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ON A FAMILY OF CONVEX POLYNOMIALS

T.J. SUFFRIDGE

Consider the nth partial sum of the series el** = Y"27 ((1+2z)*/k!).
Set P,(z) = > p_,((1 + 2)*/k!) and note that Pn 1(z) = Pl(2). We
wish to show that P, (D) is convex where D = {|z| < 1}, n > 1.
The proof is by induction. Clearly P;(D) is convex. Also, Py(z) =
(5/2) + 22 + (2%/2) and it is easy to see that P»(D) is convex. That is,

2Py 242z
[ ] e 2]

when |z| < 1.

Suppose it is known Py (D) is convex for k < n where n > 3. Because
of the convexity and the fact that all the coefficients are positive,
Re (P)(2)) = Re(Pn-1(2)) > P,—1(—1) = 1 so that |P.(z)] > 1,
2] < 1.

Thus, we have

2P;(2) + Po(2) = Pu1(2) + 2P 2(2)

=Po1(2) +2 [Pn—l(z) - %

=(1 P,_ —
Since the minimum value of a harmonic function occurs on the bound-
ary, we set z = e*? and see that

2(142)" 1t

1 _—— I >1 0 —
Re +z (n—l)!P,Q(z)] > 1+ cos

1421

(n—1)!

(1 + cos §)2n—2
(n—1)!

= (1+cosb) <1 - %)

>0

> (1+cosf) —
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if n > 3.

Thus, we have proved the following theorem.

Theorem 1. Set C,(z) = (P,(z) — P,(0))/P,(0), n = 1,2,... so
that

" S ),
Cn(z):Z Zl_' ;ﬁ % Z,

k=1 \ \i=0
n=12,....
Then, Cy,Cl, ... O™ all map the unit disk [|z] < 1] onto convex

domains.

If we define K = Ko = {f : f is analytic in D, f(0) =0, f'(0) =1
and f(D) is convex} and K, = {f € K, : f®*)(D) is convex
or f(»*1) is constant}, then the theorem says C,, € K, (and hence,
trivially, C, € Koo = N2 1 K,,).

Observe that lim, o, Cr(z) = e — 1 uniformly on compact sets.
Further, the function e* — 1 is conjectured to be extremal in K, in the
sense that for f € K it is conjectured that the MacLaurin coefficients
of f satisfy |ax| < 1/k! and also that 1 — e 1*l < |f(2)| < el*l — 1,
|z] < 1, [1] and [2].

Notice that the families K, .1 and K,, are related as follows. If
f € K11, then

(1) f(z) =1+ 2ag(z), geK,.

Further, it is proved [3] that if f € K41 is given by (1), then
la|] < 1/(2(pg + p2g')) where pgy and p.o are the radii of the disks
of maximum radius centered at 0 that are contained in the images of
g and zg’, respectively. Now suppose F' is a subfamily of K,, and G
is a subfamily of K, ;1. Further, suppose g € F has all its coefficients
of maximum modulus in F (ie., if b € F, |h®(0)] < |¢*)(0)| for
k= 2,3,...). In addition, if p; < pp and p,y < p.p for all h € F
and if f given by (1) with 2a = 1/(pg + p.g’) is in the family G, then
clearly f has all its coefficients of maximum modulus in G. I believe
this is the situation with regard to the polynomials C,.
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Set F, = {f € K,, : f is a polynomial of degree < n}. Since F; =
{z} = {C1}, C1 is trivially extremal for all coeflicient problems in F}
as well as trivially satisfying pc, = 1 < pp, and pzc; =1 < paps for all
h € Fy. Further, Cy(z) = 2+(1/4)2% so that C(2) = 14+2az = 14+2aC}
where 2a = 1/(pc, + pzc;) (i.e., Cz is given by (1)). In fact, it is
straightforward to check that C},,,(2) =1 + 2aCy(z) where
_ 1 _ 1

O’II’L(_]‘) - Cn(_l) po;l + pPC, '

Also, by theorem 1, Cp 41 € F, 1. It remains to show pc, < pp and
pzct < Pz for all A € F,, in order to conclude that the coefficients
of C,, have the maximum modulus among all functions in F;,. We can
prove the following.

2a

Theorem 2. Let n = 2,3 or 4 and assume P(z) = z+ > _, axz" €
F,. Then

1 n—k 1 n—1 1
(2) ak|§ﬁ(zﬁ/zﬁ>’ 2<k<n
1=0 1=0
with equality if and only if P = C,.

Proof. We observed above that the theorem is true for n = 2. Note
that h € F> implies h(z) = z + az? where |a| < 1/4. Therefore,
B()| > J2] — lallz > |2] — (1/4)[2] — (1/4)[2] > 3/4 = pc, while
|2/ (2)] = |2 + 2a2%| > |2| = 2lal|z]* = |2] = (1/2)[2]* > 1/2 = p.cy.
By our remarks above, (2) now follows for n = 3. To show (2) holds
with n = 4, we will show that pc, < pn, and pzcy, < p.n for all h € Fj.
Therefore, assume h'(z) = 1+ 2a(z + (a/4)2%) where |a] < 1 and
a is chosen so that h(z) = 2z + a2? + (a a/6)2® € F3. The relation
Re (zh"(2) /R (2) + 1) > 0 is equivalent to |zh"(z) + 2R/ (2)| > |zh"(2)],
|z| < 1. Thus,

(3) 2 + 6az + 2aa2?| > |al|2z + az?|.

Choose z so that |z| = 1 and 6az + 2aaz? < 0. Then 2 — |a||6 + 2a2| >
|a]|2 + az| so that

2 > |al[|2 + az| + |6 + 2az]]
2 |al2 = laf + 6 = 2|a]
= |al(8 = 3[a)).
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Thus, 2/(8 — 3|a|) > |a.

Returning to (3), divide by 2 and use the fact that when |h'(2)| is a
minimum on |z| = 1, then zh”(2)/h’'(2) < 0 because h'(D) is convex
and lies in a half plane that does not contain the origin while zh"(z) is
an outer normal to the curve h'(2), |z| = constant. Therefore, choosing
z so that |z| = 1 and |A/(z)| is a minimum, we have

1+ 3az +aaz?| = |1 + 2az + ?22 + (az—}- %22>‘

= 1+2az+?z2‘ - ‘az—i—?zz‘ > |al ‘z—i—%zQ‘.

Thus,
2
prcy = h(=1) = = > puw = L +2az + 57|
implies
3 2 1 3
5 <la| |2z +az® — % < |a] ‘2z+az2| —1—5 < 5

a contradiction. Further, on |z| = 1, we have

2
- < ‘z + 2a2% + Bz:“ = ‘1 + 2az + %zQ‘
5 2 2
= ‘l—l—az—i-%f—i— (az—i—BzZ)‘.
6 3
As before, choose 2, |2| =1 so that |1 + az + (ac/6)2?| is a minimum,
then

l—i—az—i—%f—i—(az’—l—%zz)‘: ‘1+az+%z2‘—|a| ‘1—&—%,2‘.

Then,
Pes = —c3(—1) = % > pp = ‘l—i-az—i— %f‘
implies
g> g~|—|a| ‘z+gz2‘ > 2+|a| ‘z+gz2+gz2‘
3 5 3 ) 6 6

>2+||‘+a2 L 2.1 1 2
—tla| jz+ 2| ——>-+5——> 3,
=5 6 15" 5 3 15 3

a contradiction. This completes the proof. ]
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