ON A FAMILY OF CONVEX POLYNOMIALS

T.J. SUFFRIDGE

Consider the nth partial sum of the series $e^{1+z} = \sum_{k=0}^{\infty} ((1+z)^k/k!)$. Set $P_n(z) = \sum_{k=0}^n ((1+z)^k/k!)$ and note that $P_{n-1}(z) = P'_n(z)$. We wish to show that $P_n(D)$ is convex where $D = \{|z| < 1\}, n \ge 1$. The proof is by induction. Clearly $P_1(D)$ is convex. Also, $P_2(z) = (5/2) + 2z + (z^2/2)$ and it is easy to see that $P_2(D)$ is convex. That is,

$$\operatorname{Re}\left[\frac{zP_2''}{P_2'} + 1\right] = \operatorname{Re}\left[\frac{2+2z}{2+z}\right] > 0$$

when |z| < 1.

Suppose it is known $P_k(D)$ is convex for k < n where $n \ge 3$. Because of the convexity and the fact that all the coefficients are positive, $\operatorname{Re}(P'_n(z)) = \operatorname{Re}(P_{n-1}(z)) \ge P_{n-1}(-1) = 1$ so that $|P'_n(z)| \ge 1$, $|z| \le 1$.

Thus, we have

$$zP_n''(z) + P_n'(z) = P_{n-1}(z) + zP_{n-2}(z)$$

$$= P_{n-1}(z) + z \left[P_{n-1}(z) - \frac{(1+z)^{n-1}}{(n-1)!} \right]$$

$$= (1+z)P_{n-1}(z) - \frac{z(1+z)^{n-1}}{(n-1)!}.$$

Since the minimum value of a harmonic function occurs on the boundary, we set $z = e^{i\theta}$ and see that

$$\operatorname{Re}\left[1 + z - \frac{z(1+z)^{n-1}}{(n-1)!P'_n(z)}\right] \ge 1 + \cos\theta - \frac{|1+z|^{n-1}}{(n-1)!}$$

$$\ge (1 + \cos\theta) - \frac{(1+\cos\theta)2^{n-2}}{(n-1)!}$$

$$= (1 + \cos\theta)\left(1 - \frac{2^{n-2}}{(n-1)!}\right)$$

$$\ge 0$$

Received by the editors on December 17, 1988. 1980 AMS Subject Classification. 30C10, 30C45, 30C50.

Copyright ©1992 Rocky Mountain Mathematics Consortium

if $n \geq 3$.

Thus, we have proved the following theorem.

Theorem 1. Set $C_n(z) = (P_n(z) - P_n(0))/P'_n(0), n = 1, 2, ...$ so that

$$C_n(z) = \sum_{k=1}^n \left(\left(\sum_{l=0}^{n-k} \frac{1}{l!} / \sum_{l=0}^{n-1} \frac{1}{l!} \right) \frac{1}{k!} \right) z^k,$$

$$n = 1, 2, \dots.$$

Then, $C_n, C'_n, \ldots, C_n^{(n-1)}$ all map the unit disk [|z| < 1] onto convex domains.

If we define $K = K_0 = \{f : f \text{ is analytic in } D, f(0) = 0, f'(0) = 1 \text{ and } f(D) \text{ is convex} \}$ and $K_{n+1} = \{f \in K_n : f^{(n+1)}(D) \text{ is convex or } f^{(n+1)} \text{ is constant} \}$, then the theorem says $C_n \in K_n$ (and hence, trivially, $C_n \in K_\infty = \bigcap_{n=1}^\infty K_n$).

Observe that $\lim_{n\to\infty} C_n(z)=e^z-1$ uniformly on compact sets. Further, the function e^z-1 is conjectured to be extremal in K_∞ in the sense that for $f\in K_\infty$ it is conjectured that the MacLaurin coefficients of f satisfy $|a_k|\leq 1/k!$ and also that $1-e^{-|z|}\leq |f(z)|\leq e^{|z|}-1$, |z|<1, [1] and [2].

Notice that the families K_{n+1} and K_n are related as follows. If $f \in K_{n+1}$, then

(1)
$$f'(z) = 1 + 2ag(z), \quad g \in K_n.$$

Further, it is proved [3] that if $f \in K_{n+1}$ is given by (1), then $|a| \leq 1/(2(\rho_g + \rho_{zg'}))$ where ρ_g and $\rho_{zg'}$ are the radii of the disks of maximum radius centered at 0 that are contained in the images of g and zg', respectively. Now suppose F is a subfamily of K_n and G is a subfamily of K_{n+1} . Further, suppose $g \in F$ has all its coefficients of maximum modulus in F (i.e., if $h \in F$, $|h^{(k)}(0)| \leq |g^{(k)}(0)|$ for $k = 2, 3, \ldots$). In addition, if $\rho_g \leq \rho_h$ and $\rho_{zg'} \leq \rho_{zh'}$ for all $h \in F$ and if f given by (1) with $2a = 1/(\rho_g + \rho_{zg'})$ is in the family G, then clearly f has all its coefficients of maximum modulus in G. I believe this is the situation with regard to the polynomials C_n .

Set $F_n=\{f\in K_n: f \text{ is a polynomial of degree } \leq n\}$. Since $F_1=\{z\}=\{C_1\},\ C_1$ is trivially extremal for all coefficient problems in F_1 as well as trivially satisfying $\rho_{C_1}=1\leq \rho_h$ and $\rho_{zC_1'}=1\leq \rho_{zh'}$ for all $h\in F_1$. Further, $C_2(z)=z+(1/4)z^2$ so that $C_2'(z)=1+2az=1+2aC_1$ where $2a=1/(\rho_{C_1}+\rho_{zC_1'})$ (i.e., C_2 is given by (1)). In fact, it is straightforward to check that $C_{n+1}'(z)=1+2aC_n(z)$ where

$$2a = \frac{1}{C'_n(-1) - C_n(-1)} = \frac{1}{\rho_{zC'_n} + \rho_{C_n}}.$$

Also, by theorem 1, $C_{n+1} \in F_{n+1}$. It remains to show $\rho_{C_n} \leq \rho_h$ and $\rho_{zC'_n} \leq \rho_{zh'}$ for all $h \in F_n$ in order to conclude that the coefficients of C_n have the maximum modulus among all functions in F_n . We can prove the following.

Theorem 2. Let n=2,3 or 4 and assume $P(z)=z+\sum_{k=2}^{n}a_kz^k\in F_n$. Then

(2)
$$|a_k| \le \frac{1}{k!} \left(\sum_{l=0}^{n-k} \frac{1}{l!} / \sum_{l=0}^{n-1} \frac{1}{l!} \right), \qquad 2 \le k \le n$$

with equality if and only if $P = C_n$.

Proof. We observed above that the theorem is true for n=2. Note that $h\in F_2$ implies $h(z)=z+az^2$ where $|a|\leq 1/4$. Therefore, $|h(z)|\geq |z|-|a||z|^2\geq |z|-(1/4)|z|-(1/4)|z|^2\geq 3/4=\rho_{C_2}$ while $|zh'(z)|=|z+2az^2|\geq |z|-2|a||z|^2\geq |z|-(1/2)|z|^2\geq 1/2=\rho_{zC'_2}$. By our remarks above, (2) now follows for n=3. To show (2) holds with n=4, we will show that $\rho_{C_3}\leq \rho_h$ and $\rho_{zC'_3}\leq \rho_{zh'}$ for all $h\in F_3$. Therefore, assume $h'(z)=1+2a(z+(\alpha/4)z^2)$ where $|\alpha|\leq 1$ and a is chosen so that $h(z)=z+az^2+(a-\alpha/6)z^3\in F_3$. The relation $\operatorname{Re}(zh''(z)/h'(z)+1)\geq 0$ is equivalent to $|zh''(z)+2h'(z)|\geq |zh''(z)|$, |z|<1. Thus,

$$(3) |2 + 6az + 2a\alpha z^2| \ge |a||2z + \alpha z^2|.$$

Choose z so that |z|=1 and $6az+2a\alpha z^2<0$. Then $2-|a||6+2\alpha z|\geq |a||2+\alpha z|$ so that

$$2 \ge |a|[|2 + \alpha z| + |6 + 2\alpha z|]$$

$$\ge |a|[2 - |\alpha| + 6 - 2|\alpha|]$$

$$= |a|(8 - 3|\alpha|).$$

Thus, $2/(8-3|\alpha|) \ge |a|$.

Returning to (3), divide by 2 and use the fact that when |h'(z)| is a minimum on |z| = 1, then zh''(z)/h'(z) < 0 because h'(D) is convex and lies in a half plane that does not contain the origin while zh''(z) is an outer normal to the curve h'(z), |z| = constant. Therefore, choosing z so that |z| = 1 and |h'(z)| is a minimum, we have

$$\begin{aligned} \left| 1 + 3az + a\alpha z^2 \right| &= \left| 1 + 2az + \frac{a\alpha}{2}z^2 + \left(az + \frac{a\alpha}{2}z^2 \right) \right| \\ &= \left| 1 + 2az + \frac{a\alpha}{2}z^2 \right| - \left| az + \frac{a\alpha}{2}z^2 \right| \ge |a| \left| z + \frac{\alpha}{2}z^2 \right|. \end{aligned}$$

Thus,

$$\rho_{zc_3'} = c_3'(-1) = \frac{2}{5} > \rho_{zh'} = \left| 1 + 2az + \frac{a\alpha}{2}z^2 \right|$$

implies

$$\left| \frac{3}{5} < |a| \left| 2z + az^2 - \frac{\alpha z^2}{2} \right| \le |a| \left| 2z + az^2 \right| + \frac{1}{5} < \frac{3}{5},$$

a contradiction. Further, on |z| = 1, we have

$$\begin{split} \frac{2}{5} &\leq \left|z + 2az^2 + \frac{a\alpha}{2}z^3\right| = \left|1 + 2az + \frac{a\alpha}{2}z^2\right| \\ &= \left|1 + az + \frac{a\alpha}{6}z^2 + \left(az + \frac{a\alpha}{3}z^2\right)\right|. \end{split}$$

As before, choose z, |z| = 1 so that $|1 + az + (a\alpha/6)z^2|$ is a minimum, then

$$\left|1+az+\frac{a\alpha}{6}z^2+\left(az+\frac{a\alpha}{3}z^2\right)\right|=\left|1+az+\frac{a\alpha}{6}z^2\right|-\left|a\right|\,\left|1+\frac{\alpha}{3}z\right|.$$

Then,

$$\rho_{c_3} = -c_3(-1) = \frac{2}{3} > \rho_h = \left| 1 + az + \frac{a\alpha}{6}z^2 \right|$$

implies

$$\begin{aligned} \frac{2}{3} &> \frac{2}{5} + |a| \left| z + \frac{\alpha}{3} z^2 \right| \ge \frac{2}{5} + |a| \left| z + \frac{\alpha}{6} z^2 + \frac{\alpha}{6} z^2 \right| \\ &\ge \frac{2}{5} + |a| \left| z + \frac{\alpha}{6} z^2 \right| - \frac{1}{15} > \frac{2}{5} + \frac{1}{3} - \frac{1}{15} > \frac{2}{3}, \end{aligned}$$

a contradiction. This completes the proof.

REFERENCES

- ${\bf 1.}$ S.M. Shah and S.Y. Trimble, Entire functions with univalent derivatives, J. Math. Analysis and App. ${\bf 33}$ (1971), 220–229.
- ${\bf 2.}$ T.J. Suffridge, Analytic functions with univalent derivatives, Ann. Univ. Mariae Curie-Skłodowska ${\bf 37}$ (1982/83), 143–148.
 - 3. ——, Convex functions with convex derivatives, submitted.

University of Kentucky, Lexington, KY 40506