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CARATHÉODORY SOLUTIONS TO HYPERBOLIC
FUNCTIONAL DIFFERENTIAL SYSTEMS

WITH STATE DEPENDENT DELAYS

ZDZIS�LAW KAMONT AND JAN TURO

ABSTRACT. The paper is concerned with initial problems
for quasilinear systems of first order partial functional differen-
tial equations. The unknown function is the functional argu-
ment in equations, the partial derivatives appear in a classical
sense. A theorem on the existence of a solution and continuous
dependence upon initial data is proved. The Cauchy problem
is transformed into a system of functional integral equations.
The existence of a solution of this system is proved by using
integral inequalities and the method of bicharacteristics.

Differential systems with deviated variables and differential
integral systems can be derived from a general model by
specializing given operators.

1. Introduction. For any metric spaces U and V , let C(U, V )
denote the class of all continuous functions from U into V . Let
L([0, c], R+) where c > 0 and R+ = [0,+∞) is the set of all functions
η : [0, a] → R+ which are integrable on [0, c]. We will use vectorial
inequalities with the understanding that the same inequalities hold
between their corresponding components.

Denote by Mk×n the set of all matrices

X = [xij ]i=1,... ,k, j=1,... ,n

with real elements. For x = (x1, . . . , xn) ∈ Rn, p = (p1, . . . , pk) ∈ Rk

and X ∈Mk×n, we write

‖x‖ = |x1| + · · · + |xn|, ‖p‖ = max {|pi| : 1 ≤ i ≤ k } ,

‖X‖ = max
{ n∑

j=1

|xij | : 1 ≤ i ≤ k

}
.
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Let B = [−b0, 0] × [−b, b] and E = [−b0, a] × Rn, where a > 0,
b0 ∈ R+, b = (b1, . . . , bn) ∈ Rn+. For a given function z : E → Rk and
a point (t, x) ∈ [0, a] × Rn, we define the function z(t,x) : B → Rk by
z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ B.

Put Ω = [0, a]×Rn ×C(B,Rk), E0 = [−b0, 0]×Rn and assume that

� : Ω →Mk×n, � = [ �ij ]i=1,... ,k,j=1,... ,n ,

f : Ω → Rk, f = (f1, . . . , fk),
ψ0 : [0, a] → R, ψ∗ : Ω → Rn, ψ∗ = (ψ1, . . . , ψn)

are given functions. Write

�i = (�i1, . . . , �in) for 1 ≤ i ≤ k

and ψ(t, x, w) = (ψ0(t), ψ∗(t, x, w)) for (t, x, w) ∈ Ω.

For a given initial function ϕ : E0 → Rk, ϕ = (ϕ1, . . . , ϕk), consider
the quasilinear system of functional differential equations with state
dependent delays

(1) ∂tzi(t, x) +
n∑
j=1

�ij(t, x, zψ(t,x,z(t,x))) ∂xj
zi(t, x)

= fi(t, x, zψ(t,x,z(t,x))), i = 1, . . . , k,

with the initial condition

(2) z(t, x) = ϕ(t, x) for (t, x) ∈ E0,

where z = (z1, . . . , zk). Note that the symbol zψ(t,x,z(t,x)) denotes the
restriction of z to the set

[ψ0(t) − b0, ψ0(t)] × [ψ∗(t, x, z(t,x)) − b, ψ∗(t, x, z(t,x)) + b],

and this restriction is shifted to the set B.

A function u : Ec → Rk, where Ec = [−b0, c] × Rn, 0 < c ≤ a, is the
Carathéodory solution of problem (1), (2) if

(i) u is continuous and the derivatives ∂tui, ∂xui=(∂x1ui, . . . , ∂xn
ui),

1 ≤ i ≤ k, exist almost everywhere on [0, c] ×Rn;



SOLUTIONS TO FUNCTIONAL DIFFERENTIAL SYSTEMS 1937

(ii) u satisfies (1) almost everywhere on [0, c]×Rn and condition (2)
holds.

In recent years a number of papers concerned with first order partial
functional differential equations were published. The following ques-
tions were discussed: functional differential inequalities and their ap-
plications, existence theory of classical and generalized solutions, nu-
merical methods for initial or mixed problems. It is not our aim to show
a full review of papers concerning the above problems. We consider the
questions of the existence of solutions only.

Classical solutions of initial problems have been considered in [2, 3,
14, 20, 21]. Existence results presented in these papers are based
on a method of successive approximations which were introduced by
Wazewski for first order partial differential systems without functional
dependence [25]. Classical solutions of nonlinear functional differential
equations exist locally with respect to t. This leads in a natural
way to generalized or weak solutions. Distributional solutions of
initial problems for quasilinear equations have been considered in
[22]. Existence results to nonlinear equations and global Carathéodory
solutions can be found in [6]. The proofs presented in these papers are
constructive, and they are based on difference methods.

Generalized solutions of nonlinear equations are also investigated in
the case that assumptions for given functions are extended. This leads
to Cinquini Cibrario solutions. This class of solutions is placed between
classical solutions and solutions in the Carathéodory sense. Existence
results for initial or mixed problems, [7, 18] are obtained by a lineariza-
tion procedure and by a construction of integral functional systems for
unknown functions and for their partial derivatives with respect to spa-
tial variables. Under natural assumptions on given functions, solutions
of integral functional systems generate weak solutions of original prob-
lems. These papers deal with weakly coupled systems. This means
that every equation consists of the vector on unknown functions and
the derivatives of only one function. Carathéodory solutions of quasi-
linear differential functional equations have been considered in [17, 23,
24]. Existence results are obtained by investigations of adequate inte-
gral equations and by the bicharacteristics theory. The Barabshin type
functional differential problems have been discussed [15]. For further
bibliography concerning existence results, see the monograph [16].
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Hyperbolic functional differential equations have applications in dif-
ferent branches of knowledge. We give a few examples. Quasilinear first
order partial differential equations perturbed by a dissipative integral
term of Volterra type arise from laser problems in nonlinear optics [1].
In the theory of the distribution of wealth, a differential equation with a
deviated argument is used, [8]. Differential integral equations describ-
ing the dynamic of muscle contraction was studied in [10]. The paper
[11] discusses, using differential integral equations, optimal harvesting
policies for age structured populations harvested with effort indepen-
dent of age. A system on nonlinear differential integral equations which
mode an age dependent epidemic of a disease with vertical transmission
is investigated in [9]. Almost linear differential integral equations are
used in [4] to describe a model of proliferating cell populations.

Ordinary functional differential equations with state dependent de-
lays, also called iterative functional differential equations, have at-
tracted the attention of several authors in recent years, see e.g.,
[5, 12, 13].

Delay systems with state dependent delays occur as models for the
dynamics of diseases when the mechanism of infection is such that the
infectious dosage received by an individual has to reach a threshold
value before the resistance of the individual is broken down and as a
result the individual becomes infectious. A prototype of such a model
was proposed in [5].

In this paper we initiate the study of the existence theory for first
order functional partial differential equations with state dependent
delays.

We will consider existence and uniqueness of local generalized solu-
tions of problem (1), (2) in the “almost everywhere” sense. Our results
are based on the method of bicharacteristics. The Cauchy problem
will be transformed into integral functional equations. The existence
and uniqueness of solutions of this system will be proved by using the
Banach fixed point theorem.

2. Bicharacteristics of quasilinear systems. The following
function spaces will be needed throughout the paper.

Let ω0 ∈ L([−b0, 0], R+), p = (p0, p1) ∈ R2
+. Denote by J [ω0, p] the
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class of all functions ϕ ∈ C(E0, R
k) such that ‖ϕ(t, x)‖ ≤ p0 on E0 and

‖ϕ(t, x) − ϕ(t̄, x̄)‖ ≤
∣∣∣∣
∫ t̄

t

ω0(s) ds
∣∣∣∣ + p1‖x− x̄‖

on E0. The space J [ω0, p] is the set of initial functions for problem (1),
(2).

Suppose that

c ∈ (0, a], q = (q0, q1) ∈ R2
+, q0 ≥ p0, q1 ≥ p1,

and
ω ∈ L([−b0, c], R+), ω(t) ≥ ω0(t)

for almost all t ∈ [−b0, 0]. Let Kϕ.c[ω, q] be the class of all functions
z ∈ C(Ec, Rk) such that

(i) z(t, x) = ϕ(t, x) on E0;

(ii) for (t, x), (t̄, x̄) ∈ [0, c] ×Rn we have ‖z(t, x)‖ ≤ q0 and

‖z(t, x) − z(t̄, x̄)‖ ≤
∣∣∣∣
∫ t̄

t

ω(s) ds
∣∣∣∣ + q1‖x− x̄‖.

Put |q| = q0 + q1. We will prove that, under suitable assumptions on
�, f and ϕ and for sufficiently small c with 0 < c ≤ a, there exists a
solution u of problem (1), (2) such that u ∈ Kϕ.c[ω, q].

In force of bicharacteristic approach we cannot expect that the
solutions present the same regularities with respect to t and x. In
fact they are more regular with respect to x.

We will need the following spaces in the formulation of assumptions
on � and f . Let C0.L(B,Rk) be the class of all w ∈ C(B,Rk) such that

‖w‖L = sup
{ ‖w(t, x) − w(t, y)‖ · ‖x− y‖−1 :

(t, x), (t, y) ∈ B, x �= y } < +∞.

Let us denote by ‖ · ‖0 the supremum norm in the space C(B,Rk) and

‖w‖0.L = ‖w‖0 + ‖w‖L for w ∈ C0.L(B,Rk).
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Write

C(B,Rk;κ) = {w ∈ C(B,Rk) : ‖w‖0 ≤ κ }
C0.L(B,Rk;κ) = {w ∈ C0.L(B,Rk) : ‖w‖0.L ≤ κ }

where κ ∈ R+. We will denote by Θ the set of all functions α :
[0, a] × R+ → R+ such that α( · , t) ∈ L([0, a], R+) for t ∈ R+ and
the function α(t, · ) : R+ → R+ is continuous and nondecreasing on
R+ for almost all t ∈ [0, a] and α(t, 0) = 0. Let Θ� denote the set of all
functions α� ∈ C(R+, R+) such that α�(0) = 0 and α� is nondecreasing
on R+.

Assumption H [�]. Suppose that 1) the function �(·, x, w) : [0, a] →
Mk×n is measurable for (x,w) ∈ Rn × C(B,Rk) and �(t, · ) : Rn ×
C(B,Rk) →Mk×n is continuous for almost all t ∈ [0, a];

2) there exist α0, α ∈ Θ such that

‖�(t, x, w)‖ ≤ α0(t, κ)

for (x,w) ∈ Rn × C(B,Rk;κ) almost everywhere on [0, a] and

‖�(t, x, w) − �(t, x̄, w̄)‖ ≤ α(t, κ)[ ‖x− x̄‖ + ‖w − w̄‖0 ]

for (x,w), (x̄, w̄) ∈ Rn × C(B,Rk;κ) almost everywhere on [0, a];

Assumption H [ψ]. Suppose that 1) the function ψ∗( · , x, w) : [0, a] →
Rn is measurable for (x,w) ∈ Rn × C(B,Rk) and ψ∗(t, · ) : Rn ×
C(B,Rk) → Rn is continuous for almost all t ∈ [0, a];

2) ψ0 ∈ L([0, a], R), −b0 ≤ ψ0(t) ≤ t for almost all t ∈ [0, a] and there
is β ∈ Θ� such that

(3) ‖ψ∗(t, x, w) − ψ∗(t, x̄, w̄) ‖ ≤ β(κ) [ ‖x− x̄‖ + ‖w − w̄‖0 ]

for (x,w), (x̄, w̄) ∈ Rn × C0.L(B,Rk;κ) almost everywhere on [0, a].

Suppose that ϕ ∈ J [ω0, p], c ∈ [0, a] and z ∈ Kϕ.c[ω, q]. Consider the
Cauchy problem

(4) η′(τ ) = �i(τ, η(τ ), zψ(τ,η(τ),z(τ,η(τ)))), η(t) = x,

where (t, x) ∈ [0, c] × Rn and 1 ≤ i ≤ k. Denote by gi[z]( · , t, x) the
Carathéodory solution of (4). The function gi[z] is the ith bicharacter-
istic of system (1) corresponding to z ∈ Kϕ.c[ω, q].
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For z ∈ C(Ec, Rk) and t ∈ [0, a] we put

‖z‖t = sup{‖z(τ, y)‖ : (τ, y) ∈ [−b0, t] ×Rn}.

Lemma 2.1. Suppose that Assumptions H [�], H[ψ] are satisfied and

c ∈ [0, a], ϕ, ϕ̄ ∈ J [ω0, p],
z ∈ Kϕ.c[ω, q], z̄ ∈ Kϕ̄.c[ω, q].

Then for each i, 1 ≤ i ≤ k, the bicharacteristics gi[z]( · , t, x) and
gi[z̄]( · , t, x) are defined on [0, c] and they are unique. Moreover, we
have the estimates

(5) ‖ gi[z](τ, t, x)−gi[z](τ, t̄, x̄)‖ ≤ Λ(t, τ )
[
‖x−x̄‖+

∣∣∣∣
∫ t̄

t

α0(s, q0) ds
∣∣∣∣
]

for (t, x), (t̄, x̄) ∈ [0, c] ×Rn, τ ∈ [0, c], where

Λ(t, τ ) = exp
[
δ(q)

∣∣∣∣
∫ τ

t

α(s, q0) ds
∣∣∣∣
]
, δ(q) = 1 + q1(1 + q1)β(|q|)

and

(6) ‖ gi[z](τ, t, x) − gi[z̄](τ, t, x)‖ ≤ Λ̃(t, τ )
∣∣∣∣
∫ t̄

t

α(s, q0) ‖z − z̄‖s ds
∣∣∣∣

for (τ, t, x) ∈ [0, c]2 ×Rn, where

Λ̃(t, τ ) = (1 + q1β(|q|)) Λ(t, τ ).

Proof. Our proof starts with the observation that

‖z(τ,y)‖0.L ≤ |q| and ‖z(τ,y) − z(τ,ȳ)‖0 ≤ q1‖y − ȳ‖

where (τ, y), (τ, ȳ) ∈ [0, c] ×Rn.
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The existence and uniqueness of solutions of (4) follows from classical
theorems. Note that the righthand side of the system satisfies the
Carathéodory conditions and the Lipschitz estimate

‖�i(τ, y, zψ(τ,y,z(t,y))) − �i(τ, ȳ, zψ(τ,ȳ,z(τ,ȳ)))‖ ≤ α(τ, q0) δ(q) ‖y − ȳ‖,

for (τ, y), (τ, ȳ) ∈ [0, c] ×Rn, holds.

The function gi[z](·, t, x) satisfies the integral equation

gi[z]( τ , t, x) = x+
∫ τ

t

�i(s, gi[z](s, t, x), zψ(s,gi[z](s,t,x),z(s,gi[z](s,t,x)))) ds,

for (t, x) ∈ [0, c] ×Rn, τ ∈ [0, c].

From Assumptions H [�] and H [ψ] we get the following integral
inequality

‖gi[z](τ, t, x) − gi[z](τ, t̄, x̄)‖

≤ ‖x− x̄‖ +
∣∣∣∣
∫ t̄

t

α0(s, q0) ds
∣∣∣∣

+ δ(q)
∣∣∣∣
∫ τ

t

α(s, q0) ‖gi[z](s, t, x) − gi[z](s, t̄, x̄)‖ ds
∣∣∣∣,

for (t, x), (t̄, x̄) ∈ [0, c] × Rn, τ ∈ [0, c]. Hence, and by the Gronwall
inequality we obtain estimate (5).

For z ∈ Kϕ.c[ω, q], z̄ ∈ Kϕ̄.c[ω, q], we have the integral inequality

‖gi[z](τ, t, x) − gi[z̄](τ, t, x)‖
≤ (1 + q1β(|q|))

∣∣∣∣
∫ τ

t

α(s, q0) ‖z − z̄‖s ds
∣∣∣∣

+ δ(q)
∣∣∣∣
∫ τ

t

α(s, q0) ‖gi[z](s, t, x) − gi[z̄](s, t, x) ‖ ds
∣∣∣∣,

for (t, x) ∈ [0, c] × Rn, τ ∈ [0, c]. Now, we get (6) by the Gronwall
inequality. This completes the proof of Lemma 2.1.

Remark 2.2. It is important in our considerations that we have
assumed the Lipschitz condition for ψ� in some special function spaces.
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We have assumed that ψ�(t, · ) satisfies the Lipschitz condition on the
space Rn × C(B,Rk) for almost all t ∈ [0, a], and this condition is
local with respect to the functional variable. The Lipschitz coefficient
depends on the space C0.L(B,Rk;κ). Let us consider the simplest
assumption on ψ�. Suppose that there is L̃ ∈ R+ such that for almost
all t ∈ [0, a] we have

(7) ‖ψ�(t, x, w) − ψ�(t, x̄, w̄)‖ ≤ L̃ [ ‖x− x̄‖ + ‖w − w̄‖0 ],

on Rn × C(B,Rk). Of course, our results are true if we assume (7)
instead of (3). Now we show that there is a class of function ψ�
satisfying Assumption H [ψ] and not satisfying (7). Consider the
function ψ� given by

(8) ψ�(t, x, w) = ψ̃( t, x, w(η0(t) − t, η(t, x) − x) )

where η0 ∈ C([0, a], R), η ∈ C([0, a] ×Rn, Rn) and

−b0 ≤ η0(t) − t ≤ 0, −b ≤ η(t, x) − x ≤ b.

Then ψ�(t, x, , z(t,x)) = ψ̃( t, x, z(η0(t), η(t, x) ). We assume that there
are L0, L1 ∈ R+ such that

‖η(t, x) − η(t, x̄)‖ ≤ L0‖x− x̄‖,
‖ψ̃(t, x, y) − ψ̃(t, x̄, ȳ)‖ ≤ L1 [‖x− x̄‖ + ‖y − ȳ‖]

where (t, x), (, x̄) ∈ [0, a] × Rn, y, ȳ ∈ Rn. Then function ψ� given by
(8) satisfies condition (3) and does not satisfy (7).

Note that we have assumed the Lipschitz condition for �(t, · ), and
this condition is local with respect to the functional variable.

3. Existence and uniqueness of Carathéodory solutions. First
we formulate integral functional equations corresponding to problem
(1), (2). Suppose that ϕ ∈ J [ω0, p], c ∈ [0, a], z ∈ Kϕ.c[ω, q] and

( g1[z]( · , t, x), . . . , gk[z]( · , t, x) ) = g[z]( · , t, x)

is the set of bicharacteristics of system (1) corresponding to z. Write

Δi[z](τ, t, x) = ψ(τ, gi[z](τ, t, x), z(τ,gi[z](τ,t,x))), 1 ≤ i ≤ k,
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and

f∗(τ, g[z](τ, t, x), zΔ[z](τ,t,x))

=
(
f1(τ, g1[z](τ, t, x), zΔ1[z](τ,t,x)), . . . ,

fk(τ, gk[z](τ, t, x), zΔk[z](τ,t,x))
)

and

ϕ�(0, g[z](0, t, x)) = (ϕ1(0, g1[z](0, t, x)), . . . , ϕk(0, gk[z](0, t, x)) ) .

Let us define the operator F for all z ∈ Kϕ.c[ω, q] by the formula

F [z](t, x) = ϕ�(0, g[z](0, t, x)) +
∫ t

0

f∗(τ, g[z](τ, t, x), zΔ[z](τ,t,x)) dτ,

for (t, x) ∈ [0, c] ×Rn, and

F [z](t, x) = ϕ(t, x) for (t, x) ∈ E0.

Assumption H[f ]. Suppose that 1) the function f( · , x, w) : [0, a] →
Rk is measurable for (x,w) ∈ Rn × C(B,Rk) and f(t, · ) : Rn ×
C(B,Rk) → Rk is continuous for almost all t ∈ [0, a];

2) there exist γ0, γ ∈ Θ such that

‖f(t, x, w)‖ ≤ γ0(t, κ)

for (x,w) ∈ Rn × C(B,Rk;κ) almost everywhere on [0, a] and

‖f(t, x, w) − f(t, x̄, w̄)‖ ≤ γ(t, κ) [ ‖x− x̄‖ + ‖w − w̄‖0 ]

for (x,w), (x̄, w̄) ∈ Rn × C(B,Rk;κ) almost everywhere on [0, a].

Assumption H[ω, q]. Suppose that the constants (q0, q1) = q, c ∈
(0, a], and the function ω : [−b0, c] → R+ satisfy the conditions

q0 ≥ p0 +
∫ c

0

γ0(s, q0) ds,

q1 ≥
[
p1 + δ(q)

∫ c

0

γ(s, q0) ds
]

Λ(c, 0)
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and

ω(t) ≥ α0(t, q0)
[
p1 + δ(q)

∫ c

0

γ(s, q0) ds
]
Λ(c, 0) + γ0(t, q0)

for almost all t ∈ [0, c].

Remark 3.1. If q0 > p0 and q1 > p1, then there is a c ∈ (0, a] such
that (q0, q1) satisfies Assumption H [ω, q].

Lemma 3.2. If ϕ ∈ J [ω0, p] and Assumptions H [�], [ψ], H [f ] and
H [ω, q] are satisfied, then

F : Kϕ.c[ω, q] → Kϕ.c[ω, q].

Proof. For z ∈ Kϕ.c[ω, q], by Assumptions H[f ] and H[ω, q], we have

‖F [z](t, x)‖ ≤ p0 +
∫ c

0

γ0(s, q0) ds ≤ q0,

on [0, c] ×Rn, and

‖F [z](t, x) − F [z](t̄, x̄)‖ ≤ ‖ϕ�(0, g[z](0, t, x)) − ϕ�(0, g[z](0, t̄, x̄))‖

+
∫ t

0

‖ f∗(s, g[z](s, t, x), zΔ[z](s,t,x))

− f∗(s, g[z](s, t̄, x̄), zΔ[z](s,t̄,x̄))‖ ds

+
∣∣∣∣
∫ t̄

t

‖f�s, g[z](s, t̄, x̄), zΔ[z](s,t̄,x̄) )‖ ds
∣∣∣∣

≤ p1 max
1≤i≤k

‖ gi[z](0, t, x) − gi[z](0, t̄, x̄) ‖

+ δ(q)
∫ t

0

γ(s, |q|) max
1≤i≤k

‖gi[z](0, t, x)

− gi[z](0, t̄, x̄)‖ ds+
∣∣∣∣
∫ t̄

t

γ0(s, q0) ds
∣∣∣∣
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for (t, x), (t̄, x̄) ∈ [0, c] ×Rn. Hence, by Lemma 1 we get

‖F [z](t, x) − F [z](t̄, x̄) ‖

≤
[
‖x− x̄‖ +

∫ t̄

t

α0(s, q0) ds
] [

p1 + δ(q)
∫ c

0

γ(s, q0) ds
]

Λ(c, 0)

+
∣∣∣∣
∫ t̄

t

γ0(s, q0) ds
∣∣∣∣

and consequently

‖F [z](t, x) − F [z](t̄, x̄)‖ ≤
∣∣∣∣
∫ t̄

t

ω(s) ds
∣∣∣∣ + q1 ‖x− x̄‖

on [0, c]×Rn. Therefore Fz ∈ Kϕ.c[ω, q], which completes the proof of
Lemma 3.2.

Theorem 3.3. Suppose that ϕ ∈ J [ω0, p] and Assumptions H [�], [ψ],
H [f ] and H [ω, q] are satisfied. Then there exists exactly one solution
u ∈ Kϕ.c[ω, q] of problem (1), (2).

If ϕ̄ ∈ J [ω0, p] and ū ∈ Kϕ̄.c[ω, q] is the solution of system (1) with the
initial condition z(t, x) = ϕ̄(t, x) on E0, then there is η ∈ C([0, c], R+)
such that

(9) ‖u− ū‖t ≤ η(t) ‖ϕ− ϕ̄‖0, t ∈ [0, c].

Proof. Lemma 3.2 shows that the operator F maps Kϕ.c[ω, q] into
itself. Put

Γ(t) = (1 + q1β(|q|)) Λ(c, 0)
[
p1 + δ(q)

∫ t

0

γ(s, q0) ds
]
,

q̄ = (1 + q1β(|q|)) max { 1, Γ(c)},
and

λ(t) = q̄ (γ(t, q0) + α(r, q0)) , t ∈ [0, c].

For z, z̄ ∈ Kϕ.c[ω, q] we put

[|z − z̄|] = sup
{
‖z − z̄‖t exp

[
− 2

∫ t

0

λ(s) ds
]

: t ∈ [0, c]
}
.
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It follows from Assumption H [f ] that

‖F [z](t, x) − F [z̄](t, x) ‖
≤ ‖ϕ�(0, g[z](0, t, x)) − ϕ�(0, g[z̄](0, t, x))‖

+
∫ t

0

‖ f∗(s, g[z](s, t, x), zΔ[z](s,t,x))

− f∗(s, g[z̄](s, t, x), zΔ[z̄](s,t,x)) ‖ ds
≤ p1 max

1≤i≤k
‖gi[z](0, t, x) − gi[z̄](0, t, x)‖

+ (1 + q1β(|q|))
∫ t

0

γ(s, q0) ‖z − z̄‖s ds

+ δ(q)
∫

0

γ(s, q0) max
1≤i≤k

‖gi[z](s, t, x) − gi[z̄(s, t, x)‖ ds,

and consequently

‖F [z](t, x) − F [z̄](t, x)‖ ≤
∫ t

0

λ(s) ‖z − z̄‖s ds

≤ [|z − z̄|]
∫ t

0

λ(s) exp
[
2

∫ s

0

λ(τ ) dτ
]
ds

≤ 1
2

[|z − z̄|] exp
[
2

∫ t

0

λ(s) ds
]
,

(t, x) ∈ [0, c] ×Rn.

The result is
[|F [z] − F [z̄] |] ≤ 1

2
[| z − z̄ |]

for z, z̄ ∈ Kϕ.c[ω, q]. By the Banach fixed point theorem there exists a
unique solution u ∈ Kϕ.c[ω, q] of the equation z = F [z]. Now, we prove
that u is a solution of system (1). We have

(10) ui(t, x) = ϕ(0, gi[u](0, t, x))+
∫ t

0

fi(s, g[u](s, t, x), zΔi[u](s,t,x)) ds,

where 1 ≤ i ≤ k, (t, x) ∈ [0, c] × Rn. For a given 1 ≤ i ≤ k, (t, x) ∈
[0, c] ×Rn, let us put η(i) = gi[u](0, t, x). Hence, we obtain

gi[u](τ, t, x) = gi[u](t, 0, η(i)) for τ ∈ [0, c] and x = gi[u](t, 0, η(i)).
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From (10) it follows that

ui(t, gi[u](t, 0, η(i)))

= ϕi(0, η(i)) +
∫ t

0

fi(s, gi[u](s, 0, η(i)), uΔi[u](s,0,η(i))) ds, 1 ≤ i ≤ k.

By differentiating the last expressions with respect to t and by putting
again η(i) = gi[u](0, t, x), we obtain that u satisfies system (11) for
almost all (t, x) ∈ [0, c] ×Rn.

If u = F [u] and ū = F [ū], then we have the integral inequality

‖u− ū‖t ≤ ‖ϕ− ϕ̄‖0 +
∫ t

0

λ(s) ‖u− ū‖s ds, t ∈ [0, c].

Using the Gronwall inequality, we obtain (9) with

η(t) = exp
[∫ t

0

λ(s) ds
]
, t ∈ [0, c].

This completes the proof.

4. Some noteworthy particular case. Now we list examples of
systems which can be derived from (11) by specializing the operators
� and f . Assume that

�̃ : [0, a] ×Rn ×Rk −→Mk×n, �̃ = [�̃ij ]i=1,... ,n, j=1,... ,n ,

f̃ : [0, a] ×Rn ×Rk −→ Rk, f̃ = (f̃1, . . . , f̃k),

and

ψ0 : [0, a] −→ R, ψ∗ : Ω −→ Rn

are given functions. Consider the operators

� : Ω −→Mk×n and f : Ω −→ Rk

defined by

�(t, x, w) = �̃(t, x, w(0, 0)),

f(t, x, w) = f̃(t, x, w(0, 0)), (t, x, w) ∈ Ω.
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Then

�(t, x, zψ(t,x,z(t,x))) = �̃( t, x, z(ψ(t, x, z(t,x)) )

and

f(t, x, zψ(t,x,z(t,x))) = f̃( t, x, z(ψ(t, x, z(t,x)) ),

and system (1) reduces to the system of differential equations with
delay dependent on the unknown function

(11) ∂tzi(t, x) +
n∑
j=1

�̃ij( t, x, z(ψ(t, x, z(t,x))) ) ∂xj
zi(t, x)

= f̃( t, x, z(ψ(t, x, z(t,x))) ), i = 1, . . . , k.

Assumption H [�̃, f̃ ]. Suppose that 1) the functions �̃( · , x, ζ) :
[0, a] → Mk×n and f̃( · , x, ζ) : [0, a] → Rk are measurable for (x, ζ) ∈
Rn × Rk and �̃(t, · ) : Rn × Rk → Mk×n, f̃(t, · ) : Rn × Rk → Rk are
continuous for almost all t ∈ [0, a];

2) there exist α0, α, γ0, γ ∈ Θ such that

‖�̃(t, x, ζ)‖ ≤ α0(t, κ), ‖f̃(t, x, ζ)‖ ≤ γ0(t, κ)

for (x, ζ) ∈ Rn × Rk, ‖ζ‖ ≤ κ, almost everywhere on [0, a] and

‖�̃(t, x, ζ) − �̃(t, x̄, ζ̄)‖ ≤ α(t, κ) [‖x− x̄‖ + ‖ζ − ζ̄‖]
‖f̃(t, x, ζ) − f̃(t, x̄, ζ̄)‖ ≤ γ(t, κ) [‖x− x̄‖ + ‖ζ − ζ̄‖]

for (x, ζ), (x̄, ζ̄) ∈ Rn ×Rk, ‖ζ‖, ‖ζ̄‖ ≤ κ, almost everywhere on [0, a].

We formulate a theorem on the solvability of problem (11), (2).

Theorem 4.1. Suppose that ϕ ∈ J [ω0, p] and Assumption H [�̃, f̃ ],
H [ψ], H [ω, q] are satisfied. Then there exists exactly one solution
u ∈ Kϕ.c[ω, q] of problem (11), (2). If ϕ̄ ∈ J [ω0, p] and ū ∈ Kϕ.c[ω, q]
is the solution of system (11) with the initial condition z(t, x) = ϕ̄(t, x)
for (t, x) ∈ E0, then there is η ∈ C([0, c], R+) such that estimate (10)
holds.
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The theorem follows as an immediate consequence of Theorem 3.3.

Consider the functions � : Ω →Mk×n and f : Ω → Rk given by

�(t, x, w) = �̃(t, x,
∫
B

w(τ, y) dτ dy),

f(t, x, w) = f̃(t, x,
∫
B

w(τ, y) dτ dy).

Write

D[t, x, z] =
{

(τ, y) ∈ R1+n : ψ0(t) − b0 ≤ τ ≤ ψ0(t),

ψ�(t, x, z(t,x)) − b ≤ y ≤ ψ�(t, x, z(t,x)) + b
}
.

Then (1) reduces to the differential integral system

(12) ∂tzi(t, x) +
n∑
j=1

�̃ij

(
t, x,

∫
D[t,x,z]

z(τ, y) dτ dy
)
∂xj

zi(t, x)

= f̃

(
t, x,

∫
D[t,x,z]

z(τ, y) dτ dy
)
, i = 1, . . . , k.

It is easy to formulate sufficient conditions for the existence, uniqueness
and continuous dependence of the Carathéodory solutions to problem
(12), (A2) again as an application of Theorem 3.3.

Note that results of the papers [14, 18, 20, 21] and the monograph
[16, Chapter 4] are not applicable to systems (11) and (12).
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E-mail address: zkamont@math.univ.gda.pl

Department of Mathematics, Technical University of Gdańsk, ul. Gabri-
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