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ALGEBRAS WITH THE LOCAL
INTERPOLATION PROPERTY

Ma TERESA GASSO

ABSTRACT. In this paper a class of Boolean algebras is
defined in such a way that the classical Nikodym theorem
holds for sequences of bounded additive measures defined on
said algebras. It is proved that this class of Boolean algebras
contains those known to have the property (N), i.e., the ones
satisfying the Vitali-Hahn-Saks theorem [10] as well as those
introduced by Schachermayer [9] and by Graves-Wheeler [5].

The second problem raised by Graves and Wheeler in [5]
is solved because the local interpolation (LI) alone proves
the property (N). The condition (LI) gives a new example
of Boolean algebras with the Nikodym property.

The Boolean algebras of Seever [10] and Faires [3] and
those studied here are defined by means of “interpolation
properties” between disjoint sequences in this algebra.

1. Introduction. The book by Diestel and Uhl [2] gives us an
account of the history of Grothendieck, Nikodym and Vitali-Hahn-Saks
properties. We must remember that Diestel, Faires and Huff [1] proved
that a Boolean algebra has the property (VHS) if and only if it has the
property (N) and the space of Banach of real and continuous functions
on the Stone space of the algebra is a Grothendieck space, (property
(G)) [6]. A characterization of the algebras with the property (G) would
be interesting in the isomorphic classification of the Banach spaces.
Such characterization was conjectured by Lindenstrauss [7] but has not
yet been satisfactorily solved. Once the equivalence between (VHS)
and (G)—(N) and the question of Lindenstrauss are established, the
implications (N) = (G)? and (G) = (N)? are naturally raised. In fact,
the first of these questions appears in [10] and was posed by Seever.
This problem was solved by Schachermayer [9] who shows that (N) %
(G) by means of two examples. We want to note that the proof of (N) is
different in each case. In Jp, the algebra of Jordan measurable subsets
of [0,1], the property (N) is inferred from the compactivity in [0,1],
whereas in the other example J, it is proved directly in the algebra.
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In 1983 Graves and Wheeler [5] obtained more examples in this way. In
particular, they defined 11 algebras which satisfied (N) but failed (G).
Again they made use of topological properties of the different spaces in
which those algebras are defined. Hence, different techniques are used
to provide the property (N). In fact, finding a unified argument in order
to prove (N) in two of the examples that Graves and Wheeler studied
remains in [5] as an open question. However, we do know that (VHS) =
(N) [2]. Consequently, the Boolean algebras with the property (f) [8]
also satisfy (N). Particularly, when S is a compact totally disconnected
F-space, CO(S) has the property (N). In this paper we define a class of
Boolean algebras by means of the property (LI) (local interpolation) in
such a way that the Nikodym property holds. We prove that this class
of Boolean algebras contains those known to have the property (N),
i.e., the algebras with the property (VHS) as well as those introduced
by Schachermayer [9] and by Graves and Wheeler [5], which have (N)
but not (G). This answers the question raised in [5] by Graves and
Wheeler mentioned above.

Before concluding the paper, we construct a new Boolean algebra in
P(N) by means of the interproperties which arise in (LI). Such algebras
satisfy (N) but fail to satisfy the property (G).

2. Notation and definitions. Throughout this paper, S is a
Boolean algebra and CO(S(S)) is the algebra (Boolean isomorphic to
8) of all clopen subsets of the Stone space S(S), a totally disconnected
compact Hausdorf space [11]. Elements of S will be identified with
their clopen counterparts in CO(S(S)). In general, cl(A), int (A),
bd (A) represent the closure, interior and boundary of a subset A of
S(S). If A, B C 5(S), then AAB = (A—-B)U (B — A). If {A;}2,
is a family of elements of S, we write V;c;A; for the smallest element
in that majorizes all A;, if such an element exists. C(S) denotes the
Banach algebra of continuous functions on the Stone space S. A subset
B of S is a zero set if it has the form {¢: f(¢) = 0} for some f € C(S5).
The o-algebra of Baire sets is the smallest o-algebra Ba (S) of subsets
of S containing the zero sets. The o-algebra of Borel sets is the least
o-algebra Bo (S) of subsets of T' containing the closed sets. A subset
B of S is universally measurable if for each finite nonnegative regular
Borel measure p on S, there exist By, By (depending on x) in Bo (S)
with By CBC By and p(B;) = p(Bsz). The o-algebra of universally
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measurable subsets of S is denoted by U(S). Let F be an algebra of
subsets of S containing the clopen sets. Then J¢(F') and Jpq(F') denote,
respectively, the algebras of members of F' which have finite, countable
or scattered boundaries, while Jo(F) = {B € F : BAC is finite for
some clopen set C'}. Clearly, CO(S) C Ja(F) C J;(F)C J,o(F) [4].

We denote a Banach space by X, which for simplicity is assumed real.
A function p : A — X is called a measure if it is additive. We say that
a sequence { i, }n—1 of measures is S-convergent when {u,(A4)}),=1 is
convergent for every A in S, and if D is a family of elements in A, then
{ttn}n=1 is said to be a D-Cauchy sequence if lim y,,(B) exists for all
B € D. A measure is called exhaustive if for every sequence {A, }n—1
of mutually disjoint elements of {||u(A,)||}n=1 tends to zero. A family
of measures is called “uniformly exhaustive” if ||u(A,)|| tends to zero
uniformly for p € M.

2.1 Definition. A Boolean algebra S has the Grothendieck property
(G) if every weak* convergent sequence in C(S)* is weakly convergent
[6]. S verifies (G) if and only if every continuous linear map from C/(.5)
to a separable Banach space is weakly compact [9].

2.2 Definition. A Boolean algebra S has the Nikodym property (N)
if every S-bounded family M of exhaustive measures on § is uniformly
bounded.

S has (N) if (mo(S),|| |]) is barreled [9], mo(S) being the linear
subspace of C(S) generated by characteristic functions of elements in

S.

2.3 Definition. A Boolean algebra S has the Vitali-Hahn-Saks
property (VHS) if every S-convergent sequence of exhaustive measure
on § is uniformly exhaustive.

2.4 Theorem (Diestel-Faires-Huff [1]). A Boolean algebra verifies
(VHS) if and only if it satisfies (N) and (G).

3. The property (LI) and the Nikodym theorem. We define
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Boolean algebras for which the Nikodym theorem is valid by means of
the following

3.1 Definition. A Boolean algebra S has the property (LI) if and
only if for every s € S(S), there is a decreasing sequence {T},(s)}32; of
clopen neighborhoods of s such that if {4, }22 ;, {B,}32 ; are sequences
of elements in S and,

A,NB,, = n,m € N; A, CT,(s); B, CT,(s) n € N.
Then there exists a subsequence {By}7° ;, nk+1 > ny satisfying:
(1) there exists A€ S

Bnr CA, ALNA=0 keN

(2) for each JC N there exists V; € A, with
BuCV;, keJ, BunVi=o keN-J

3.2 Lemma. Let S be a Boolean algebra with the property (LI).
Let s € S(S) and suppose {T,,(s)}n>1 be as in the definition of (LI).
Assume {En}nZI 18 a sequence of pairwise disjoint elements so that
for each n, E, CT,(s). Then if {u,}>, is a sequence of exhaustive
measures on S, there is a subsequence {Epg}3° |, pry1 > pr such that
if D is the o-algebra of sets generated by {Epy}i2,, for each p,, a
function A\, : D — R can be associated such that the following are
satisfied:

(I) A\, is a o-additive measure
(II) A\(A) =pn(A) if Ac SND

(III) given B € D, we can find Agp € S such that u,(Ap) =
An(B) ¥n.

In particular, if {u,}52 ; is a sequence of exhaustive measures in S,
then {\,}22; will be exhaustive measures.

Proof. Since S has the property (LI), there exists a subsequence
{En, }72, such that given J C N there is Ay € S satisfying

(1) EnpnNAjy pEJ; EnpNA; =9 peN-—-J.
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In order to simplify notation, we set Enp = Ep. From (1) we obtain
a sequence {W,,}22 ; of pairwise disjoint elements in satisfying

(2) EpCW; p € N; 1 € N.

Let p be

i [l
=2 ([[pall +1)°

u is an exhaustive measure because each u, is exhaustive. Now we
perform an inductive process to construct a sequence {Dj}r—; of
elements in S and a subsequence {Epy }r—1 such that

(3) Pk+1 > Pk ke N

(4) Dy 1 C Dy ke N

(5) EprNDy =0 k < ko

(6) Epk - DkO k> ]{20

(7) w(Dg) <1/28  keN

(8) the set {p € N : Ep C Dy} is infinite k € N.
(9) D,CTpr keN.

The sets Vi, = Dy, — Diy1 = Epg, k € N form a sequence such that
Vi €S : Vi CTpg; Epi CTpyg; Ep, NV, = O Vk.

The property LI yields a subsequence {Epy;}i=1,kit1 > k; for each
i € N and an element A in § with

Ep,; CAYi and ANV, =2 Vk.
Let V=T; — A be

(10) ViCT, — A=V  Vk.
(11) VNEpw =2 Vi
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We will prove that the sequence { Epg;}i—1 verifies the statement of the
lemma. The o-algebra D generated by {Epg;}i—1 is

D:{UEpki, JCN}.
ieJ

In order to define the functions {A,},—1 we note that the series
> {ui(Epr),k € N} is unconditionally convergent because if F' is a
finite subset of IV,

(12) S {mi(Epi) b € FY < 2(1+[ml)1/2%, o =min(a € F),
Then we can set A\, : D — R with
>\n( U Eij) = Z{Nn(Epkj)aj S J}
jedJ

The proofs of (I), (II) and (III) can be obtained from the following
facts. According to (12), if {A,}n—1 is a sequence of pairwise disjoint
subsets of IV, the series

> (St ke a)
1<n<oo
converges for every ¢ and
(13) > <Z{ui(Epk, ke An}> = {ui(Bp,): k€ Upm1An}.
1<n<oco
Moreover, if M is a subset of N such that Ugep Ep, € S, then by (6)
and (7),
(14) m( U Epk> = {ui(Ep) ke M} Vi
keM

From (1), given a subset M of N there exists an element of Hy; such
that

Epr; C Hpyp 1€ M; E, NHy =9 k # k; 1€ M.
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It follows that
(15) > Ang(Epri),i € M} = po(Dy = V)N Hy),  q€N,

is V, the set defined in (10) (because if m,q € N, then (5), (6) and (7)
are satisfied).

1al(D1=V) OV Hat] =3 {p1q By, ), LSS my i€ MY| <29 (W lag ) /27,

From (13), (14) and (15), conditions (I), (II) and (III) are proved. o

3.3 Theorem. Let S be a Boolean algebra satisfying the property
(LI). Then S has the property (N).

Proof. Proceeding by contradiction, let us suppose that there ex-
ists a seqeunce {pn, fn=1 of exhaustive measures which are pointwise
bounded on S but such that

1i}£n||/,l,nk||200 Ng4+1 > Nk

To simplify notation, we set pin, = pp, p € N. Since S(S) is
compact, we can choose an element zq of S(S) such that for each clopen
neighborhood Uy of zg,

lim |1, (Up) = oo

In particular the seqeunce {|u,|(T7)}n=1 is unbounded for each k. We
may find a partition (Ly, Fy) of T} into disjoint members of S and an
integer n; such that

lny (L1)ls | pny (F)] > 2.
And at least one of
inf g sup inf ges|pn(E N Ly NTy)]

inf ¢ sup inf ges|pn(E N F NTy)|
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is infinite. If the former is infinite, set E; = F}, otherwise set £y = L.
In any case, there is an ny > n; and (Lg, F3), a disjoint partition of
(T'N Ey NT3), such that

|/“Ln2(L2)7 |/J'n2 (F2)| >3+ ‘:u’nz(El)"
Now at least one of

inf i, sup sup |pn(E N Ly N T})|

n EeS§
and
inf i, sup sup |pn(E N F N Ty)]
n Ee€S
is infinite. In the case of the former, set F; = Fb5; otherwise set

E; = Ly. By continuing in this way, we obtain a sequence {E, }n—1
of pairwise disjoint elements of S, such that F, CT;, and a strictly
increasing sequence of positive integers {nj}r—1 such that, for each
k>1,

(16) i (E) > D {liny (By)l,  1<j<k-1}+k+1.

Now, given that S has the property (LI), by using lemma 3.2 there
exists a subsequence {E,, }r=1 and a sequence {\,},=1 of o-additive
measures on D such that

Me(B)| = |pnk(E)]  E € AND.

Consequently, by (16)

Moe (Bp )l = > DBl +pe+1,  pe>1.
1<j<pr—1

Since the sequence {\,, }x=1 is D-convergent, this contradicts the
Vitali-Hahn-Saks theorem [5]. O

We now show that the property (LI) alone is sufficient to prove
(N). Let us note at first that Molto in [8] defines a class of Boolean
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algebras verifying the Vitali-Hahn-Saks theorems and containing a class
discussed in papers by Seever [10] and Faires [3]. According to the
definition of the property (f) [8] and (LI), we obtain the following

3.4 Proposition. A Boolean algebra having the property (f) has the
property (LI), i.e., (f) — (LI).

Remark . With this result we have proved that the algebras verifying
the Vitali-Hahn-Saks theorem also satisfy (LI). In particular,

3.5 Corollary. If F is a compact f-space totally disconnected
Hausdorff, then CO(S) has the property (LI).

In [9] Schachermayer has shown that (N) /4 (VHS) by means of
two examples J; and J — 2 which have the property (IN) but fail
the Grothendieck and Vitali-Hahn-Saks properties. We will prove
that these Boolean algebras also satisfy (LI). In order to do that, the
following definition will be useful.

3.6 Definition. A Boolean algebra S has the (¢CL) if given ¢t € S(S)
we can find a decreasing sequence {1}, },>1 of clopen neighborhoods of
t such that whenever {T}, },>1 is a subsequence of {T},} and {4, } is a
sequence of clopen sets in S(S) with A,, C T}, we have sup,, A,, exists.

It is easily proved that

3.7 Proposition. If S has the property (cCL) then S satisfies the
property (LI), i.e., (cCL) — (LI).

This implication allows us to prove that the Boolean algebras quoted
above have the property (LI). The converse is not true, for example
CO(BN — N) satisfies (LI) but fails (cCL).

3.8. Let J; denote the family of Jordan measurable sets in [0.1].

3.9 Proposition. J; has the property (LI).
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Proof. By using the compactness of [0.1] for each A € J; we can
consider it as a clopen subset of S(J;) the elements of [0,1] as elements
of S(Jy). Let ¢ be an element of [0,1], we choose

T,=]t—1/n,t+1/n[N]0,1]

for every n € N. Since the sequence {7}, },—; is a neighborhood base for
t which satisfies the hypothesis of (cCL). Given that for each sequence
{A,}n=1 in Jy with A, CTyp,kny1 > k, for all n, as the Lebesgue
measure 4 is purely nonatomic. Then,

<cl (B An> — int <nL_J1 An>> <D (cl(An) —int (Ay,)) + pu(t) =0

n=1

and from the definition of Ji, it follows that U,—14,, € J7. i

3.10. Let X = ®[0,1]° and let J, be the next Boolean algebra,
{Ai}izl € Jy if
i) A; is a set of Borel in [0.1]*
il) e>03ng/m, n>ng = pu(AnlAAd,) <e

where p is the Lebesgue measure.
3.11 Proposition. Jy has the property (LI).

Proof. The following convention will be helpful: Let A be an element
Jo. We write A if we consider it a member of the field of X and write
¥(A) if we consider it as a clopen subset of S(J2). Let ¢ be an element
of S(Jz) and

U={AecCO(S(J):))/t c A}.

Then U is an ultrafilter in S(.Js); consequently, we can consider the fol-
lowing Jy ultrafilter in X, V = {B € Jo/¢(B) € U}. By constructing
a sequence {7}, },=1 of clopen neighborhoods for ¢, we will prove that
Ja satisfies (oCL).

Case 1. Let us suppose that there exists an element A = {4;};—1
in V such that II,(4) = A,, = {q} for some ¢ € X for each n € N.
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Then let T,, = ¢(A) for each n € N. If {¢(F,)}n=1 is a sequence in
CO(S(J2) with ¥(F,) C Ty, , knt1 > kn for all n, it follows that

\ ¢(Fy) € ¢(J2) = CO(S(J2)).

k=1

Case 2. Let us consider

Af = {mi(AD)}iz,  m(AD)=100,1/2], Q€N

At = {mi(AD)}im,  m(43) =[1/2,1], ieN.
It is clear that Al € Jy, A% € Jy, AL U A2 = [0, 1] and p(m;(A%)) =
1/2, j = 1,2. Since V is a Jo-ultrafilter, we can suppose that A1 € V.

Note that if A} N A? € V, we return to Case 1. Similarly, now we
consider

Ay = {mi(43)}i=1, mi(A3) =[0,1/4], ieN
AZ = {mi(A2)}im1, m(A3) = [1/4,1/2], i€ N.
From their construction,
Ay € dy op(m(4y)=1/22  i=12,  jeN

and
ALUAZ = AL

So, A} or A2 are elements of the ultrafilter V. By working in this way,
we construct a sequence {A, },—1 satisfying the following properties:

(17) A, eV
(18) A,CA,, m>n
(19) u(mi(An)) =1/2",  i,n€N.

Let T,, = ¥(A,,) hold for each n € N. We can prove that Jo satisfies
(cCL) with this sequence using the above facts. Let us suppose
{¢(F,)}n=1 to be a sequence in CO(S(Jz)) with

(20) 1/J(Fn) - Tkn, kn+1 >k, Vn.
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By virtue of (18), (19) and (20), it follows that j = 1, F; € J, and
hence \/j:1¢(Fj) = w(szle) € CO(S(J2)).

Thus, we have demonstrated that J; hs the property (¢CL) and by
(3.7), Jo satisfies (LI). O

Recently, Graves and Wheeler [5] have shown the fulfillment of the
property (N) for various algebras J of subsets in a compact, totally
disconnected space T. The methods used by Graves and Wheeler are
based upon the compactivity of 7', but not upon S(J), which in general
does not coincide with 7. By means of the following result, we prove
that the quoted examples also satisty (LI).

3.12 Theorem. Let us assume that p is a purely nonatomic measure
which satisfies the following. For each t € T there exists a decreasing
sequence {A;}i—1 of clopen neighborhoods of t such that u(F) = 0 for
every F € U(T) with F C N;A;.

Then the Boolean algebra J,(S) has the property (LI), for S =
Ba(T), Bo(T) or U(T).

Proof. We will prove that J,,(A) has the property (LI) by means of
the implication (¢cCL) — (LI).

Given that CO(T') C J,(S), {A;i}i—1 will be a sequence of elements of
Ju(S) containing t. Let us suppose that there is a sequence {F, },=1 of
elements in J,(S) such that F, C A, knt1 > kn. We will prove that

\/ F,=cl ( U Fn> € J.(S).
n=1 n=1
Since the sequence of clopens { Ak, }n—1 is decreasing, we can deduce

cl <cl ( U Fn>> —int <cl ( U Fn> - (Fn)> —int (F,))U TDIA,M.

n=1 n=1 n=1

Given that F,, € J,(S) and the sequence {4, },—1 satisfies the hypoth-
esis of this theorem, it is clear that

c1<U Fn> = \_/ F,eJ,(S). o

n=1
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Hence, we obtain the following

3.13 Corollary. If X is a Frechet space and p: S — X is a purely
nonatomic exhaustive measure, then J,(S) has the property (LI).

3.14 Corollary. IfT is measurable and p is a nonatomic probability
measure on T, then J,(S) has (LI).

3.15 Corollary. If T is measurable, then J,q(S) has (LI).

3.16 Corollary. If T is extremally disconnected and has no isolated
points, then Jnq(Ba) satisfies (LI).

Consequently, because of that, the implication (LI) — (N) (3.3)
answers the second question raised by Graves and Wheeler [5] because
the local interpolation is a single method useful in showing the property
(N) on J,q(Ba) when T is a first countable (3.15) as well as when T is
an F-space (3.15).

We will prove that the property (LI) is a means of constructing
Boolean algebras with the property (N). In particular, we will construct
a new algebra of subsets of N which has the property (N) and fails the

property (G).

3.17 Example. Let {4,}5°, be a sequence of pairwise disjoint
subsets of N so that N = U,_1A4,, and card (4,,) = 2". We set for each
néeN,

A2V 5 R
M (E) =card (EN A,)/2".
We can find for each n € N a finite sequence {W/*1 < i < 2"} of
pairwise disjoint subsets of NV such that

2m 3]
(21) Uwr=U4,
=1 p=n

(22) ifm>n and 1<7<2™, 1<j5<2" then
W Cw™ or WrNW" =2
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(23) neN ANWH)=1/2" 1<i<2" p>n.

The elements of Sy (which is the algebra of sets generated by {WI?, 1<
p < 2" n € N}) can be expressed as

(U3)r

WZ}j being pairwise disjoint sets and F' a finite set. Then, according to
(23), for each E € Sy there exists lim A, (E). Now with Zorn’s axiom,
we assume the existence of a maximal algebra verifying

(25) SC P(N)
(26) S CS
(27) there exists  lim A\, (E) VE € S.

3.18 Lemma. If N is a subset of N such that im A\, (N N E) ezists
for each E € S, then N € S.

Proof. Let V be a subalgebra generated by S and N. It suffices to
prove that V' = S. We demonstrate that V satisfies (27). Note that
the elements of the algebra V are in the form

{(ANN)AB/A,B € S),
then
M[(ANN)AB] =M\, ((A-B)NNJU(B—-A)U[(ANB) — NJ).
Since (A— B)NN, B— A and [(AN B) — NJ are disjoint
M(ANN)AB = N] = A [(A— B)NN]+ A (B — A)+ A [(ANB) — NJ.
The first two limits exist by hypothesis and

MI(ANB) — N = \(ANB) — A[(ANB)N N
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Consequently, V = S.

3.19 Proposition. S has the property (N) and fails the property
(G).

Proof. The sequence {)\p}gozl shows that S does not have the property
(VHS), (note that Ap(A,) = 1). We will see that it verifies the property
(LI). Let U be a free S-ultrafilter as in (2.1). For each n we can choose
an i, € N such that W' € U. We will prove that the sequence
{W{ }n=1 has the following property:

(28) If B, €8, B, CW then U B, €8.
n=1
Since B, N ECW] it suffices to prove that the sequence

{Ap(Un=1Br)}n=1 is convergent. Let ¢ > 0. We can choose r € N such
that
1/2r1 < ¢g/2.

Given that the sequence {\,(Bp)}m=1 is convergent, we can take
ro > r such that if p,q > rg, then

|Ap(Br) — Ag(Bn)| < €/2" 1<n<r
Therefore, if p,q > 7o,

A,,(TLszan) )\q< U Bn> <e

n=1

which proves that U,—1B,, € S. Consequently, the algebra S has the
property (LI) (3.7). O

Open question. The property (LI) implies (N), but is the other
implication also true?
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