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ON THE GROTHENDIECK AND
NIKODYM PROPERTIES OF BOOLEAN ALGEBRAS

ANTONIO AIZPURU

ABSTRACT. In this paper we investigate the Grothendieck
and Nikodym properties on a Boolean algebra. We obtain
a sufficient condition for the Nikodym property that is not
sufficient for the Grothendieck property.

1. Introduction. Schachermayer [9] proved that the family J
of Jordan-measurable sets in [0,1] has the Nikodym property (NP)
but lacks the Grothendieck property (GP). This is the first algebra
known with these characteristics and it has been of major importance
in the study of the relations between the Grothendieck and Nikodym
properties (cf. [3]). Graves and Wheeler [5] made another important
contribution to this subject, the main focus of which is the study of the
properties (NP) and (GP) for certain Jordan-type algebras of Baire,
Borel and universally measurable sets.

Haydon [6] proved that a subsequentially complete Boolean algebra
(SC) has the Grothendieck property. He also gives an example of a
Boolean algebra with the property (SC) that does not have Rosenthal’s
property. Hence, he obtains a sufficient condition for Grothendieck’s
property that is not sufficient for Rosenthal’s property.

Dashiell [2] proved that an algebra that is up-down-semi-complete
(udsc) and that has an additional property, has Rosenthal’s and
Nikodym’s properties. Hence, such algebra has Grothendieck’s prop-
erty. An algebra with that additional property will be called (aD).

Dashiell [2] also proved that the Boolean algebra D of the simulta-
neously G5 and F, sets in [0,1] has the properties (udsc) and (aD).
We observe that the algebra J is (udsc) and, hence, the property (aD)
gives to D properties that J does not have.

Talagrand [10] proves that, assuming the continuum hypothesis,
there exists a Boolean algebra with the Grothendieck property that
lacks the Nikodym property.
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In the relations between the Grothendieck and Nikodym properties,
we believe that there are some interesting problems.

To have a condition that is sufficient for (NP) (respectively, (GP))
but not for (GP) (respectively, (NP)), (rather than just an example to
show that the one does not imply the other).

To decide if the assertion, “the Grothendieck property does not imply
the Nikodym property” holds in all models of set theory, or whether
Martin’s axiom yields (GP) = (NP).

In this paper we obtain a sufficient condition for (NP) that is not
sufficient for (GP), and we investigate the fundamental differences
between the algebras J and D.

2. Notations. In this paper F is a Boolean algebra with the
operations of sup, inf and c¢. F has a unique representation as the
field of clopen sets of the Stone representation space S of F.

A bounded function g : F — R is called a measure if it is additive,
ie., p(Ay V Ay) = p(Ay) + p(Az) whenever Ay, Ay in F are disjoint.

Kuratowski [7] proves that a topological space X can be written
as X = PUD where P is a perfect set and D is dispersed. This
decomposition will be called the perfect-dispersed decomposition of
X. P (respectively, D) will be called the perfect-kernel (respectively,
dispersed-kernel) of X. It is well known that if S is the Stone-space of
a Boolean algebra with the property of Grothendieck, then in S there
do not exist nontrivial convergent sequences. This is also valid if S is
the Stone-space of a Boolean algebra with the property of Nikodym (cf.
[4,1]). For these reasons the Boolean algebras that will be considered
here are algebras with an infinite number of elements and whose Stone-
spaces do not have nontrivial convergent sequences. If S = P U D is
the Stone space of an algebra with these characteristics, then P # &,
every point in D is an isolated point and every infinite closed set ' C S
is uncountable.

A point z of a space X is called a P-point if the intersection of
countably many neighborhoods of x is again a neighborhood of z. In
this paper the set of the P-points of S will be denoted by P; it is clear
that P, D D.
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A point z € X is not a P-point if and only if z is in the frontier of a
cozero set in X. In this paper the set of the non P-points of S will be
denoted by P;; it is clear that P, C P.

3. Main results.

Lemma 3.1. Let (ftn)new be a sequence in C(S)* that is pointwise
bounded (pb) on F.

a) (n)new 18 uniformly bounded (ub) on F if and only if, for every
x € P, there exists an A € F with x € A such that the sequence
(| |(A))new is bounded.

b) (fn)necw 8 uniformly strongly additive (usa) on F' if and only if,
for every x € P, there exists an A € F with x € A such that (in)new
isusa in Fu.

Proof. a) The necessity is evident. For every z € P, let A, € F be
such that the sequence (|un|(Az))new is bounded. Since

o~ (Y)(Ye)

zeP zeD

we can write S = By U...U B,, where every B; is either a set A, or a
unitary clopen; hence, (|un|(Bi))necw is a bounded sequence, for every
i =1,2,...,n. Since, for i € w, ||p] = |pil(s) < |wil(B1) + -+ +
|i|(By), it is clear that (||p;]])icw is @ bounded sequence.

b) The necessity is also evident. We can write, as in a), S =
B; U ... U By, where, for i € {1,2,... ,n}, (ur)rew is usa in Fp,.
We can write S = Cy U...UC, where the C; are mutually disjoint and
(k) kew 1s usa in Fg,.

Let (A;)icw be a disjoint sequence in F. For j = 1,2,...,n and
i € w, we denote A} = A; N C;. We have that, for every ¢ > 0
and j = 1,2,...,n, there exists an i; € w such that if ¢ > 7; then
|m (AD)| < &/n, for every m € w.

If we denote ip = max(iy .. .14y,), we have |, (4;)| < |pm (AN +- -+
|ppm (A)| < ¢, for every m € w and ¢ > 4;. Hence, lim;_, oo [ptm (4i)| =0
uniformly in m € w. o
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Remark 3.2. It can be proved easily that there exist in S an
uncountable number of points that are not P-points.

If T C S is an infinite closed set and x € T is not a P-point, for the
relative topology in 7', then z is not a P-point for the topology of S.
The converse is false. In the Stone space Sw of P(w), we have that
every point of w* = Sw/w (the perfect-kernel of Sw) is not a P-point in
the topology of Sw. Nevertheless, assuming CH, in w*, with its relative
topology, there exist points that are P-points (cf. [8, Corollary 1.7.2]).

A closed set T' C S whose points are P-points is necessarily finite.

If p € C(S)* and if z is a P-point in S such that z € car y, then it
is also a P-point in car u (endowed with its relative topology). Since
car p is a zero-dimensional Hausdorff compact space with the property
(ccc), there are no P-points in its perfect kernel. Hence, {z} is an
isolated point in car y and there exists an A € F' such that z € A and
Ancarp = {z}. This proves that |u|(A\{z}) =0.

Let us suppose that (pn)ncw is @ pointwise bounded sequence of
measures in F and that z is a P-point in S. For A € F, let
p(A) = 3 7°(1/2™)(|ul(A) /|| n]]). There exists an A € F such that
z € A and |p,|(A\{z}) = 0 for every n € w. Hence, in Fa, we have
either p,, is a multiple of ¢, or u, =0, for every n € w, and (un)necw is
uB and uSA in Fa. This proves that Lemma 3.1 can be improved in
the following form.

Corollary 3.3. Let (un)ncw be a pointwise bounded sequence of
measures in C(S)*.

a) (Un)new 8 ub in F if and only if for every x € Py there exists an
A € F with z € A and such that (|tn|(A4))necw i a bounded sequence.

b) (tn)new s usa in F if and only if for every © € Ps there exists
an A € F with x € A and such that (fn)new @ usa in Fa.

The following result, whose proof is an immediate consequence of
Corollary 3.3, characterizes the Nikodym, Grothendieck and Vitali-
Hahn-Saks properties through the points that are not P-points of the
perfect kernel of S.
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Corollary 3.4. A Boolean algebra F does not have the Vitali-Hahn-
Saks (respectively, Grothendieck’s, respectively Nikodym) property if
and only if there exists a sequence (fn)necw n C(S)* pointwise con-
vergent to zero in F (respectively, bounded and pointwise convergent to
zero; respectively, pointwise bounded in F') and there exists an x € P
such that for every neighborhood A € F of © we have that (n)necw
is not usa in Fa (respectively, (in)ncw s not usa in Fa; respectively,
(|n|(A))new is not bounded).

In order to obtain a sufficient condition for (NP) that is not sufficient
for (GP), we need some definitions and results.

Definition 3.5. We shall say that a Boolean algebra F' has the
additional property of Dashiell (aD) if and only if every positive
measure p € C(S)* whose carrier car (u) is contained in the frontier of
a cozero set of S is not o-additive.

The property (aD) will now be decomposed into two weaker proper-
ties.

Definition 3.6. A Boolean algebra F is said to be (aDy) (respec-
tively, (aD3)) if and only if for every positive measure p € C(S)* that
is not atomless (respectively, atomless) and whose carrier is contained
in the frontier of cozero set in S is not o-additive.

Proposition 3.7. The following conditions on a Boolean algebra F
are equivalent:

a) F has the property (aDy).
b) For every x € P there exists a decreasing sequence (Bp)ncw in
F such that x € B; fori € w and Nic, B; = NB; = J.

c) For every © € P, there exists a disjoint sequence (A;)ice, in F
such that Ujc, A; = A€ F, 2 ¢ A; fori €w and z € A.

d) x € Py if and only if §z is not o-additive.

Proof. a) = b). If x € P», the measure ¢, is not atomless and its
carrier {z} is contained in the frontier of a cozero set in S. Hence, 6,
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is not o-additive and there exists a decreasing sequence (B, )ncw such
that Aje,B; = & and lim;_, «, §,(B;) # 0; so z € B; for every i € w.

The proof of b) = c) is evident by taking complements.

¢) = a). Let u € C(S)* be a nonatomless positive measure whose
carrier is contained in the frontier of a cozero set in S. There exists an
x € car (u) such that p(x) > 0; this point z is not a P-point. Hence,
there exists a disjoint sequence (4;);c,, in F such that = ¢ A;, for
i €w,and z € Vic,A; = A € F. Since u(A\ Ui, Ai) > p(z) > 0 the
measure £ is not o-additive. The equivalence of c) and d) is evident.
o

Theorem 3.8. If a Boolean algebra F has the properties (udsc) and
(aDy), then F has the Nikodym property.

Proof. If F does not have the property (NP), there exists a sequence
(fn)new in C(S)* that is pb in F but is not ub in F. Corollary 3.3
implies that there exists an x € P, such that for every neighborhood
A € F of z, the sequence (|gn|(A))new is not bounded. Since z € P,
there exists a decreasing sequence (B;);e, such that z € B; for every

i € wand NB; = @. It is well known that when a sequence of measures
(1i)icw is pointwise bounded in a Boolean algebra but is not uniformly
bounded, there exists, for every p > 0, a partition (E,,F),) of the
unitary element of the algebra and an n, € w such that

|#np(Ep)| > p and |#np(Fp)| > p.

For p = 1, the algebra Fp, and the sequence ({iy,)ncw, there exists a
partition (Eq, Fy) of By and an ny € w such that |p,, (E1)| > 1 and
|:un1 (F1)| > L

Let us suppose that z € E;. If we write A; = Fj, we have that
r € E; N Bs.

For p = 2, the algebra Fg,ng, and the sequence {p,,n > ni},
there exists a partition (E2, F3) of E; N By and ny > ny such that
|pins (E2)| > 2 and |pn, (F2)| > 2.

It can be obtained inductively that a disjoint sequence (4;);c., and
a subsequence (n,)icw Of (Un)new, that will be denoted as (pn)new,
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such that, for every i € w:

(1) A; C B; and |[1,Z(A,)| > 1.

Since NB; = @ and F is (udsc), then U;e,A; € F (cf. [2, Theorem
1.8]) and for every N C w is also U;enA; € F. Hence, the o-algebra
Y generated by (A;)ic, is contained in F and the sequence (fin)ncw
is pointwise bounded in ¥. Since the o-algebras have the Nikodym
property, (in)new is uniformly bounded in ¥. This contradicts (1).
O

Theorem 3.9. The algebra J of the Jordan-measurable sets of [0,1]
has the property (aDy).

Proof. Let x € P, where P is the perfect kernel. We have [0,1] =
[0,1/2]U[1/2,1].

If[0,1/2] € x, we put I; = [0,1/2];if[1/2,1] € =, we put I; = [1/2,1].
We have I; = I} U I? where I} and I? are closed intervals of length
1/22. We put I, = I} if I} € z and I, = I? if I} € . We obtain
inductively a decreasing sequence (Ix)ge, of closed intervals such that
I,, € z for every n € w and diam (I,,) = (1/2™). Hence, there exists a
point ¢t € [0, 1] such that {t} = Nycwl,. Nevertheless, {t} ¢ x because
x is not a principal filter. ]

As a consequence of the proof of Theorem 3.9, we have that in the
perfect-kernel of the Stone Space of J, there are no P-points.

Remark 3.10. Schachermayer [9] proved that J has the property
(udsc) but lacks the Grothendieck property. Since J has (aD;), we have
that the property (udsc) + (aDy) is sufficient for the Nikodym property
but is not sufficient for the Grothendieck property. Finally, we observe
that J does not have the property (aDs) because, to the contrary,
J would have the property of Grothendieck. Hence, the fundamental
difference between the algebra J and the algebra D of the simultaneous
Gs and F, subsets of [0, 1] is that J does not have (aDz), while D has
(aDg).
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We saw in Section 3 that several properties on a Boolean algebra F’
can be characterized by means of the perfect kernel P endowed with
the topology of S, but not with the relative topology. If we consider P
with its relative topology, we cannot obtain the same results. This will
be clear through the following examples.

Example 3.11. Let F be the algebra of subsets of w consisting
of the sets A C w such that for all but finitely many k, the pair
{2k — 1,2k} is either in A or in the complement (cf. [9, ex. 4.10]). F
lacks the properties of Grothendieck, Nikodym, Vitali-Hahn-Saks and
Rosenthal. Nevertheless, the perfect kernel P of F' is homeomorphic to
w* = Bw/w, which is the Stone space of a Boolean algebra with those
four properties.

Example 3.12. Let @ = {(n,m) € w x w,n > m}. For every
i € w, let 4; = {(i,n) € w x w,n < i}. For every A C , we
write d(A) = lim, oo (1/n)|A N A, if that limit exists there. On the
contrary, we write d(A) = co. d(A) will be called the density of A. Let
F={AeQ:d(A) =0or d(A) = 1}. Freniche [4] proved that F is a
Boolean algebra that lacks the Grothendieck property. For every A € F
such that d(A) = 0, Fo = 24 is complete and that the Stone space of
F has no nontrivial convergent sequences, let z = {A € Q,d(A) = 1}.
It is clear that z is a nonprincipal ultrafilter in F'. Hence, z is in the
perfect kernel P of F and d(A) = §,(A) for A € F. Let © # z be a
maximal filter on F. There exists an A € z such that A ¢ z. Since
d(A) =1, d(A°) = 0 and A° € z. Hence, for every z € P,  # z,
there exists a clopen neighborhood A of x such that Fa is a complete
algebra. If the point z had the same property, the results of section 3
would tell us that F' has the Grothendieck property. Hence, for every
clopen neighborhood A of z, Fa does not have Grothendieck’s property.

The next theorem tells us that every Boolean algebra with similar
characteristics to the one showed on Example 4.2 and that has a weak
separation property on the sequences of disjoint sets has the Vitali-
Hahn-Saks property.

Theorem 3.13. Let F be a Boolean algebra such that for every
disjoint sequence (A;)ic, in F there exist two disjoint infinite sets
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Ni,No C w such that, if i € Ny, then A; C A and if i € Na,
then A; N A = @, for some A € F. If for every x € P, except a
discrete set M C P, there exists a neighborhood A € F of x such
that Fa has the property of Vitali-Hahn-Saks (respectively, Nikodym,
respectively, Grothendieck) then F has the property of Vitali-Hahn-Saks
(respectively, Nikodym, respectively, Grothendieck).

Proof. If F does not have the property of Vitali-Hahn-Saks, then
there exists a sequence (i, )ne, in C(S)* pointwise convergent to zero,
an € > 0 and a disjoint sequence (4;);c, in F such that |u;(4;)] > €
for every i € w. Let A € F and two disjoint infinite sets Ny, No C w be
such that A; C Aifi € Ny and A;NA = if i € N,. We consider two
cases.

a) Let M = {z}. If z € A we write B=A°and N = N,. If z € A°
we write B = A and N = Ny. It is clear that (u;):cn is a sequence that
is pointwise convergent to zero in Fg. (A4;);en is a disjoint sequence in
Fg and

(2) |wi(Ai)| > €

for every ¢ € N. For every x € BNP, there exists a clopen neighborhood
¢ € F, ¢ C B, such that F, has the Vitali-Hahn-Saks property. Hence,
Fg is Vitali-Hahn-Saks, which is in contradiction to (2).

b) If M is a discrete set, with an arbitrary cardinal number. we have
that for every = € P there exists a neighborhood A € F of z such that
AN M is either empty or unitary. Hence, a) shows that Fa and F have
the Vitali-Hahn-Saks property.

In a similar way, the theorem can be proved for the properties of
Nikodym and Grothendieck. o
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