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EVERY CENTRAL SIMPLE ALGEBRA IS BRAUER
EQUIVALENT TO A HOPF SCHUR ALGEBRA

EHUD MEIR

Abstract. We show that every central simple algebra A over a
field k is Brauer equivalent to a quotient of a finite dimensional

Hopf algebra over the same field. This shows that the natural

generalization of the Schur group for Hopf algebras (which we

call the Hopf Schur group) is in fact the entire Brauer group

of k. If the characteristic of the field is zero, or if the algebra

has a Galois splitting field with certain properties, we can take

this Hopf algebra to be semisimple. We also show that if F

is any finite separable extension of k, then F is a quotient of

a finite dimensional commutative semisimple and cosemisimple
Hopf algebra over k.

1. Introduction

Let k be a field. In [1], we asked what central simple k-algebras can we get
(up to Brauer equivalence) as quotients of finite dimensional Hopf algebras
over k. We called such algebras Hopf Schur algebras, and we defined the Hopf
Schur group of k, HS (k), as the subgroup of Br(k) which contains all classes
of Hopf Schur algebras. This is analogue to the definition of the Schur group,
S(k), which contains all classes of central simple algebras which are quotients
of finite group algebras, and also to the projective Schur group, PS (k), which
contains all classes of central simple algebras which are quotients of finite
dimensional twisted group algebras.

Since any group algebra is a Hopf algebra, clearly S(k) < HS (k). The
Schur group is a “small” subgroup of Br(k). It is known by a theorem of
Brauer (see [9]) that any element in S(k) has a cyclotomic splitting field, and
therefore if k contains all roots of unity then S(k) = 0, whereas Br(k) may
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be large (e.g. k =C(x1, x2, . . . , xn), n≥ 2, see [6]). We refer the reader to [10]
and to [16] for a comprehensive account on the Schur group. In [1] it was
shown that HS (k) might be much bigger than S(k). The authors have proved
that PS (k) < HS (k). The projective Schur group is already a much bigger
subgroup of the Brauer group. It was conjectured that PS (k) = Br(k) and
this is indeed the case for many interesting fields (e.g., number fields). It was
disproved, however, by Aljadeff and Sonn in [2]. In [1], it was also proved that
any product of cyclic algebras is in HS (k), and there is a conjecture which
says that this is all of the Brauer group.

In this paper, we will prove that HS (k) = Br(k). In addition, we will give
sufficient conditions for a central simple k-algebra to be Brauer equivalent to
a quotient of a semisimple Hopf algebra. For that reason, we introduce the
following definition:

Definition 1.1. Let A be a central simple k-algebra. Denote by m the
order of [A] in Br(k). We will say that the algebra A is good if char(k) = 0,
or if char(k) = p, p � m, and A has a Galois splitting field L such that p �
|L(ξm) : k|, where ξm is a primitive mth root of unity.

The main result of this paper is the following:

Theorem 1.2. Any k-central simple algebra A is Bruaer equivalent to a
quotient of a finite dimensional Hopf algebra H (that is, Br(k) = HS (k)).
If A is a good algebra, then A is Brauer equivalent to a quotient of a finite
dimensional semisimple Hopf algebra.

Since division algebras arise naturally as Endomorphism rings of simple
representations, we have the following:

Corollary 1.3. Let D be a k-central division algebra. Then there is a
finite dimensional Hopf algebra H , and a simple representation V of H such
that EndH(V ) ∼= D. If in addition D is good, then we can take H to be
semisimple.

Proof. Let D be a k-central division algebra. By the above theorem, we
have a Hopf algebra H (seimsimple in case D is good), and an algebra map
π : H � Mn(D

op) for some n, where Dop is the algebra D with opposite
multiplication. Then V = (Dop)n is a representation of H via π, and it is
easy to see that EndH(V )∼=D. �

Remark 1.4. In the proof above, we have used the fact that D is good if
and only if Dop is good.

In the course of the proof of Theorem 1.2, we will consider, in Section 3,
forms of the function algebra of a finite group (i.e., the dual of a finite group
algebra). As a result, we will see that there might be an infinite number of
non-isomorphic semisimple and cosemisimple Hopf algebras over k of a given
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dimension, if k is not algebraically closed. In [15], Stefan proved that for a
given number n, there are only finitely many isomorphism classes of semisim-
ple and cosemisimple Hopf algebras of dimension n over an algebraically closed
field. We therefore conclude that the algebraic closeness assumption in Ste-
fan’s theorem is necessary (this was observed also by Caenepeel Dascalescu
and Le Bruyn in [5]). Stefan’s theorem is a weaker form of Kaplansky’s tenth
conjecture, which states that for a given number n there are only finitely
many isomorphism classes of (not necessarily semisimple and cosemisimple)
Hopf algebras of dimension n over an algebraically closed field. Kaplansky’s
tenth conjecture was disproved by Andruskiewitsch and Schneider (see [3]) by
Beattie, Dascalescu and Grunenfelder (see [4]), and by Gelaki (see [7]) (and
so, also the semisimplicity and the cosemisimplicity of the Hopf algebra is
necessary in Stefan’s theorem).

The main idea behind the proof of Theorem 1.2 will be the following ob-
servation: if L/k is a Galois extension of fields, then a Hopf algebra over k is
equivalent to a Hopf algebra over L together with a certain “Hopf-semilinear”
action. This generalizes the idea from descent theory, that an algebra over k
is the same thing as an algebra over L together with a certain “semilinear”
action. In descent theory, this idea gives a description of the relative Brauer
group Br(L/k) (that is, of all Brauer classes in Br(k) which split by L). In
our setting, this idea gives us a tool to construct a variety of nonisomorphic
Hopf algebras over k (which become isomorphic over L). We will be able to
show in Section 5 that by choosing the “right” Hopf algebra and the “right”
Hopf-semilinear action, we will be able to “catch” all the Brauer equivalence
classes in Br(L/k). Since L is arbitrary, this will prove that HS (k) =Br(k).

We will begin by defining what are Hopf-semilinear actions in Section 2,
where we will also describe the relevant parts from descent theory which will
be in use. In Section 3, we use descent theory in order to describe all the
k-forms of the Hopf algebra L[T ] of functions on some finite group T (by this
we mean all the k-Hopf algebras which become isomorphic to L[T ] over L).
Another tool which we will need will be semidirect products of Hopf algebras.
This will be described in Section 4. In Section 5, we will prove Theorem 1.2.

2. Galois descent

We shall need to use a very small portion of the descent theory in here.
The reader is referred to the second chapter of [8] for more comprehensive
treatment. Let L/k be a Galois extension with a Galois group G.

Definition 2.1. Let V be a vector space over L. A G-semilinear action
on V is an action of G on V as a k-vector space such that g(x ·v) = g(x) ·g(v),
for every g ∈G, x ∈ L and v ∈ V .

We shall simply say “semilinear action” instead of “G-semilinear action” if
the group is clear from the context. The typical example we should have in
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mind for a semilinear action is the following: suppose that V̂ is a vector space
over k. Then V = L⊗k V̂ is a vector space over L, and we have a semilinear
action given by g · (x⊗v) = g(x)⊗v. In descent theory, it is proved that every
semilinear action is of this form (this is Speiser lemma, see [8, p. 27]). In this
paper, we will be interested in semilinear actions which also commute with
the Hopf structure.

Definition 2.2. Let H be a Hopf algebra over L. A G-semilinear action
on H is said to be Hopf-semilinear if it commutes with the Hopf structure
of H . That is, for every g ∈ G and a, b ∈ H we have g(ab) = g(a)g(b), and
similar equations hold for the coproduct, counit, unit and antipode.

We will need to use the following lemma, whose proof is based on Speiser
Lemma together with general arguments.

Lemma 2.3. Let H be a Hopf algebra over L. Suppose that H has a G-
Hopf-semilinear action. Then the subspace of invariant elements HG is a Hopf
algebra over k (the structure maps are just the restrictions of the structure
maps of H), and HG ⊗k L∼=H as L-Hopf algebras.

Remark 2.4. The algebra HG is called a k-form of the L-Hopf algebra H .

We thus see that in order to construct Hopf algebras over k, we can con-
struct Hopf algebras over L together with semilinear actions. In descent
theory, all the semilinear actions of a given Hopf algebra are classified by a
certain nonabelian cohomology group. In our case, it would be easier to find
semilinear actions directly. Forms of Hopf algebras were also considered by
Radford, Taft and Wilson in [14], by Pareigis in [12], by Parker in [13], and
by Caenepeel, Dascalescu and Le Bruyn in [5].

3. Hopf-semilinear actions on function algebras

Let L,k and G be as before, and let T be any finite group. We consider
the function algebra (which is also the dual of the group algebra of T , L[T ] =
(LT )∗). This is the L-algebra of all the functions from T to L. This algebra
has a basis of simple idempotents {et}t∈T , where et(s) = δt,s for t, s ∈ T . This
algebras also has a Hopf structure given by Δ(et) =

∑
rs=t er ⊗ es. In this

section, we will describe the Hopf-semilinear actions of G on L[T ] and how
the corresponding invariant Hopf algebras look like.

Lemma 3.1. There is a one to one correspondence between Hopf-semilinear
actions on L[T ] and homomorphism G→Aut(T ) (i.e. actions of G on T ).

Remark 3.2. The reader who is familiar with descent theory will notice
that this correspondence is exactly the correspondence between k-forms of
L[T ] and H1(G,Aut(T )), where G acts trivially on Aut(T ).
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Proof of Lemma 3.1. The correspondence is given in the following way:
for φ : G → Aut(T ) we have the semilinear action gφ · xet = g(x)eφ(g)(t) for
g ∈G, x ∈ L and t ∈ T . Any Hopf-semilinear action is of this form due to the
following reason: since the action is by algebra automorphisms, every g ∈G
permutes the set of simple idempotents {et}t∈T , and so acts on T . The fact
that the action preserves the coalgebra structure means that this permutation
is an automorphism of T as a group. �

Remark 3.3. In Section 3 of [1], we have described explicitly a specific
form of a specific function algebra. Let us describe the corresponding Hopf-
semilinear action. We have an abelian Galois extension L/k with an (abelian)
Galois group G. We have constructed a k-form H of the L-Hopf algebra
L[Z2 �G] (the action of Z2 = 〈σ〉 is by inversion) which is isomorphic as an
algebra to L⊕ k[G]. The form H corresponds to a semilinear action, which
corresponds, by Lemma 3.1, to a homomorphism φ : G→ Aut(Z2 �G). For
g ∈ G, the homomorphism φ(g) is the homomorphism which sends σ to σg
and fixes G pointwise.

Let us describe, for a given φ : G→ Aut(T ), the structure of the algebra
of invariants (L[T ])G. Let a=

∑
t∈T atet ∈ L[T ]G. It is easy to see that the

fact that a is invariant is equivalent to the fact that g(at) = aφ(g)(t) for every

g ∈G and t ∈ T . In particular at ∈ Lstab(t), where by stab(t) we denote the
stabilizer of t in G with respect to the action φ. If we fix representatives of
the different orbits t1, . . . , tm, then we have an isomorphism of algebras

Lstab(t1) ⊕Lstab(t2) ⊕ · · · ⊕Lstab(tm) →
(
L[T ]

)G
given by

x 
→
∑

g∈G/stab(ti)

g(x)eφ(g)ti

for x ∈ Lstab(ti). Notice in particular that all the fields Lstab(ti) are quotient
of the k-Hopf algebra (L[T ])G. Can we get any subfield of L in this way? the
answer is yes. Using Galois correspondence, any subfield of L is of the form
LH , for some H <G. Therefore we need to prove that for every H <G, we
have a group T and an action of G on T such that T contains an element t
such that stab(t) =H . Let us take T = Z2G/H , the vector space over Z2 with
the coset space G/H as a basis. The group G acts from the left on G/H and
therefore also on T . It is clear that if we take t=H (the trivial coset), then
stab(t) =H as required. Since L was an arbitrary Galois extension of k, and
any finite separable extension of k is contained in its Galois closure, we have
(almost) proved the following:

Theorem 3.4. Let F/k be any finite separable extension. Then there is a
semisimple cosemisimple commutative Hopf algebra H over k such that F is
a quotient of H .
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Proof. The only thing that requires a proof is the cosemisimplicity. The
function algebra k[T ] is cosemisimple if and only if char(k) � |T | (this is
Maschke’s Theorem applied to the dual Hopf algebra). If char(k) �= 2, we can
take T = Z2G/H as above, and if char(k) = 2, we can take T = Z3G/H . �

Now assume that we have an infinite number of nonisomorphic Galois ex-
tensions of k with the same Galois group G which satisfies the condition
char(k) � |G| (e.g. k = Q and G = Z2). Then any Galois extension L of k
with a Galois group G is a quotient of a twisted form of k[Z2G]. The algebra
k[Z2G] (and each of its forms) is semisimple and cosemisimple (if char(k) = 2
we can take k[Z3G] as in the proof of the theorem above). It is easy to see
that by considering all these forms, we get an infinite number of nonisomorpic
commutative semisimple and cosemisimple Hopf algebras of dimension 2|G|,
as was claimed in Section 1. This generalizes the example given in Section 2
of [5] which shows that over a non algebraically closed field a group algebra
of an abelian group can have infinitely many nonisomorphic forms.

4. A semidirect product

In this section, we will construct some specific semidirect products of Hopf
algebras over k. Let N and T be groups such that N acts on T by group
automorphisms (that is, we have a homomorphism ψ : N →Aut(T )). We will
construct a Hopf algebra k[T ]� kN which we call the semidirect product of
kN and k[T ]. As a coalgebra, k[T ] � kN is k[T ] ⊗k kN . The product in
k[T ]� kN is given by the rule

et1 ⊗ n1 · et2 ⊗ n2 = δt1,ψ(n1)(t2)et1 ⊗ n1n2.

In other words, k[T ] and kN are subalgebras of k[T ]� kN , and n ∈N acts
by conjugation on et via ψ. The algebra k[T ]� kN is a Hopf algebra. It is
the bicrossed product of the Hopf algebras kN and k[T ]. For the definition
of bicrossed products in general, see Chapter IX.2 of [11].

Remark 4.1. It can be seen that k[T ]� kN is isomorphic as an algebra
to a direct sum of the form

⊕
iMni(kHi), where Hi are subgroups of N

which arise as stabilizers of element in T . Therefore, if char(k) � |N |, then
the semidirect product k[T ]� kN is semisimple, and thus also every form of
it. We will need this observation later, in order to deal with semisimplicity
questions.

5. A proof of Theorem 1.2

In this section, we will show that HS (k) = Br(k). Let A be a k-central
simple algebra. The algebra A splits by some Galois extension L/k. Let
G=GalS (L/k). By Galois descent, we know that A is equivalent to a crossed
product algebra Lα

t G, where α ∈H2(G,L∗), and the action on L∗ is the Galois
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action. This algebra has an L-basis {Uσ}σ∈G, and the multiplication is given
by the rule:

xUgyUh = xσ(y)α(g,h)Ugh,

where g,h ∈G and x, y ∈ L. We will show that A is (up to Brauer equivalence)
a quotient of a Hopf algebra. We begin with the following definition:

Definition 5.1. We say that the cocycle α is finite if all its values are
roots of unity.

Note that this definition depends on the particular cocycle α, and not just
on its cohomology class [α]. We will prove that A is Brauer equivalent to a
quotient of a Hopf algebra in the following way: we will first show that A
is Brauer equivalent to a product of cyclic algebras with a crossed product
algebra in which the cocycle is finite, and then we will prove that a crossed
product algebra with a finite cocycle is a quotient of a Hopf algebra. In [1],
we have proved that any cyclic algebra is a quotient of a Hopf algebra, and
therefore [A] (the Brauer class of A) is in HS (k).

Remark 5.2. In case char(k) = 0, A is equivalent to a crossed product
algebra with a finite cocycle, and we do not need to use the result from [1].

The following lemma seems to be well known. We have included it here
nevertheless, as it makes our construction more explicit.

Lemma 5.3. Let α ∈H2(G,L∗). Denote the order of α by m. If char(k) = 0
or if char(k) = p and p �m, then the crossed product algebra Lα

t G is Brauer

equivalent to a crossed product algebra Kβ
t N where β is a finite cocycle.

Proof. Since the order of α is m, there is a function f : G → L∗ which
satisfies

αm(g1, g2) = ∂f(g1, g2) = f(g1)g1
(
f(g2)

)
f−1(g1g2),

for g1, g2 ∈ G. Let K be a Galois extension of L which contains, for every
g ∈ G, an element rg which satisfies rmg = f(g) (the fact that we have such
a Galois extension follows from the assumption on m and char(k)). If we
denote by N the Galois group of K over k, we have an onto map π : N � G.
Define a two cocycle β ∈H2(N,K∗) by

β(h1, h2) = α
(
π(h1), π(h2)

)
r−1
π(h1)

h1

(
r−1
π(h2)

)
rπ(h1h2).

A direct calculation shows that all the values of β are mth roots of unity, and
so β is finite. The cocycle β is cohomologous to infNG (α). By Brauer theory,

we thus know that the central simple algebras Lα
t G and Kβ

t N are Brauer
equivalent, as required. �

Remark 5.4. The field K in the lemma can be taken to be L(ξm,{rg}g∈G).
Notice that if ord([A]) = m is prime to p, and if p � |L(ξm) : k|, then also
p � |L(ξm,{rg}g∈G) : k|. Thus, the lemma implies that if A is a good algebra,
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then A is Brauer equivalent to a crossed product algebra Kβ
t G with a finite

cocycle, such that p � |K : k|. By the next proposition, this implies that A
is Brauer equivalent to a quotient of a finite dimensional semisimple Hopf
algebra.

Suppose now that k is a field of characteristic p, and that the order of α, m,
is not prime to p. Write m= rpe, where r is prime to p. Then Lα

t G is Brauer
equivalent to a tensor product of the form Lα1

t G⊗k L
α2
t G where ord(α1) = r

and ord(α2) = pe. By a theorem of Teichmueller, if char(k) = p then any
central simple algebra whose order is pe is Brauer equivalent to a product of
cyclic algebras (see Chapter 9.1 of [8]), and Brauer classes of cyclic algebras
are in HS (k) (see [1]). By the lemma above, Lα1

t G is Brauer equivalent to
a crossed product algebra in which the cocycle is finite. The proof of the
following proposition together with the above remark therefore finishes the
proof of Theorem 1.2:

Proposition 5.5. Let A= Lα
t G be a crossed product algebra such that α

is finite. Then A is a quotient of a Hopf algebra. If char(k) � |G|, then A is a
quotient of a semisimple Hopf algebra.

Proof. Consider the subgroup of Lα
t G generated by the Ug ’s. Since α is

finite, we get an extension of finite groups

1→ μ→ Ĝ→G→ 1,

where μ is the finite subgroup of L∗ generated by all elements of the form
α(g1, g2), for g1, g2 ∈G (by assumption, they are all roots of unity). We thus
know how to get the field L as a quotient of a Hopf algebra, and how to get
the subalgebra generated by the Ug ’s as a quotient of a Hopf algebra (the

group algebra kĜ). We now use the semidirect product construction in order
to combine these two constructions into one Hopf algebra.

Let T be the group Z2G, the vector space over Z2 with basis G (multi-
plication in T is just addition of vectors). We have a natural action of G

(and thus of Ĝ, using the map Ĝ → G) on T by left multiplication. If we

denote the action of Ĝ on T by ψ, we can construct the semidirect product

k[T ]� kĜ as explained in Section 4. Notice that by Remark 4.1 k[T ]� kĜ is
semisimple if char(k) � |G| (it is easy to see by the fact that the order of α in
H2(G,L∗) divides |G|, that the prime divisors of |μ| are also prime divisors of

|G|). Now consider the induced L-Hopf algebra XL = L⊗k (k[T ]� kĜ). We
have an action of G on T not only from the left but also from the right by
multiplication. We define an action of G on XL via

g � (l⊗ et ⊗ h) = g(l)⊗ et·g−1 ⊗ h.

We claim the following lemma.

Lemma 5.6. The action � is a Hopf-semilinear action of G on XL.
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Proof. This is a straightforward verification. The crux of the proof is the
fact that the two actions of G on T from the left and from the right commute
with each other. �

Consider now the k-Hopf algebra H = (XL)
G (which is semisimple in case

char(k) � |G|), where we take invariants with respect to the � action. We
claim that we have an onto map H � Lα

t G. To see why this is true, we
first decompose H as an algebra (we do not care any more about the Hopf
structure at this stage).

Denote by H1 the intersection of (XL)
G with the L subspace spanned by

all 1⊗ et ⊗ ĝ, where ĝ ∈ Ĝ, and t ∈G (we can consider G as the subset of T
which contains the basis elements). Denote by H2 the intersection of (XL)

G

with the L subspace spanned by all 1⊗et⊗ ĝ, where ĝ ∈ Ĝ and t /∈G. Since G,

as a subset of T , is stable under the action of Ĝ from the right and under the
action of G from the left, we see that H1 and H2 are two sided ideals, and we
have a decomposition of algebras H =H1 ⊕H2.

Since H1 is a quotient of H , it will be enough to prove that Lα
t G is a

quotient of the algebra H1. In order to prove this, we give a neater description

of H1. The group Ĝ acts on L via π : Ĝ→G. We define the algebra B to be

L⊗k kĜ as a vector space, with the product

(l1 ⊗ ĝ1) · (l2 ⊗ ĝ2) = l1ĝ1(l2)⊗ ĝ1ĝ2.

Thus, B is the semidirect product (of algebras) of L and kĜ. We define a
linear map φ : B →H1 by

l⊗ ĝ 
→
∑
g∈G

g(l)⊗ eg−1 ⊗ ĝ.

The following lemma is quite easy to prove the following lemma.

Lemma 5.7. The map φ is an isomorphism of algebras.

By the lemma, it is enough to prove that we have an onto map B → Lα
t G.

To do this, recall that the group Ĝ was constructed as a subgroup of the
group of invertible elements in Lα

t G, and thus we have a natural algebra map

kĜ→ Lα
t G. We define the following linear map

Ψ : B → Lα
t G,

l⊗ ĝ 
→ lĝ.

We claim the following lemma.

Lemma 5.8. The map Ψ is an onto algebra map.

Proof. The fact that Ψ is onto is easily seen by the fact that Lα
t G is spanned

over L by the Ug ’s. The fact that Ψ is an algebra map follows from a direct
calculation. �
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We thus see that Lα
t G is a quotient of a Hopf algebra. This finished the

proof of Theorem 1.2. �
Remark 5.9. The Hopf algebra H is actually a form of a group algebra

(i.e., H ⊗k L is a group algebra). This is due to the following fact: the group
T is Abelian, and therefore k[T ]∼= kT �, where T � is the character group of T .

The semidirect product k[T ] � kĜ can therefore be seen to be the group

algebra of the semidirect product Ĝ�T �. Since L⊗k (k[T ]�kĜ) and L⊗k H
are isomorphic, we see that H is a form of a group algebra.
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