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A NOTE ON REDUCED AND VON NEUMANN ALGEBRAIC
FREE WREATH PRODUCTS

JONAS WAHL

Abstract. We study operator algebraic properties of the reduced
and von Neumann algebraic versions of the free wreath products

G �∗ S+
N , where G is a compact matrix quantum group. Based on

recent results on their corepresentation theory by Lemeux and

Tarrago in [Lemeux and Tarrago (2014)], we prove that G �∗S+
N is

of Kac type whenever G is, and that the reduced version of G �∗S+
N

is simple with unique trace state whenever N ≥ 8. Moreover, we

prove that the reduced von Neumann algebra of G �∗ S+
N does not

have property Γ.

Introduction

Following the introduction of compact matrix quantum groups (CMQGs) by
Woronowicz in [Wor87], many fascinating examples have been discovered and
studied from different points of view. Many CMQGs have a rich combinatorial
structure encoded in their corepresentation theory (see for instance [BanSp]),
and many give rise to new examples of C∗- and von Neumann algebras, some of
which have been analysed in the works of Banica [Ban97], Vaes and Vergnioux
[VaVer], Brannan [Bra1], [Bra2] and others. In this paper, we deal with a class
of CMQGs called free wreath products which has been introduced by Bichon
in [Bic04]. This article is an immediate follow-up to the works of Lemeux and
Tarrago [Lem2], [LemTa].

Consider a finite directed graph G = (V,E) consisting of a finite set of
vertices V and a set of edges E ⊂ V × V and let Aut(G) denote its automor-
phism group, that is, the group of bijections σ : V → V such that (v,w) ∈ E
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if and only if (σ(v), σ(w)) ∈ E. It is a very natural question to ask if and
how one can deduce the automorphism group Aut(G�N ) of the disjoint union
G�N = (V �N ,E�N ) of N copies of G from the original automorphism group
Aut(G). If the graph G is connected, the relation between Aut(G�N ) and
Aut(G) can be nicely described using a well-known group construction called
the (classical) wreath product:

If G is a group and SN denotes the permutation group acting on N points
(N ∈ N≥1), the wreath product G � SN is defined as the semidirect product
GN

�ϕ SN where

ϕ : SN →Aut
(
GN

)
, ϕ(σ)(g1, . . . , gN ) = (gσ(1), . . . , gσ(N)).

Using this construction, one has

Aut
(
G�N

)
=Aut(G) � SN

for a finite connected graph G. For example, the automorphism group of the
graph

is Z/2Z � S2 and, more generally, the isometry group of a hypercube in R
N is

Z/2Z � SN .
In [Bic03], Bichon introduced a quantum group analogue of the automor-

phism group of a finite graph G, say Aaut(G), and in [Bic04] he constructed
a free wreath product �∗ that yields a similar description as in the classical
case, that is,

Aaut

(
G�N

)
=Aaut(G) �∗ S+

N ,

if G is connected. Here, the classical permutation group SN is replaced by the
quantum permutation group S+

N which was introduced by Wang in [Wa]. The
free wreath product of a CMQG G= (A, (uij)) by the quantum permutation
group S+

N = (C(S+
N ),ΔS+

N
) is a quotient of the free product A∗N ∗C(S+

N ) and

is therefore neither a free product nor a tensor product. It is a fundamental
result by Woronowicz [Wor87] that a CMQG always comes with a unique
invariant state, called the Haar state which one can use to obtain a reduced
version Cr(G) of a CMQG G. In the preliminary section of this article, these
concepts will be discussed in more detail. The main theorem of the article is
the following.

Theorem A. Let G be a CMQG with tracial Haar state. Then, for ar-
bitrary N ∈ N, the Haar state of the free wreath product G �∗ S+

N is tracial

as well. Moreover, if N ≥ 8, the reduced C∗-algebra Cr(G �∗ S+
N ) is simple

with unique trace and its envelopping von Neumann algebra L∞(G �∗ S+
N ) is a

II 1-factor which does not have property Γ.
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The proof of Theorem A is in large parts an adaption of Lemeux’s ideas in
[Lem2] to this more general situation. It is also heavily based on results and
ideas of Powers [Pow75], Banica [Ban97] and Brannan [Bra2].

1. Preliminaries

1.1. Compact matrix quantum groups. We will summarise the basic
facts on CMQGs that we will need throughout this paper. For a more detailed
introduction to the subject, the author recommends the excellent book [Tim].

Definition 1.1 ([Wor87]). A compact matrix quantum group G = (A,u)
is a unital C∗-algebra A together with a unitary matrix u = (uij)1≤i,j≤N ∈
MN (A),N ≥ 1, such that

(1) the elements uij ,1≤ i, j ≤N , generate A as a C∗-algebra,
(2) the conjugate ū of u is invertible,

(3) there is a ∗-homomorphism Δ :A→A⊗A with Δ(uij) =
∑N

k=1 uik ⊗ ukj

for all 1≤ i, j ≤N .

The matrix u is called the fundamental corepresentation of G and the ∗-
homomorphism Δ is called the comultiplication. We will often denote the
C∗-algebra A by A=C(G).

A CMQG G= (A,u) always admits a Haar state h which is a state h :A→
C that is uniquely determined by the invariance condition

(h⊗ idA)Δ(a) = (idA⊗h)Δ(a) = h(a)1A (a ∈A).

We denote the Hilbert space obtained from the GNS-construction with re-
spect to h by L2(G) and the corresponding GNS-representation by πh :
C(G) → B(L2(G)). The pair Gr = (Cr(G), πh(u)), where Cr(G) = πh(A) ⊂
B(L2(G)) and πh(u)ij = πh(uij), is a CMQG as well and its comultiplication
Δr : Cr(G) → Cr(G) ⊗ Cr(G) is related to the comultiplication Δ of G by
(πh ⊗ πh) ◦Δ=Δr ◦ πh. Gr is called the reduced version of G and its Haar
state hr is given by h= hr ◦ πh. Moreover, the enveloping von Neumann al-
gebra of Cr(G) is denoted by L∞(G). An important example of a CMQG is
the quantum permutation group S+

N . From the viewpoint of free probability
theory, it is an appropriate free version of the usual permutation group SN in
the sense that there is a de Finetti-type characterisation of free independence
in terms of “permutation” by S+

N (see [KöSp]). It is defined in the following
way:

Definition 1.2. Let N ∈ N and let C(S+
N ) be the universal unital C∗-

algebra with generators uij ,1≤ i, j ≤N satisfying the following relations:

(1) uij is a projection for all 1≤ i, j ≤N ,
(2) for every 1 ≤ i ≤ N the projections ui1, . . . , uiN are orthogonal and∑N

j=1 uij = 1,
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(3) for every 1 ≤ j ≤ N the projections u1j , . . . , uNj are orthogonal and∑N
i=1 uij = 1.

The pair S+
N = (As(N), (uij)) is a CMQG called the quantum permutation

group.

1.2. Free wreath products. In this paper, we are mainly interested in
CMQGs arising as a free wreath product of a CMQG G by the quantum
permutation group S+

N . The free wreath product construction was introduced
by Bichon in [Bic04] as a quantum analogue of the classical wreath product
of groups. For 1 ≤ k ≤N , we denote the kth canonical embedding of C(G)
into the free product C(G)∗N ∗C(S+

N ) by νk.

Definition 1.3 ([Bic04], Definition 3.1). Let G = (C(G), (vkl)) be a
CMQG, let N ≥ 1 be an integer and consider the quantum permutation
group S+

N = (C(S+
N ), (uij)1≤i,j≤N ). By C(G �∗ S+

N ) we denote the quotient

of C(G)∗N ∗C(S+
N ) by the closed two-sided ideal generated by the elements

νk(a)uki − ukiνk(a), 1≤ i, k ≤N,a ∈C(G).

The free wreath product G �∗ S+
N is the CMQG defined by G �∗ S+

N = (C(G �∗
S+
N ), (νi(vkl)uij)).

Remark 1.4. (1) Note that, in Bichon’s original work [Bic04], one considers
a compact quantum group G instead of a compact matrix quantum group.
However, it is easy to see that the free wreath product respects the structure
of a CMQG as well, that is, that G �∗ S+

N is indeed a CMQG whenever G is.

(2) Let ΔG,ΔS+
N

denote the comultiplication on G, S+
N respectively. Then,

the comultiplication Δ on G �∗ S+
N is given by Δ(uij) =

∑N
k=1 uik ⊗ ukj for

1≤ i, j ≤N and

Δ
(
νi(a)

)
=

N∑
k=1

νi ⊗ νk
(
ΔG(a)

)
(uik ⊗ 1), 1≤ k ≤N,a ∈C(G).

1.3. Corepresentation theory. A (n-dimensional) corepresentation of
a CMQG G is a matrix u = (uij)1≤i,j≤n ∈ Mn(C(G)) such that Δ(uij) =∑n

k=1 uik ⊗ ukj for all 1≤ i, j ≤ n. We say that u is a unitary corepresenta-
tion, if in addition u is a unitary element of Mn(C(G)). Note that, when-
ever u= (uij)1≤i,j≤n is a corepresentation, the conjugate ū= (u∗

ij)1≤i,j≤n is
a corepresentation as well. However, in general ū may not be unitary, even if
u is.

Definition 1.5. Let G be a CMQG and let u= (uij)1≤i,j≤n ∈Mn(C(G))
and v = (vkl)1≤k,l≤m ∈Mm(C(G)) denote two corepresentations of G.

(1) The vector space

Hom(u, v) =
{
T ∈B

(
C

n,Cm
)
; (T ⊗ 1C(G))u= v(T ⊗ 1C(G))

}
is called the intertwiner space from u to v.
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(2) The corepresentation u is called irreducible if Hom(u,u) = C id. Note
that u is irreducible if and only if ū is.

(3) The corepresentations u and v are called equivalent if there exists an
invertible intertwiner in Hom(u, v) and unitarily equivalent if there exists
a unitary intertwiner in Hom(u, v).

(4) The corepresentation u⊗ v = (uijvkl) 1≤i,j≤n
1≤k,l≤m

∈Mnm(C)⊗C(G) is called

the tensor product of u and v. If u and v are unitaries, so is u⊗ v.

It is also possible to define the notion of an infinite dimensional corepresen-
tation of a compact quantum group G. However, it is a celebrated result by
Woronowicz (see [Wor95]) that every irreducible corepresentation of a com-
pact quantum group is finite dimensional and equivalent to a unitary one.
Moreover, every unitary corepresentation is unitarily equivalent to a direct
sum of irreducibles.

We denote the set of equivalence classes of irreducible unitary corepre-
sentations of a CMQG G by Irr(G) and we fix a maximal family {uα =
(uα

ij)1≤i,j≤dα ;α ∈ Irr(G)} of irreducible unitary pairwise non-equivalent corep-

resentations, with uᾱ denoting the representative of the equivalence class of
uα. The span of the coefficients of this maximal family is the unique norm
dense ∗-Hopf subalgebra of C(G) and is denoted by Pol(G). The comultipli-
cation on Pol(G) is the restriction of the comultiplication on C(G) and the
coinverse κ : Pol(G) → Pol(G) is the antihomomorphism given by κ(uα

ij) =
(uα

ji)
∗ (1 ≤ i, j ≤ dα, α ∈ I). The counit ε : Pol(G) → C is the ∗-character

given by ε(uα
ij) = δij (1≤ i, j ≤ dα, α ∈ I). In addition, the restriction of the

Haar state h to Pol(G) is faithful, and the set {uα
ij ; 1≤ i, j ≤ dα, α ∈ I} is an

orthogonal basis of the GNS-Hilbert space L2(G).
The results in [LemTa] have been obtained under the assumption that the

Haar states of the CMQGs involved are tracial. A CMQG for which this
holds is said to be of Kac type and it is a well-known result of Baaj and
Skandalis (see [BaSka]) that the Haar state on G is a trace if and only if the
coinverse κ extends continuously to a ∗-antihomomorphism on C(G) which
again is equivalent to κ2 = id. Whenever we are in the Kac type setting, the
conjugate ū of an irreducible unitary corepresentation u is unitary as well.
Hence, we can always assume uᾱ = uα in the above notation.

Note that, one can also define free wreath products on the level of (∗)-Hopf
algebras (see [Bic04, Definition 2.2]). In particular, if G is a CMQG and
Pol(G) is its unique dense ∗-Hopf algebra, we have Pol(G �∗ S+

N )∼= Pol(G) �∗
Pol(S+

N ) as ∗-Hopf algebras.
Since the Haar state h of a CMQG G is faithful on the underlying Hopf

algebra, we have Pol(G)∼=Pol(Gr) and hence one can derive many interesting
results on the reduced version Gr from an understanding of the corepresen-
tation theory on the full level. In particular, it is useful to know how tensor
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products of irreducible unitary corepresentations decompose into sums of ir-
reducibles.

Let M = 〈Irr(G)〉 denote the monoid formed by the words over Irr(G). We
endow M with the following operations:

(1) involution: (α1, . . . , αk)
− = (ᾱk, . . . , ᾱ1),

(2) concatenation: for any two words α,β we set

(α1, . . . , αk), (β1, . . . , βl) = (α1, . . . , αk, β1, . . . , βl).

Theorem 1.6 ([LemTa]). Let G a CMQG of Kac type. The equivalence
classes of irreducible unitary corepresentations of G �∗ S+

N can be labelled by

ω(x) with x ∈M , with involution ω(x) = ω(x̄) and the fusion rules

ω(x)⊗ ω(y) =
⊕

x=u,t;y=t̄,v

ω(u, v)⊕
⊕

x=u,t;y=t̄,v

u �=∅,v �=∅

ω(u.v),

where ω(u.v) is defined as

ω
(
(α1, . . . , αk).(β1, . . . , βl)

)
=

⊕
γ⊂αk⊗β1

ω(α1, . . . , γ, . . . , βl)

for u= (α1, . . . , αk) and v = (β1, . . . , βl). This operation will be called fusion.
Moreover, for all α ∈ Irr(G) we have r(α) = ω(α)⊕ δα,1G1.

2. Simplicity and uniqueness of the trace

In [Lem2], F. Lemeux proved that the reduced version of the free wreath

product H+
N (Γ) = Γ̂ �∗ S+

N is simple and has a unique tracial state, namely
the Haar state, for a discrete group Γ with |Γ| ≥ 4 and N ≥ 8. The goal of
this section is to generalise this result by showing that G �∗ S+

N is simple with
unique trace whenever G is a CMQG of Kac type and N ≥ 8. We will closely
follow Lemeux’s proof. First, we observe that the free wreath product G �∗ S+

N

inherits the traciality of its Haar state from its left component G:

Proposition 2.1. Let G be a compact matrix quantum group of Kac type.
Then G �∗ S+

N is of Kac type for all N ≥ 1.

Proof. We recall that the coinverse κ : Pol(G �∗ S+
N )→ Pol(G �∗ S+

N ) is given
by κ(vij) = v∗ji where v = (vij) is an irreducible unitary corepresentation of

G �∗ S+
N . It suffices to show that κ2 = id. Let (uij) be the fundamental corep-

resentation of S+
N and let α= (aij) �= 1G be an irreducible unitary corepresen-

tation of G. As G is of Kac type, the irreducible corepresentation ᾱ is unitary
as well and hence (νi(akl)uij), (νi(a

∗
kl)uij) are irreducible unitary corepresen-

tations of G �∗S+
N . Therefore, for every 1≤ i, j ≤N and every 1≤ k, l≤ dimα,

we have

κ
(
νi(akl)uij

)
=

(
νj(alk)uji

)∗
=

(
ujiνj(alk)

)∗
= νj

(
a∗lk

)
uji
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and
κ
(
νi(akl)

∗uij

)
= νj(alk)uji,

as uji and νj(alk) commute. Now it follows that

κ
(
νi(akl)

)
= κ

(
N∑
j=1

νi(akl)uij

)
=

N∑
j=1

νj
(
a∗lk

)
uji

and therefore

κ2
(
νi(akl)

)
=

N∑
j=1

κ
(
νj

(
a∗lk

)
uji

)
=

N∑
j=1

νi(akl)uij = νi(akl).

For the trivial corepresentation 1G of G, κ2(νi(1G)) = 1
G�∗S+

N
= νi(1G) holds

trivially for every 1≤ i≤N . As Pol(G �∗ S+
N )∼= Pol(G) �∗ Pol(S+

N ) as ∗-Hopf
algebras and as Pol(G) is the linear span of the coefficients of the irreducible
unitary corepresentations of G, we have κ2 = id on νi(Pol(G))⊂ Pol(G �∗ S+

N )

for all 1 ≤ i ≤ N . Moreover, since the embedding of S+
N into G �∗ S+

N is an

injective morphism of quantum groups, we also have κ2 = id on Pol(S+
N ).

Hence, κ2 = id on Pol(G �∗ S+
N ). �

We consider the monoid M = 〈Irr(G)〉 and we denote the empty word in
M by ∅. If x = (α1, . . . , αk) ∈M , we will denote by |x| = k the length of x
and if A,B ⊂M , we set

A ◦B =
{
z ∈M : ∃(x, y) ∈A×B such that ω(z)⊂ ω(x)⊗ ω(y)

}
.

Here, ω(z) ⊂ ω(x)⊗ ω(y) means that ω(z) appears as a direct summand in
the decomposition of ω(x)⊗ ω(y) into irreducibles. If A⊂M , we set Ā the
set of conjugates x̄ of elements x ∈A. Also, we denote by (α, . . .) an element
starting with α ∈ Irr(G) and by (. . . , α) an element ending with α. We need
to partition M into nice subsets.

Notation 2.2. We consider the trivial corepresentation 1G ∈M and put:

• 1k
G
the word (1G, . . . ,1G) ∈M of length k with the convention 10

G
= ∅,

• E1 =
⋃
{(1G, . . .)} ∪ {∅} the subset of words starting with 1G,

• E2 =
⋃

k∈N
{1k

G
} the subset of words with only 1G as a letter,

• E3 =E1 \E2,
• S =M \E2,
• G1 =

⋃
α �=1G

α∈Irr(G)

{(α, . . .)} the subset of words starting with any α �= 1G,

• G2 =
⋃

α,α′ �=1G
{(α, . . . , α′)} the subset of words starting with any α �= 1G

and ending with any α′ �= 1G.

We will later on have a closer look at the combinatorics of the sets defined
above. To transfer the combinatorial structure of those sets to the reduced
C∗-algebra of G �∗ S+

N , we will also need to define corresponding ∗-subalgebras
of Pol(G �∗ S+

N ).
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Notation 2.3. (1) By E ⊂ Pol(G �∗ S+
N ) we denote the sub-∗-algebra gen-

erated by the coefficients of ω(x), x ∈E2

(2) and by S ⊂ Pol(G �∗ S+
N ) we denote the sub-∗-algebra generated by the

coefficients of ω(x), x ∈ S.

Now, by [Ver04, Lemma 2.1, Proposition 2.2], there exists a unique con-
ditional expectation P : Cr(G �∗ S+

N ) � Ē‖·‖r such that the Haar state hĒ‖·‖r

on Ē‖·‖r and the Haar state h on Cr(G �∗ S+
N ) satisfy h = hĒ‖·‖r ◦ P and

ker(P ) = S̄‖·‖r .
We note that P is realised by the compression of the projection p onto

the closure of E in L2(G �∗ S+
N ), that is, Px = pxp ∈ pĒ‖·‖rp ∼= Ē‖·‖r for all

x ∈Cr(G �∗ S+
N ). Moreover, we have the decomposition

Cr

(
G �∗ S+

N

)
= (E ⊕ S)‖·‖r

= Ē‖·‖r ⊕ S̄‖·‖r

as S �E2 =M . Here, the symbol ⊕ denotes the direct sum of vector spaces
(not the direct sum of C∗-algebras). Our next step is to identify Cr(S

+
N ) as a

sub-C∗-algebra of Cr(G �∗ S+
N ) in terms of words in M .

Proposition 2.4. Cr(S
+
N ) and Ē‖·‖r ⊂Cr(G �∗S+

N ) are isomorphic as com-
pact matrix quantum groups.

Proof. We will first show that Pol(S+
N ) ⊂ C(S+

N ) is isomorphic as a Hopf

algebra to E ⊂ C(G �∗ S+
N ). To do so, we notice that by definition of G �∗

S+
N the natural embedding of C(S+

N ) into C(G �∗ S+
N ) is an isomorphism of

CMQGs onto its range and hence we can consider C(S+
N ) a C∗-subalgebra of

C(G �∗ S+
N ). By Theorem 1.6, the fundamental corepresentation (uij) of S+

N

is given by

(uij) = r(1G) = ω(1G)⊕ 1 = ω(1G)⊕ ω(∅),
and it follows that Pol(S+

N ) is the ∗-subalgebra of Pol(G �∗ S+
N ) generated by

the coefficients of ω(1G) and ω(∅). As 1G,∅ ∈E2, we get Pol(S+
N )⊂ E .

To prove the inclusion E ⊂ Pol(S+
N ), we need to show that the coefficents

of ω(1k
G
) lie in Pol(S+

N ) for every k ∈N. We do so by induction:
For k = 0,1, we have already noticed that this is true. For k ≥ 2 we assume

that the assertion holds true for all n < k. The fusion rules in Theorem 1.6
imply

ω
(
1k−1
G

)
⊗ ω(1G) = ω

(
1kG

)
⊕ ω

(
1k−1
G

)
⊕ ω

(
1k−2
G

)
,

and hence the coefficients of ω(1k
G
) can be written as linear combinations of

coefficients of ω(1k−1
G

)⊗ω(1G), ω(1
k−1
G

) and ω(1k−2
G

). This proves E ⊂ Pol(S+
N )

and hence E =Pol(S+
N ) and C(S+

N )∼= Ẽ . In particular, their reduced versions
are isomorphic, that is,

Cr

(
S+
N

) ∼=Cr(Ẽ)∼= E‖·‖r ⊂Cr

(
G �∗ S+

N

)
. �
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Since Cr(S
+
N ) is simple for N ≥ 8 by [Bra2], we obtain the following corol-

lary.

Corollary 2.5. Ē‖·‖r ⊂Cr(G �∗S+
N ) is simple with unique trace for N ≥ 8.

The next result shows that the subsets of the monoid M defined in Nota-
tion 2.2 have certain stability properties.

Lemma 2.6. Let G be a CMQG with | Irr(G)| ≥ 2, i.e. G �= C, and let
α ∈ Irr(G) such that α �= 1G. Moreover, let G ⊂ S be a finite set and put
x1 = (α,1G), x2 = (α,13

G
), x3 = (α,15

G
) ∈M . Then:

(1) S =E3 �G1,
(2) (G2 ◦E1)∩E1 = ∅,
(3) ({xt} ◦G1)∩ ({xs} ◦G1) = ∅ if t �= s,

(4)
⋃3

t=1{xt} ◦G2 ◦ {x̄t} ⊂G2,
(5) there is x ∈ S such that {x} ◦G ◦ {x̄} ⊂G2.

Proof. (1) This assertion is obvious.

(2) Let (α, . . . , α′) ∈ G2, that is, α �= 1G �= α′. Then ω(α, . . . , α′) ⊗ ω(∅) =
ω(α, . . . , α′). Also, for (1G, . . .) ∈ E1 and for every t ∈ M such that
(α, . . . , α′) = (u, t) and (1G, . . .) = (t̄, v), we get u �= ∅ as α′ �= 1G. Hence
(u, v) and (u.v) start in α �= 1G and by the fusion rules of G �∗ S+

N (Theo-
rem 1.6), we have (G2 ◦E1)∩E1 = ∅.

(3) Let (β, . . .), (γ, . . .), (δ, . . .) be words in G1 such that β,γ, δ �= 1G are non-
trivial irreducible corepresentations of G. Using Theorem 1.6 once more,
we obtain

ω(x1)⊗ ω(β, . . .) = ω(α,1G, β, . . .)⊕ ω(α,β, . . .),

ω(x2)⊗ ω(γ, . . .) = ω
(
α,13G, γ, . . .

)
⊕ ω

(
α,12G, γ, . . .

)
,

ω(x3)⊗ ω(δ, . . .) = ω
(
α,15G, δ, . . .

)
⊕ ω

(
α,14G, δ, . . .

)
.

Thus, if s �= t, any direct summand appearing in the tensor product of
ω(xs) and a corepresentation indexed by a word in G1 does not appear
as a direct summand of ω(xt) and a corepresentation indexed by a word
in G1. Hence, ({xt} ◦G1)∩ ({xs} ◦G1) = ∅, whenever t �= s.

(4) Now we consider an element (β, . . . , β′) ∈G2 where β,β′ �= 1G. Then we
get

ω(x1)⊗ ω
(
β, . . . , β′)⊗ ω(x̄1)

= ω(α,1G)⊗ ω
(
β, . . . , β′)⊗ ω(1G, ᾱ)

= ω
(
α,1G, β, . . . , β

′,1G, ᾱ
)
⊕ ω

(
α,1G, β, . . . , β

′, ᾱ
)

⊕ ω
(
α,β, . . . , β′,1G, ᾱ

)
⊕ ω

(
α,β, . . . , β′, ᾱ

)
.

As the words indexing the direct summands appearing on the righthand
side neither start nor end in 1G, we obtain {x1} ◦G2 ◦ {x̄1} ⊂G2, and a

similar computation for x2 and x3 proves
⋃3

t=1{xt} ◦G2 ◦ {x̄t} ⊂G2.
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(5) Consider x = (α,1k
G
), where k = max{|y|, y ∈ G}+ 1. For y ∈ G ⊂ S we

can write y = (1l−1
G

, hl, . . . , hl′ ,1
m−l′

G
), where m > 1,1 ≤ l ≤ l′ ≤ m and

hl, hl′ �= 1G. Again, by using the fusion rules of Theorem 1.6 we get

ω(x)⊗ ω(y) =

2(l−1)⊕
t=0

ω
(
α,1k+l−1−t

G
, hl, . . . , hl′ ,1

m−l′

G

)
and hence

ω(x)⊗ ω(y)⊗ ω(x̄)

=

2(l−1)⊕
t=0

2(m−l′)⊕
s=0

ω
(
α,1k+l−1−t

G
, hl, . . . , hl′ ,1

k+m−l′−s
G

, ᾱ
)
.

As all directs summands appearing in this decomposition are indexed by
words in G2, it follows that {x} ◦G ◦ {x̄} ⊂G2. �

As in [Lem2], we will adapt the “modified Powers method” of T. Banica in
[Ban97], where the simplicity of Cr(U

+
N ) is proven. The support supp(z) of

an element z ∈ Pol(G �∗ S+
N ) is the smallest subset of M , such that z can be

written as a linear combination of coefficients of elements ω(x), x ∈ supp(z).
Banica’s crucial result for our proof is the following proposition.

Proposition 2.7 ([Ban97], Proposition 8). Let G be a CMQG of Kac
type and let Irr(G) =C �D be a partition of Irr(G) into non-empty sets C,D.
Moreover, let y1, y2, y3 ∈ Irr(G) such that (yt ◦D)∩ (ys ◦D) = ∅, if t �= s. Then
there is a unital linear map T :Cr(G)→Cr(G) with the following properties:

(1) There is a finite family (ai) in Pol(G) such that T (z) =
∑

i aiza
∗
i for all

z ∈Cr(G).
(2) T is τ -preserving for any trace τ ∈Cr(G)∗.
(3) For all self-adjoint z ∈ Pol(G) with (supp(z) ◦ C) ∩ C = ∅, we have

‖T (z)‖r ≤ 0.95‖z‖r and supp(T (z))⊂
⋃3

i=1 yi ◦ supp(z) ◦ ȳi.

We are now ready to prove the first part of Theorem A.

Lemma 2.8. Let G be a CMQG of Kac type. Then, Cr(G �∗ S+
N ) is simple

for all N ≥ 8.

Proof. If | Irr(G)| = 1, we have G �∗ S+
N = S+

N whose reduced C∗-algebra
is simple by [Bra2, Corollary 5.12]. Hence, we may assume | Irr(G)| ≥ 2.

We put E ′ = E‖·‖r
and S ′ = S‖·‖r

, where ‖ · ‖r denotes the norm on Cr(G �∗
S+
N ). Let J � Cr(G �∗ S+

N ) be an ideal. We have to prove that either J = {0}
or J = Cr(G �∗ S+

N ). Recall that there is a unique conditional expectation

P : Cr(G �∗ S+
N ) � E ′. Hence, it holds that vP (x)w = P (vxw) ∈ P (J)(v,w ∈

E ′, x ∈ J). Moreover, as P is realised by the compression by the projection
p ∈B(L2(G �∗S+

N )) onto the ‖·‖2-closure of E ′, it follows that P (J) = pJp⊂ E ′
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is norm-closed and thus, P (J) is a closed two-sided ideal. By the simplicity
of E ′ (see Corollary 2.5), we obtain P (J) = {0} or P (J) = E ′.

Case 1. Let P (J) = {0}, that is, J ⊂ kerP = S ′. As 1
G�∗S+

N
/∈ S ′, Schur’s

orthogonality relations (cf. [Tim]) imply h(y) = 0 for all y ∈ S ′, i.e. S ′ ⊂ kerh.
For y ∈ J , we get y∗y ∈ J as J is an ideal and therefore h(y∗y) = 0, since
J ⊂ S ′ ⊂ kerh. But as h is faithful on Cr(G �∗ S+

N ), this means y = 0 and
hence J = {0}.

Case 2. Now, let P (J) = E ′. Since 1
G�∗S+

N
∈ E ′, there is y ∈ J such that

P (y) = 1
G�∗S+

N
and hence we can write y = P (y) − z = 1 − z with z ∈ S ′.

We choose z0 ∈ S such that ‖z − z0‖r < 1
2 . By putting G = supp(z0) ⊂ S

in Lemma 2.6, we find x ∈ S such that {x} ◦ supp(z0) ◦ {x̄} ⊂ G2. Let us
denote the coefficients of the irreducible unitary corepresentation ω(x) by
ãij ,1 ≤ i, j ≤ dimω(x). Then, it follows that the element z′ =

∑
i,j aijz0a

∗
ij ,

where aij = (dimω(x))−
1
2 ãij , fulfills

supp
(
z′

)
⊂ {x} ◦ supp(z0) ◦ {x̄} ⊂G2,

and since G2 = Ḡ2, the same holds for the self-adjoint elements Re(z′) = 1
2 (z

′+

(z′)∗) and Im(z′) = 1
2i (z

′ − (z′)∗), that is, supp(Re(z′)), supp(Im(z′))⊂G2.
We also note that the mapping T0 : w �→

∑
i,j aijwa

∗
ij is trace-preserving

and completely positive and unital, since ω(x) is unitary.
We will now apply Proposition 2.7 to Re(z′) and Im(z′). To do so, we note

that the monoid M indexing the irreducible corepresentations of G �∗ S+
N can

be partitioned asM =E1�G1 and by Lemma 2.6, the words x1 = (α,1G), x2 =
(α,13

G
), x3 = (α,15

G
) satisfy ({xt}◦G1)∩ ({xs}◦G1) = ∅, whenever t �= s. Fur-

thermore, by part (2) of Lemma 2.6, we have (G2 ◦E1)∩E1 = ∅ and hence(
supp

(
Re

(
z′

))
◦E1

)
∩E1 = ∅,

(
supp

(
Im

(
z′

))
◦E1

)
∩E1 = ∅.

Thus, by Proposition 2.7 there is a unital completely positive trace-preserving
map T1 :Cr(G �∗ S+

N )→Cr(G �∗ S+
N ), such that

• T1(w) =
∑

i ciwc
∗
i for some finite family (ci) in Pol(G �∗ S+

N ),
• ‖T1(Re(z

′))‖r ≤ 0.95‖Re(z′)‖r, ‖T1(Im(z′))‖r ≤ 0.95‖ Im(z′)‖r,
• supp(T1(Re(z

′))), supp(T1(Im(z′)))⊂
⋃3

t=1{xt} ◦G2 ◦ {x̄t} ⊂G2.

Since T1(Re(z
′)), T1(Im(z′)) are again self-adjoint with

supp
(
T1

(
Re

(
z′

))
◦E1

)
∩E1 = ∅, supp

(
T1

(
Im

(
z′

))
◦E1

)
∩E1 = ∅,

we may apply Proposition 2.7 iteratively in order to obtain a finite family (di)
in Pol(G �∗ S+

N ) such that∥∥∥∥∑
i

diRe
(
z′

)
d∗i

∥∥∥∥
r

<
1

4
,

∥∥∥∥∑
i

di Im
(
z′

)
d∗i

∥∥∥∥
r

<
1

4
,
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and hence ‖
∑

i diz
′d∗i ‖r < 1

2 . By plugging in z′ =
∑

i,j aijz0a
∗
ij , we get a finite

family (bi) in Pol(G �∗ S+
N ) such that ‖

∑
i biz0b

∗
i ‖r < 1

2 . We note that the
mapping T :w �→

∑
i biwb

∗
i is unital, completely positive and trace-preserving

by construction and therefore by the Russo–Dye theorem we obtain ‖T‖ =
‖T (1)‖= 1. Altogether, the invertibility of the element

∑
i biyb

∗
i ∈ J follows

from the calculation∥∥∥∥1−∑
i

biyb
∗
i

∥∥∥∥
r

=

∥∥∥∥∑
i

bi(1− y)b∗i

∥∥∥∥
r

=

∥∥∥∥∑
i

bizb
∗
i

∥∥∥∥
r

≤
∥∥∥∥∑

i

biz0b
∗
i

∥∥∥∥
r

+

∥∥∥∥∑
i

bi(z − z0)b
∗
i

∥∥∥∥
r

≤
∥∥∥∥∑

i

biz0b
∗
i

∥∥∥∥
r

+ ‖T‖‖z − z0‖r < 1.

Hence, J =Cr(G �∗ S+
N ). �

The methods of the last proof also yield:

Lemma 2.9. Let G be a CMQG of Kac type. Then, Cr(G �∗ S+
N ) has a

unique tracial state h for all N ≥ 8. In particular, L∞(G �∗ S+
N ) is a II 1-

factor for all N ≥ 8.

Proof. We will show that any trace state τ on Cr(G �∗ S+
N ) coincides with

the Haar state h. To do so, let z = z∗ ∈ S . On the one hand we have h(z) = 0
by Schur’s orthogonality relations and on the other hand, for all ε > 0 we
can repeat the method of the proof of Theorem 2.8 to find a finite family
(bi) in Pol(G �∗ S+

N ) such that ‖
∑

i bizb
∗
i ‖r < ε. Furthermore, the mapping

T : w �→
∑

i biwb
∗
i is unital, completely positive and trace-preserving which

implies that τ(z) = τ(T (z))< ε. As this holds for all ε > 0, we have τ(z) = 0.
Since every element in S can be written as a linear combination of two self-
adjoint elements, τ and h coincide on S .

For z ∈ E , we have τ(z) = h(z) by the uniqueness of the trace on E ′ ∼=
Cr(S

+
N ). Hence, τ and h coincide on Pol(G �∗ S+

N ) and by continuity also on

Cr(G �∗ S+
N ). �

Remark 2.10. Up to this point, we have only considered the case where
N ≥ 8. Although the cases 4 ≤ N ≤ 7 remain open, it is easy to see that
factoriality will in general not hold if 1≤N ≤ 3. For example, we can simply
consider S+

N = S+
N �∗ S+

1 = S+
1 �∗ S+

N = SN for N = 2,3. Of course, since in this

case S+
N = SN is commutative, its associated von Neumann algebra is not a

factor. If N = 2, the fact that L∞(G �∗S2) is not a factor does not even depend
on the choice of G, as L∞(S2) is contained in the center of L∞(G �∗ S2).
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3. Fullness of L∞(G �∗ S+
N )

In this section, we will prove that the II 1-factor L
∞(G �∗ S+

N ) is full, i.e. it
does not have property Γ whenever N ≥ 8. We recall the following definition.

Definition 3.1. Let (M,τ) be a II 1-factor with unique faithful normal
trace τ .

(1) A sequence (xn) in M is said to be asymptotically central, if ‖xny −
yxn‖L2(M) → 0 for all y ∈M .

(2) A sequence (xn) in M is said to be asymptotically trivial, if ‖xn −
τ(xn)1‖L2(M) → 0.

(3) The II 1-factor M is called full, if every bounded asymptotically central
sequence is asymptotically trivial. If M is not full, we say that M has
property Γ.

Our proof is a simple generalization of Lemeux’s proof of the fullness of
L∞(H+

N (Γ)). We will denote the L2(G �∗ S+
N )-norm by ‖ · ‖2.

Notation 3.2. Let M = 〈Irr(G)〉 denote the monoid indexing the irre-
ducible corepresentations of G �∗ S+

N . For a subset B ⊂M we denote

L2(B) = span
{
Λh(x); supp(x)⊂B

}‖·‖2 ⊂ L2
(
G �∗ S+

N

)
,

where Λh is the GNS-map with respect to the Haar state h.

We notice now that the GNS-Hilbert space of G �∗ S+
N decomposes as the

orthogonal sum L2(G �∗ S+
N ) = L2(E2)⊕ L2(S), where E2 =

⋃
k∈N

{1k
G
} is the

subset of words with only 1G as a letter and S =M \E2. In particular, we

have L∞(G �∗ S+
N ) = Ewo ⊕ Swo

, where Ewo
(respectively Swo

) denotes the
closure of E (respectively S) (cf. Notation 2.3) in the weak operator topology.

Proposition 3.3. Let N ≥ 8 be an integer. If every bounded asymptotically
central sequence in S is trivial, then L∞(G �∗ S+

N ) is full.

Proof. By a straightforward density argument, it suffices to show that
every bounded asymptotically central sequence (xn)n∈N in Pol(G �∗ S+

N ) is
asymptotically trivial. For all n ∈ N we write xn = yn + zn, where yn ∈ E
and zn ∈ S and we denote the orthogonal projection onto L2(E2) by P :

L2(G �∗ S+
N )→ L2(E2). Recall that P |L∞(G�∗S+

N ) : L
∞(G �∗ S+

N )→ Ewo
is the

conditional expectation on Ewo
. Since the restriction to Ewo

of the Haar state
on L∞(G �∗ S+

N ) is the Haar state on Ewo
, we have

‖yna− ayn‖L2(Ewo
) = ‖yna− ayn‖L2(E2)

=
∥∥P (xn)a− aP (xn)

∥∥
2
≤ ‖xna− axn‖2 → 0

for all a ∈ Ewo
. Hence, the sequence (yn)n∈N is asymptotically central in

Ewo
and it is clear that the isomorphism of compact quantum groups E‖·‖r ∼=

Cr(S
+
N ) in Proposition 2.4 extends to an isomorphism Ewo ∼= L∞(S+

N ).
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By [Bra2], L∞(S+
N ) is full and hence (yn)n∈N is asymptotically trivial. In

particular, it is asymptotically central in L∞(G �∗ S+
N ). This implies that

the sequence (zn)n∈N = (xn − yn)n∈N is bounded asymptotically central in
L∞(G �∗ S+

N ) and by assumption it is asymptotically trivial. Hence, (xn)n∈N

is asymptotically trivial in L∞(G �∗ S+
N ). �

The last proposition shows that we only need to deal with bounded asymp-
totically trivial sequences in S . Recall that in Notation 2.2 we defined
G1 =

⋃
α �=1G

α∈Irr(G)

{(α, . . .)} as the subset of words starting with any α �= 1G and

E3 = E1 \ E2 as the subset of words starting in 1G but containing a letter
different than 1G. Note that S =E3 �G1.

Lemma 3.4. Let 1G �= α ∈ Irr(G). With the notation above, we have:

(1) {(α)} ◦E3 ◦ {(ᾱ)} ⊂G1,
(2) {1i

G
} ◦G1 ◦ {1iG} ⊂E3 for i= 2,4,

(3) ({12
G
} ◦G1 ◦ {12G})∩ ({14

G
} ◦G1 ◦ {14G}) = ∅.

Proof. (1) Let t ∈E3, that is, t= (1G, β1, . . . , βl) with l≥ 1 and βi �= 1G for
at least one i ∈ {1, . . . , l}. From Theorem 1.6, it follows that

ω(α)⊗ ω(t)⊗ ω(ᾱ)

= ω(α,1G, β1, . . . , βl, ᾱ)⊕ δβl,αω(α,1G, β1, . . . , βl−1)

⊕ ω(α,β1, . . . , βl, ᾱ)⊕ δβl,αω(α,β1, . . . , βl−1)

⊕
⊕

γ⊂βl⊗ᾱ

ω(α,1G, β1, . . . , βl−1, γ)

⊕
⊕

γ⊂βl⊗ᾱ

ω(α,β1, . . . , βl−1, γ).

Since all of the words appearing in this direct sum start in α �= 1G, we obtain
{(α)} ◦E3 ◦ {(ᾱ)} ⊂G1.

(2) Let (β, . . .) be a word in G1, that is, β �= 1G and let i ∈ {2,4}. We have

ω
(
1iG

)
⊗ ω(β, . . .) = ω

(
1iG, β, . . .

)
⊕ ω

(
1i−1
G

, β, . . .
)
.

Since β �= 1G, the tensor product (ω(1i
G
, β, . . .)⊕ ω(1i−1

G
, β, . . .))⊗ ω(1i

G
)

will only produce subcorepresentations of the form
ω(1i

G
, β, . . .) and ω(1i−1

G
, β, . . .). This proves assertion (2).

(3) This follows immediately from the above calculations since corepresenta-
tions appearing as direct summands of ω(12

G
)⊗ω(β, . . .)⊗ω(12

G
) (β �= 1G)

are indexed by words starting in 1G or 12
G
and corepresentations appear-

ing as direct summands of ω(14
G
)⊗ω(β, . . .)⊗ω(14

G
) (β �= 1G) are indexed

by words starting in 13
G
or 14

G
. �
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Note that in the previous lemma we assume that | Irr(G)| ≥ 2. The case
| Irr(G)|= 1 corresponds to S+

N for which we already have the desired fullness
result.

Recall that, since the coefficients of the irreducible unitary corepresenta-
tions of G �∗S+

N form an orthogonal basis of L2(G �∗S+
N ) and since S =E3�G1,

the Hilbert spaces H1 := L2(E3) and H2 := L2(G1) are orthogonal subspaces
of L2(G �∗ S+

N ). We put H :=H1 ⊕H2 and

H0
1 := span

{
Λh(x); supp(x)⊂E3

}
,

H0
2 := span

{
Λh(x); supp(x)⊂G1

}
.

By definition we have H1 =H0
1

‖·‖2

and H2 =H0
2

‖·‖2

. Moreover, for a word
t ∈M we set dt = dimω(t). Note that, up to this point, we have considered
the dt-dimensional corepresentation ω(t) as an element in Pol(G �∗ S+

N ) ⊗
Mdt(C). However, since we need to distinguish the representation spaces of
different corepresentations, we will consider ω(t) as an element in Pol(G �∗
S+
N )⊗B(Ht) where Ht is an dt-dimensional Hilbert space. We also put Kt :=

L2(B(Ht),
1
dt

Tr(·)), the GNS-space of B(Ht) with respect to the normalized

trace 1
dt

Tr(·). Note that ω(t) can act on Kt by left or right multiplication.
Hence, we can now define a linear map

vt :H →H ⊗Kt, a �→ ω(t)(a⊗ 1)ω(t)∗.

The map vt is an isometry since the embedding H → H ⊗Kt, a �→ a ⊗ 1 is
isometric and ω(t) is unitary. We will denote the norm on L2(G �∗ S+

N ) by
‖ · ‖2 and the corresponding inner product by 〈·, ·〉2.

Proposition 3.5. Let 1G �= α ∈ Irr(G). For all z ∈ S , we have

‖z‖2 ≤ 14max
{
‖z ⊗ 1− v(α)z‖H⊗K(α)

,‖z ⊗ 1− v12
G
z‖H⊗K

12
G

,

‖z ⊗ 1− v14
G
z‖H⊗K

14
G

}
.

Proof. The proof of this result is exactly the same as in [Lem2]. One
only has to use our Lemma 3.4 whenever the author uses his result [Lem2,
Lemma 3.8]. �

The following corollary concludes the proof of Theorem A.

Corollary 3.6. Let (zn)n∈N be a bounded asymptotically central sequence
in S . Then, (zn)n∈N is asymptotically trivial. In particular, L∞(G �∗ S+

N ) is
full for any N ≥ 8 and any CMQG G of Kac type.

Proof. Let (zn)n∈N be a bounded asymptotically central sequence in S ,
that is,

‖zna− azn‖2 → 0 for all a ∈ L∞(
G �∗ S+

N

)
.
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We may assume h(zn) = 0 for all n ∈N since otherwise we can replace zn by
zn − h(zn)1. Moreover, let 1G �= α ∈ Irr(G). We have

‖zn ⊗ 1− v(α)zn‖H⊗K(α)
=

∥∥(zn ⊗ 1)ω
(
(α)

)
− ω

(
(α)

)
zn

∥∥
H⊗K(α)

→ 0,

and similarly we obtain ‖zn⊗1−v12
G
zn‖H⊗K

12
G

→ 0,‖zn⊗1−v14
G
zn‖H⊗K

14
G

→
0, whenever n→∞. Hence, by Proposition 3.5 it follows that ‖zn‖2 → 0 (n→
∞), i.e. (zn)n∈N is asymptotically trivial. By Proposition 3.3, fullness of
L∞(G �∗ S+

N ) follows. �
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EMS, Zürich, 2008. MR 2397671

[VaVer] S. Vaes and R. Vergnioux, The boundary of universal discrete quantum
groups, exactness and factoriality, Duke Math. J. 140 (2007), no. 1, 35–84.

MR 2355067

http://www.ams.org/mathscinet-getitem?mr=1235438
http://www.ams.org/mathscinet-getitem?mr=1484551
http://www.ams.org/mathscinet-getitem?mr=2554941
http://www.ams.org/mathscinet-getitem?mr=1937403
http://www.ams.org/mathscinet-getitem?mr=2096666
http://www.ams.org/mathscinet-getitem?mr=2995437
http://www.ams.org/mathscinet-getitem?mr=3138849
http://www.ams.org/mathscinet-getitem?mr=2530168
http://www.ams.org/mathscinet-getitem?mr=3250372
http://www.ams.org/mathscinet-getitem?mr=3478874
http://www.ams.org/mathscinet-getitem?mr=0374334
http://www.ams.org/mathscinet-getitem?mr=2397671
http://www.ams.org/mathscinet-getitem?mr=2355067


VON NEUMANN ALGEBRAIC FREE WREATH PRODUCTS 817

[Ver04] R. Vergnioux, K-amenability for amalgamated free products of amenable
discrete quantum groups, J. Funct. Anal. 212 (2004), no. 1, 206–221.

MR 2067164
[Wa] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys.

195 (1998), 195–211. MR 1637425
[Wor87] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111

(1987), 613–665. MR 0901157
[Wor95] S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les

Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845–884. MR 1616348

Jonas Wahl, Department of Mathematics, KU Leuven, Leuven (Belgium)

E-mail address: jonas.wahl@wis.kuleuven.be

http://www.ams.org/mathscinet-getitem?mr=2067164
http://www.ams.org/mathscinet-getitem?mr=1637425
http://www.ams.org/mathscinet-getitem?mr=0901157
http://www.ams.org/mathscinet-getitem?mr=1616348
mailto:jonas.wahl@wis.kuleuven.be

	Introduction
	Preliminaries
	Compact matrix quantum groups
	Free wreath products
	Corepresentation theory

	Simplicity and uniqueness of the trace
	Fullness of Linfty(G * SN+)
	Acknowledgments
	References
	Author's Addresses

