F

el lf

preserves exponentials. Locally connected geometric morphisms are open (see John-
stone [[11]) and hence preserve the internal first-order logic. We sum this up in the
following lemma.

Lemma4.l Theinverseimage of a locally connected geometric morphism f: #
— ‘E induces a functor

f*:Mod* (T, £) — Mod" (T, F),

for any £ -theory T.

The next natural question iswhether this property characterizes|ocally connected ge-
ometric morphisms. The following proposition shows that the logic £, captures a
class of morphisms which is slightly larger than that of locally connected geometric
morphisms.

Proposition 4.2 Let f: F — ‘E be a geometric mor phism between Grothendieck
toposes.

1. If f* preservesinternal products, that is, reindexing of the form [[__, ; for
E € E, then f* preserves exponentials.

2. If fisopenand f* preservesexponentials, then f* preservesinternal products.

Proof: The first claim holds since for A and E in E the exponential AF equals
[Te_1(Ax E— E). For the second claim note that internal products can be ex-
pressed using exponentials and the internal first-order logic.

[] (@A— E)={ye A% |Vee Ea(y(e)) =6}
E—1

If fisopenit preservestheinternal first-order logic ([I1], Theorem 3.2), so f* pre-
servesinternal productsif f* preservesin addition exponentials. O

Finally we show that in casethat f* preservestheinternal £} -logic of Z, each slice
map (f/p)* hasan E-internal left adjoint.

Proposition 4.3  Suppose that the inverse image of f: F — £ preservesthein-
ternal £, -logic of the topos E. Then for each E in ‘£, the inverse image ( f/e)* of
the geometric morphism f/g: #/¢+ g — E/g has an E-indexed |eft adjoint.
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Proof: Following [B], Theorem 4, it isenough to show that ( f /E)* preserves expo-
nentials of the form o for «: A— Ein Z/E, XinE, and A the pullback functor
E— E/g. Buta®* = (C — E) for

C=) AZ={ye A®|Vby by e Ba(y(b)) = a(yb))}

ecE

which is preserved by assumption. O

5 Completeness Here we construct minimal models of £ -theories in a similar
way as was done in [[6] or Palmgren [[16]. Let T ¢ £}, (S) be a set of axioms. We
define a syntactic site Syn(T) asfollows.

1. Objects are pairs ([¢(x), X) where X is a (derived) type, X is a variable of
type X, and [¢(x)] is an equivalence class of £} -formulas. Two formulas
p1(X1) and o (Xp) are equivalent if

T F VX(@1(X) <— ¢2(X)),

where x isanew variable.

2. Arrows from ([o(x), X) to ([¥(y)],Y) aretriples ([o(X, ¥)], X, Y) such that
[o(X, y)] isan equivalenceclassof £} -formulasand, moreover, o isprovably
functional:

TEVXVY(o(X, Y) — ¢(X) A¥(Y)),
T EVX(p(X) — Fyo(X,Y)),
TFVYXYWZ(o (X, Y) Ao(X,2) — Y= 2).

Here we used the same names for the variables occurring in ¢, ¥, and o, indi-
cating that we do not care about possibly renaming the variables.

3. We say that a finite family of arrows ([o;(Xi, V)], Xi, Y): ([ei (X)], Xi) —>
([v(y)],Y) isacover if

THVy@(y) — \/, 3x0i(%, )).

It is easy to show that Syn(T) has all finite limits and some exponentias (namely,
those of the form ([z = 2], Z) Y=Y = ((w = w], ZY)), and the topology is sub-
canonical. But thecategory Syn(T) failsto becartesian closed. Still, thereisacanon-
ical interpretation of our languagein thiscategory, and thisinterpretation yieldsacon-
servative model of T in Syn(T).

Write 8% (T) for the topos of sheaves on Syn(T), equipped with the finite cover
topology. The Yoneda embedding y: Syn(T) — B*(T) provides an interpretation
U of the underlying language as follows:

AY) —y([x=x], A),

for each basic sort A. The above-mentioned properties of Syn(T) and the fact that y
preserves exponentialsimply that

YV =y(y=1y1Y)
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for any derived type Y. Constants and relations are interpreted as follows:

cV:1— YW = y(c=y].2,Y):y(T].@) — y(y=1y1.Y)
fO:yO — 7O = y(f(y)=2.Y,2):y(y=¥].Y) — y(z=1, 2)
RY) s YW = Y(RW]L.Y)—y(y=yl.Y).

The core of this section is the following proposition.

Proposition 5.1 For each £}, (S)-formula v (y: Y) there is a canonical isomor-
phismy([y(Y)], Y) = {y | v(y)}¥.

Proof: This is a long induction over the complexity of . Roughly speaking,
Syn(T) is a Heyting category, and the Yoneda embedding preserves the first-order
structure (see [[6] for details). Moreover, since the topology is subcanonical, y pre-
serves exponential s which happen to exist. O

Asacorollary we derive the major result, namely, completeness with respect to mod-
elsin Grothendieck toposes.

Theorem 5.2 U is a conservative model of T. For a closed formula t we have
U = rifand only if T - 7. In particular, £}, is complete with respect to models
in Grothendieck toposes (and therefore complete with respect to Heyting categories
with exponentials).

Proof: Thefirst part isimmediate from Proposition[B. 1] the rest is trivial. O

Using arecent covering theorem for toposes with enough points, we can strengthen
the theorem the following way.

Corollary 5.3  For each consistent set of axioms T C £, (S) there exists a topo-
logical space X and an O X-valued model M of T (a Heyting-valued model of T which
takesitstruth valuesin the compl ete Heyting algebra O X of open sets of X) such that
M = rifand only if T I 1 for each closed formula t.

Proof: Given T thesite Syn(T) iscoherent and therefore 8% (T) has enough points.
By Theorem 13.5 of Butz [[5] (see as well Butz and Moerdijk [[7]) there exists a con-
nected, locally connected geometric morphism

m: Sh(X) — B*(T)

for X atopological space. By Lemmal4.1] M = m*U isamodel of T in Sh(X), which
is conservative since m is a surjective geometric morphism. The corollary follows
since modelsin Sh(X) correspond to O X-valued models (see Fourman and Scott
for details). O

What are the points of the topological space X? Classical second-order logic is
complete with respect to models which are called nowadays Henkin models, see
Henkin [[10]. Combining Henkin's proof and the standard proof of Heyting-valued
completeness for first-order intuitionistic logic, one shows that our logic £, (butin
fact, full intuitionistic second-order logic) is complete with respect to Heyting-val ued
Henkin models. Fixing a set of enough Heyting-valued Henkin models Sy, points of
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Xarepars (M, «) where M isin Sy and « isan enumeration of M, similar asin [IZ]
Appendix. The enumerations are used to define the topology.

Before we end this section let us mention that the model U in 8% (T) isminimal
in the following sense.

Proposition 5.4  For anymodel M of T ina Grothendieck topos 7 thereisaunique
(up to isomorphism) geometric morphism xv: F — B*(T) such that for each
£} (S)-formula v (y:Y)

Y Iv™ =ty vy @, (1)
Thereby, we get a fully faithful functor
x:Mod* (T, F) — Hom(¥, B*(T)).
natural in locally connected geometric morphisms 7/ — 7.

Proof:  Soundness of - impliesthat Hy: Syn(T) — ¥, defined on objects by

(W1 Y) = {y | y(y)y™

is a well-defined functor. This functor preserves finite limits and covers, therefore
induces by Diaconescu’s theorem a geometric morphism ym: F — B*(T) satisfy-
ing ().

By the remark following definition[3.2] £}, -homomorphismsh: M —> M’ cor-
respond exactly to natural transformations Hy — Hy, which showsthat x_ ex-
tends to afully faithful functor Mod* (T, F) — Hom( F, B*(T)), whichis clearly
natura in locally connected geometric morphisms. O

Asafinal remark we mention that given M in ¥, the geometric morphism v is, in
general, not open, hence, in general, not locally connected.

6 Concluding remarks Our main goal wasto study the logic £, but there are as
well theinfinitary variants £, where one allows disjunctions and conjunctions over
sets of formulas of cardinality lessthan or equal to «. Inthat case one hasto use carte-
sian closed «-Heyting categories asthe natural categorieswheremodelslive. Thecal-
culus of SectionRlextends immediately to these infinitary logics, and the complete-
nessresultsof Section[Sremain true, although the complete Heyting algebraof Corol-
lary[5.3]does not have to come from atopological space: givenatheory T C L} (S),
the site Syn, (T), defined similarly as above using formulas from £}, is not coher-
ent and Theorem 13.5 of [5] does not apply. Instead, one has to appeal to the cov-
ering theorem of Joyal and Moerdijk [[12]. As noted in the introduction, the logics
L} arethe strongest logics we know for which a Heyting-valued completeness the-
orem holds. Such a statement for full (intuitionistic) second-order logic is certainly
wrong: second-order logic is even not complete with respect to models in arbitrary
Grothendieck toposes.

Finally we should admit that there is something wrong with the syntax of our

logic: weshould not just extend first-order logic by quantification over functiontypes,
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but by quantification over definable function types, that is, we should allow expres-
sions such as

Vf;{x|(p(x)}{yl¢(Y)}( )

where (recursively) ¢ and  are formulas of our language. Write £} for thislogic.
Given atheory T C £X+(S) we can construct as before a syntactic site Syn! (T),
which will now be a cartesian-closed «-Heyting category. In fact, it has the obvi-
ous universal property in the category of all cartesian-closed «-Heyting categories.
Therefore, a presentation using £ would parallel 6] much more. But there are
good reasons why we did not choose thisway: even though we know intuitively very
well how to handlethe syntax of £}, theformal presentationisclumsy. Any formula
definesatype, so that thereisno distinction between formulasand types, in particul ar,
there are many identifications and subtypes.
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