Illinois Journal of Mathematics
Volume 58, Number 2, Summer 2014, Pages 585-591
S 0019-2082

HOLDER CONTINUOUS SOBOLEV MAPPINGS AND
THE LUSIN N PROPERTY

ALEKSANDRA ZAPADINSKAYA

ABSTRACT. We give a new proof for the result of J. Maly and
0. Martio, stating that Holder continuous mappings in W™ sat-
isfy the Lusin N property. We further generalize this result to a
metric setting.

1. Introduction

In this note, we study the Lusin N property for Sobolev mappings. We
say that a mapping f: R™ — R™ satisfies the Lusin N property, if every
set of zero Lebesgue n-measure has a zero n-dimensional Hausdorff measure
image under f. The validity of the Lusin N property for a Sobolev mapping
f:R™ - R" enables the application of the change of variable formula for
integration and of the area formula [7]. This fact makes the study of the
Lusin N property important.

Let us consider a Sobolev mapping f € W1P(;R™), defined in a domain
Q CR", where 2 <n <m. It is well known that p > n implies the Lusin N
property [9]. On the other hand, this property may fail in the case p=n
(see examples in [12] and [8, Section 5]). However, additional assumptions
on f, such as monotonicity or Holder continuity, may guarantee the Lusin N
property even when p =n [11], [12], [10], [8].

We consider the latter case, that is we assume that our mapping
feWbhn(Q;R™) satisfies a Holder continuity condition

(1) |f(z) = f()] < Colz —y|”

for all z,y € Q, where Cyp >0 and 0 <y < 1. We give a new shorter proof for
the result in [8, Theorem C], where it was established for n =m.
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THEOREM 1. Let Q be a domain in R™ and f € WH(Q;R™), m>n > 2,
a Holder continuous mapping. Then H"™(f(E)) =0 for each E C €, such that
|E| =0.

We do not know, whether this Holder continuity assumption is sharp. How-
ever, given any a € )0, (n — 1)/n], there exists a mapping f € W (R";R"),
violating the Lusin N property and having modulus of continuity no worse
than

o ot Cuesp( et (1)

with some Cp, ¢ > 0 [5, Example 1.3]. Note that the modulus of continuity (1)
we assume is (2) with c=+ and a=1.

The method we use has its origins in [6], where quasiconformal mappings
were considered. First applications of those ideas to more general non-injective
Sobolev mappings can be found in [4].

Our proof gives a direct generalization to a metric setting, providing a new
result, stated as follows (see Section 3).

THEOREM 2. Let Q > 1 and let (X,dist,u) be an Ahlfors Q-regular met-
ric measure space, which supports the Q-Poincaré inequality for continuous
functions. Suppose that f € NYQ(X;V), with some Banach space V, is a
Hélder continuous mapping. Then HP(f(E)) =0 for each E C X, such that
w(E)=0.

To demonstrate the elegance of the proof in the Euclidean case, we give
separate proofs for the two theorems.

2. Proof of Theorem 1

We start by introducing our basic notation. Given a set A C R™, we denote
its n-dimensional Lebesgue measure by |A|. If |A| < oo and f is a Lebesgue
integrable mapping, we denote the average ﬁ / 4 f of f over the set A by

fAf or fa. Next, A+ a with A CR" and a > 0 stands for the set {z €
R™: dist(z,A) < a}. By diam(A) and x4, we denote the diameter and the
characteristic function of the set A, respectively. Given a point z € R™ and a
non-negative number r, B(z,r) denotes an open ball centred in z and having
radius r. If B= B(z,r) is a ball and «a is a positive number, the notation aB
stands for the ball B(x,ar). We write H3(A) with s >0 and 0 <J < oo for
the s-dimensional Hausdorfl content of a set A, while H*(A) denotes its s-
dimensional Hausdorff measure. Finally, C' denotes a positive constant, which
may depend on data (n, m and the modulus of continuity of f) and differ from
occurrence to occurrence.
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We need also a weighted Hausdorff content of a set A given by

i=1 =1

AZ(A) :inf{Zci(diamUi)s ici>0and ya < ZCiXUi}

for s > 0. It is known that there exists a constant 8 > 0, such that H3_(FE) <
BN (E) for all sets E (see, for instance, [3], Theorem 8.6 and Theorem 9.7).

Proof of Theorem 1. We denote the modulus of continuity of f by ¥ (t) =
Cot”. We may clearly assume that F is bounded and E C Q). Let us consider a
dyadic decomposition of R™. We denote by Q; = {Q;.1,Q; 2, ...} the collection
of cubes of generation i € N with edge length 2%, such that R" = U;’;l Qi -
For each 7,j € N, there exist 2" cubes, denoted by Ql{j, e Q?] € Q;y1, such
that Q; ; = Ui:l Q;”j. Similarly, when i > 2, the unique cube Q € Q;_1, such
that Q; ; C Q is denoted by Q”

Once Q; ; is such that Q” C 2, we define f; ; = fq, , € R™ and

fii = far, 1}

We obtain the following estimate for ¢ € {1,...,2"}, using the Poincaré and
Jensen inequalities

(4) \fii = fou,| S]{ﬁ_ 1 = fudl Szn][

I

, max
q=1,...,2

n

| llf_fi,jl

i

< Cdiain,j][ D f|

(], o)

1/n
DA)

Similar computations give |f;; — f5, | < C(Jo, . IDf|™)Y/"™. Thus, r}'; <
Cf@i, ; |Df|™. For each r; ; >0, we need a family of balls

2%

Bi,j = {BZk,J :B(fl'ﬁj,m’j/2k) . k:O,l,}
Fix an arbitrary € >0 and a d € ]0,¢], such that E 4 C 2 and

/ |IDf|" <e.
E+6

Additionally, we choose a number iy € N, which satisfies \/n27 %+ < §. We
restrict the families Q;, 1 =1g,..., so that Q C E + §, whenever Q € Q;.
Let x € E. We choose a sequence of cubes (Q;(x))2;,, such that Q;(x) € Q;

and x € Q;(x). We have Q;(z) = Q; j(i,») for a suitable index j(i,z) € N. This
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sequence defines a sequence of centres f;(z) = f; j(i,), # = io, . .., on the image
side, which converges to f(x); indeed,

©) 1) - f@| < (5@ 10|y < v (@ @u@) <0

when i goes to infinity. Finally, we put 7;(x) =7; j(;,»). Note that (3) implies
(6) ri(z) > max{|fi(z) — fi—1(x)|, | fi(z) — fiza(@)|}

for each i=1i9+1,....

We neglect the set Eg = {x € E: f;(z) = f(z) for each i =ig,i0 + 1,...},
because its image under f is countable. For a point z € E \ Fy, we define
a large number lo(z) € N so that there are some of f;(z) with ¢ > iy outside
the ball B(f(x),2 - @+1) Denoting E; = {z € E\ Ey : lo(z) <1}, we have
E\Ey=Ujen Er and f(E\ Eo) =U, f(E1).

Fix [, € N and consider the set Ej,. Let v € Ej, and [ =4l;. We find the
smallest number J € N, J > i, such that f;(z) € B(f(x),27") for all j > J.
We have by (5)

27 < | f(@) — fo(@)| < ¥ (diam Q. (x)) = Cov/n72~77,

which implies [ > Jvy — logy(Cov/nY) > Jv/2, if ig is initially picked so that
0> %log2(C’0 v/n7). On the other hand, if we denote by N the number of in-
tegers k in the set {l1,...,l}, such that the annulus Ay (x) = B(f(z),27 %)\

B(f(x),27%) contains more than 8/v centres fi(x), i =1ig,...,J, we obtain
8N/~v < J <2l/vy, hence N <l;. Thus, there exist at least | —l; +1— N >
20y annuli Ag(z), k =11,...,l, which contain at most 8/v centres f;(z),
i= gy, .

Let Ag(x) be one such annulus. If it contains at least one centre f;(x) for
some i =1ig,...,J, then (6) and the fact that Iy > ly(x) yield

Z 2r;(x) > 27F.

fi(z)€Ak(z)

Thus, there must be at least one i > 4o, such that f;(x) € Ax(z) and r;(z) >
27k=4y We have f(x) € %ng(m) = B(fi(x),32r;(x)/v). Whenever there
are no f;(x) € Ax(x), we take the smallest i =g, ...,J + 1 such that f;(z) €
B(f(z),27%). By (6) and I; > lo(x), we necessarily have r;(z) > 27%. We pick
Bf’j(i’m) > f(z) so that 27%F < r;(2)27P < 27%+1. Note that when z is fixed
and we choose balls for different k, each ball is taken no more than twice.
That is
2l/v+1 00

220 2 D xsmm,()22

i=ip Q;,;€Q; k=0
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for each y € f(E;,). In other words, the collection of inflated balls ?’A/—QBE].
covers the set f(Ej,) with [; layers. We conclude

2[/"/+1 [e’s)

M) HL(E) <OLUE) <D Y Y S

6mn M
270 T

m okn
1=ig Qi,jegik’:o’y 2
21/y+1 20/y+1
Cp B
<Py Ywm<T Y ¥ [ o
i=io Qi €Q; i=io Qi eQ;” @i

20/v+1 21

B / CB(5 +1)
< =7 Dfl < —1 < (CpBe.
<7 Z}ﬂj() DI ———e<0p

Since the sets E; are nested, we obtain H (f(E \ Eo)) < CPe. By the arbi-
trariness of ¢, we have H? (f(E \ Ep)) =0, which yields H"(f(F))=0. O

3. Metric setting

For this section, we preserve the notation fa = f, f, diam(A), xa, B(z,r),
aB, Hi(A), H*(A), A5, (A), defined suitably. Recall that H3 (A) < BAZ(A).

By Ahlfors regularity in the statement of Theorem 2, we mean that a metric
space (X,dist) is equipped with a Borel regular measure u, such that ¢;r7% <
p(B) < cor@, for all open balls B C X of radius r € ]0,diam X[ and some
constants @, cy,ce > 0. Additionally, we assume that (X,dist,u) supports
Q@-Poincaré inequality for continuous functions (see [2, Section 4]):

1/Q
f f—fBlduSCp(diamB)(][ o du)
B oB

for all balls B C X, all continuous integrable functions f, defined in the ball
o B and taking values in some Banach space V, all Q-weak V-upper gradients
p of f, and with constants Cp >0, ¢ > 1, independent of B, f and p. Let V
be a Banach space. The mapping f in the statement of Theorem 2 is in the
Sobolev class N@(X;V) (see [2, Section 3]) and is Holder continuous with
modulus ¥(t) = Cot”. We fix some Q-weak V-upper gradient p of f.

Proof of Theorem 2. The proof of Theorem 2 is a direct generalization of
the proof in the previous section, so we just outline the main differences. Let
us fix € > 0 and take an open set Q D F, such that

/pQ<6.
Q

Pick i’ € N so that 1002~% < diam X. This choice ensures that the radii of
all balls, to which we are going to apply the doubling condition, are smaller
than diam X. We consider the decomposition E = J,~, E;, where E; = {z €
E: B(x,5027%) C Q}. Next, we fix an integer ig > 4’ and consider the set E;,.



590 A. ZAPADINSKAYA

Applying the covering theorem [1, Theorem 1.16], we obtain finite collections
of balls Q;, i =1, ..., such that E;, C UBeQi B, each B € Q; is centred in E;,
and has radius 277, and { B: B € Q;} is a disjoint family for each i =g, ....

Let x € E;,. There exists a sequence of balls (B;(x)){2,, , such that x €

B; € Q;. We denote fi(x) = fp,(z).- As in (5), we have ||fi(z) — f(z)]| <
¥(2-27%) — 0, when i — co. Moreover, similarly to (4), we obtain

1/Q
(@) = fr (@)} <A(/SUB me)

for i =149+ 1,..., where the constant A > 0 depends on ¢y, 3, Q, Cp and o.
We put g = f5 p@)1/@ for each B € Q; and each i =i, ..., and consider
the collection Bp = {BB =B(fg,rp/2¥): k=0,1,...}.

As in the previous section, we decompose E;, = J, Fi,,; according to the
number ly(z) and fix some E;,;, and { =4l;. Analogous argument implies

maX{Hfz(l‘) — fic1(2)]|,

2l/y+1

2 Z ZZX% y) > 20,

i—=igp B€Q; k=0

for each y € f(E;,,,). Since the families {1B: B € Q;} are disjoint, the
doubling condition for the measure p gives the boundedness of the overlap

Z X50B (y) <C

BeQ;

for each i =1ig,..., y € Q and some constant C', which depends on ¢y, co, @
and o. We finally obtain similarly to (7)

21/74—1 2l/’y+1

HE(f(Big,) Sl— > Z/ gl— 3 / p? < Ck,

i=i9p B€Q; i=1gp

where the constant C > 0, differing from occurrence to occurrence, depends
only on f3, 7, 1, ca, Q, Cp and o. Thus, we conclude HE, (f(E;,)) < Ce and
HE (f(E)) < Ce, since the involved sequences of sets are nested. O
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