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DISPERSIVE ESTIMATES FOR MATRIX AND SCALAR
SCHRÖDINGER OPERATORS IN DIMENSION FIVE

WILLIAM R. GREEN

Abstract. We investigate the boundedness of the evolution op-
erators eitH and eitH in the sense of L1 → L∞ for both the scalar
Schrödinger operatorH =−Δ+V and the non-selfadjoint matrix

Schrödinger operator

H=

[
−Δ+ μ− V1 −V2

V2 Δ− μ+ V1

]
in dimension five. Here μ > 0 and V1, V2 are real-valued decaying
potentials. The matrix operator arises when linearizing about a

standing wave in certain nonlinear partial differential equations.

We apply some natural spectral assumptions on H, including
regularity of the edges of the spectrum ±μ.

1. Introduction

Consider the linear scalar Schrödinger equation with a real-valued decaying
potential

iut −Δu+ V u= 0, u(x,0) = f(x) ∈ S
(
R

5
)
.(1)

The scalar Schrödinger operator H = −Δ + V on R
5 is used to write the

solution to (1) as u(x, t) = eitHf(x). Such a function formally solves (1),
though it requires some care to interpret the solution operator eitH .

Estimates from L2 → L2 for the solution operator are a consequence of
eitH being an isometry on L2 for sufficiently decaying potentials V . Let Pac

be projection onto the absolutely continuous spectral subspace of L2 deter-
mined by H . Dispersive, or L1 → L∞ estimates for the evolution operator
eitHPac(H) have been studied under various decay and smoothness condi-
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tions on the potential V . Much work has been done in dimensions n≤ 3, see,

for instance, the works of Rodnianski and Schlag [46], Schlag [50], Goldberg

and Schlag [30], Goldberg [28], [29], Journé, Soffer and Sogge [35], Yajima

[66], [65], Erdoğan and Schlag [23], [22] and Weder [62]. Earlier works in the

weighted L2 sense were investigated by Rauch [44], Jensen [33] and Jensen

and Kato [34]. The best result in dimension three in print known to the au-

thor is that of Goldberg in [28], in which the potential is assumed to lie in

Lp ∩ Lq with p < 3
2 < q. Very recently, Beceanu and Goldberg proved dis-

persive estimates hold for scaling-critical potentials, [5], through use of an

operator-theoretic Wiener theorem. This result supercedes the Lp ∩Lq result

by allowing potentials in the closure of compactly supported functions with

respect to the global Kato norm. For a more detailed account of the scalar

case, see the survey paper [49].

In higher dimensions, n > 3, Goldberg and Visan showed that decay or

integrability conditions do not suffice to ensure the dispersive estimates are

satisfied. In [31], they construct a compactly supported potential V in Cα(Rn)

for α< n−3
2 for which the dispersive estimates cannot hold. Journé, Soffer and

Sogge’s work applies in higher dimensions, but the assumption of V̂ ∈ L1(Rn)

necessitates a certain amount of smoothness on the potential. For instance,
V ∈H

n
2 +ε(Rn) ensures that V̂ ∈ L1(Rn). Yajima [65], and Yajima and Finco

[24] prove dispersive estimates hold if the potential obeys |V (x)| � 〈x〉−(n+2)−

and a weighted Fourier transform of the potential obeys a certain integrability

condition. This integrability condition is satisfied if more than n−1
2 − 1

n−2

derivatives of V are in L2. Work on higher dimensional dispersive estimates

using techniques of semi-classical analysis has been explored by Vodev [60],

[61], Moulin and Vodev [40], and Cardoso, Cuevas and Vodev in [11], [12],

[13]. The five-dimensional result in [11] necessitates V ∈C1+(R5) along with

decay of the potential and its derivative. In [20] Erdoğan and the author

show that V ∈ C
n−3
2 (Rn) is the sharp smoothness requirement, along with

sufficient decay on the potential and its derivatives, for dimensions n= 5,7.

This work gives a heuristic argument that shows the smoothness requirement

of V ∈C
n−3
2 (Rn) should hold in all odd dimensions n > 3.

It is well known that the presence of a resonance or eigenvalue at zero

energy destroys the |t|−n/2 decay. This was observed by Rauch to be the

generic case in [44]. Rauch, Jensen and Kato [34] and Murata [41] all showed
that in dimension three the decay rate will be |t|−1/2 in the weighted L2

setting. The L1 → L∞ case was handled by Erdoğan and Schlag [23] in terms
of |t|−1/2 and |t|−3/2. Yajima [67] and Goldberg [27] independently proved

estimates when there are eigenvalues at zero in R
3. In this paper, we avoid

the case in which eigenvalues occur by assuming regularity of the edge of the

spectrum.
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We consider the non-selfadjoint matrix Hamiltonian,

H=H0 + V =

[
−Δ+ μ 0

0 Δ− μ

]
+

[
−V1 −V2

V2 V1

]
.(2)

To the best of the author’s knowledge, L1 → L∞ dispersive estimates for this
operator have only been studied in dimension three. Notably by Schlag [52],
Erdoğan and Schlag [23] and Beceanu [3], [4]. A proof using scattering theory
was considered by Marzuola [37]. In [52], it is shown that dispersive estimates
hold under the same assumptions on Vi for the matrix case as V in the scalar
case, namely regularity of zero and |V (x)| � 〈x〉−β for some β > 3. In [23],
more decay was required, β > 5 to handle the cases when zero energy is an
eigenvalue or resonance.1

The applications of the matrix Schrödinger operator (2) to nonlinear partial
differential equations were first studied by Cuccagna [17]. When linearizing
about a ground state solution to certain nonlinear Schrödinger equations, one
obtains a version of (2) where the potentials depend on the ground state. This
is discussed further in Section 2.

In this paper, we prove the following dispersive estimate for the scalar
operator.

Theorem 1.1. Assume that zero is not an eigenvalue2 of H = −Δ+ V ,
where V ∈C1(R5) with |V (x)| � 〈x〉−β for some β > 4, and |∇V (x)| � 〈x〉−α

for some α> 3. Then ∥∥eitHPac

∥∥
1→∞ � |t|− 5

2 .

This result more than cuts in half the decay requirement needed in [20].
This result relies on the method used in [20] and an improved estimate for
the tail of the Born series which is proven in Section 5.

A similar result holds for the matrix Hamiltonian, (2). This requires a
few more assumptions on the spectrum of H, which are laid out in the next
section. We note that μ > 0 in the definition (2).

Theorem 1.2. Assume that ±μ is not an eigenvalue of H. Further for i=
1,2, Vi ∈ C1(R5) with |Vi(x)| � 〈x〉−β for some β > 4, and |∇Vi(x)| � 〈x〉−α

for some α> 3. Then ∥∥eitHPc

∥∥
1→∞ � |t|− 5

2 .

This paper is organized as follows, we first set up the necessary spectral
theory to reduce the problem of dispersive estimates to estimating certain
oscillatory integrals in Section 2. In Section 3, we use a Born series expansion

1 During the review period for this article, much work has been done on related problems.
Of particular note is the recent work of Erdoğan and the author [21] for matrix operators

in two spatial dimensions.
2 Resonances cannot occur in dimensions n ≥ 5 as (−Δ)−2〈x〉−2 is a bounded operator

on L2(Rn) for n≥ 5.
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and estimate each resulting term, essentially reducing the matrix case to the
scalar case as in [20]. In Section 5, we improve the estimates used in [20] to
control the tail of the Born series. Finally in Section 6, we apply the scalar
Born series tail results to the matrix case.

2. Spectral theory

Consider the matrix Schrödinger operator, given in (2), on L2(Rn) ×
L2(Rn). Here μ > 0 and V1, V2 are real-valued decaying potentials. It fol-
lows from a Weyl’s criterion argument that the essential spectrum of H is
(−∞,−μ]∪ [μ,∞), see [32], [45], for example.

For the spectral theory of the matrix Schrödinger operator, we proceed
in the manner of Erdoğan and Schlag [23]. In fact, as most of the proofs
presented in [23] are independent of dimension, as such we cite the results
without proof. Accordingly, we make the following assumptions:

(A1) L− =−Δ+ μ− V1 + V2 ≥ 0,
(A2) |V1(x)|+ |V2(x)| � 〈x〉−β for some β > 0,
(A3) there are no embedded eigenvalues in (−∞,−μ)∪ (μ,∞).

The first two assumptions are known to apply in the case of the linearized
nonlinear Schrödinger equation when the linearization is performed about the
positive ground state standing wave. One takes the positive ground state
standing wave φ(x) and assume that for some μ > 0, ψ(t, x) = eitμφ(x) is a
standing wave solution of the nonlinear Schrödinger equation

i∂tψ+Δψ+ |ψ|2γψ = 0,(3)

for some γ > 0. Assuming that φ is the ground state implies that

μφ−Δφ= φ2γ+1, φ > 0.

Linearizing about this ground state yields the matrix Schrödinger equation
with potentials V1 = (γ + 1)φ2γ and V2 = γφ2γ . It is known that the ground
state solutions to (3) exist and are smooth, radial and exponentially decaying.
This is proved in [7], [57] by Berestycki and Lions, and Strauss respectively.
Uniqueness was proved in [15], [36], [39] by Coffman, Kwong and McLeod and
Serrin respectively. Other bound states are investigated by Berestycki and
Lions in [8], which expands upon the results in [7].

The orbital (or Lyapunov) stability or instability of the ground states has
been a subject of much work. See for example the works of Berestycki and
Cazenave [6], Cazenave and Lions [14], Comech and Pelinovsky [16], Grillakis
and Shatah [25], [26], Shatah [53], Shatah and Strauss [54], and Weinstein
[63], [64]. Much of this work was reviewed in the monographs by Strauss and
Sulem and Sulem [58], [59].

The asymptotic stability of ground states is a stronger requirement than
orbital stability and has also been well investigated. For small solitons one can
see the work of Soffer and Weinstein [55], [56]. For large solitons, see Busalev
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and Perelman [9], [10], Cuccagna [17], Perelman [42], [43], and Rodnianski,
Schlag and Soffer [48], [47].

The Schrödinger equation can show up when linearizing in other nonlinear
partial differential equations. A more detailed discussion of the nonlinear
Schrödinger case can be found in [22], [52]. For a more thorough review of
applications to other nonlinear equations, see the survey paper [51].

We now discuss the needed spectral theory for the matrix Schrödinger
operator of (2).

Lemma 2.1. Let β > 0 be arbitrary in (A2), then the essential spectrum

of H equals (−∞,−μ] ∪ [μ,∞). Moreover spec(H) =− spec(H) = spec(H) =
spec(H∗), and spec(H) ⊂ R ∪ iR. The discrete spectrum of H consists of
eigenvalues {zj}Nj=1, 0 ≤ N ≤ ∞, of finite multiplicity. For each zj 
= 0,
the algebraic and geometric multiplicity coincide and Ran(H− zj) is closed.
The zero eigenvalue has finite algebraic multiplicity, that is, the generalized
eigenspace

⋃∞
k=1 ker(Hk) has finite dimension. In fact, there is a finite m≥ 1

so that ker(Hk) = ker(Hk+1) for all k ≥m.

Proof. See Lemma 3 of [23]. �
As in the scalar case, see [30], [20] etc., the proofs will hinge on the limiting

absorption principle of Agmon [2]. We now establish such a result for (H−
z)−1 for |z| > μ. From the weighted L2 space L2,σ(Rn) = 〈x〉−σL2(Rn), we
define the space

Xσ := L2,σ
(
R

5
)
×L2,σ

(
R

5
)
.

It is clear that X∗
σ =X−σ . The limiting absorption principle of Agmon is now

formulated below.

Proposition 2.2. Let β > 1, σ > 1
2 and fix an arbitrary λ0 > μ. Then

sup
|λ|≥λ0,ε≥0

|λ| 12
∥∥(H− (λ± iε)

)−1∥∥<∞,(4)

where the norm is in Xσ →X−σ .

Proof. See Lemma 4, Proposition 5 and Corollary 6 of [23]. �
To establish dispersive estimates for the matrix case, we need the analogue

of projection onto the continuous spectrum. Let Pd be the Riesz projection
onto the discrete spectrum of H. Under the assumption that ±μ are not
eigenvalues of H, we define the following projection

Pc = I − Pd.

This projection is more complicated in the case where ±μ are eigenvalues,
see [23]. Pc is now analogous to the projection onto the absolutely contin-
uous spectrum in the scalar case. We project away from the eigenspaces,
this requires the assumption that there are no embedded eigenvalues. This
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assumption seems to hold in the three-dimensional case as evidenced in the
numerical studies [18], [38].

3. Born series

Assuming that there are no eigenvalues embedded in the essential spectrum,
we begin with the spectral representation

eitH =
1

2πi

∫
|λ|≥μ

eitλ
[(
H− (λ+ i0)

)−1 −
(
H− (λ− i0)

)−1]
dλ(5)

+
∑
j

eitHPλj

with the sum running over the discrete spectrum {λj}j and Pλj is the Riesz
projection corresponding to λj . This representation holds as a consequence
of the Hille–Yosida theorem, as shown in [23], [52]

We denote the matrix resolvent operators R±
V (λ) = (H− (λ± i0))−1 and

R±
0 (λ) = (H0 − (λ± i0))−1.
We note that Pc is analogous to projection onto the absolutely continuous

spectrum in the scalar case. So that, from (5), we wish to examine the operator

eitHPc =
1

2πi

∫
|λ|≥μ

eitλ
[
(R+

V (λ)−R−
V (λ)

]
dλ.

We write Pc = P+
c +P−

c , where P+
c projects onto [μ,∞) and P−

c projects onto
(−∞,−μ]. Now using a finite resolvent expansion and a change of variables
λ→ λ2 + μ,〈

eitHP+
c f, g

〉
=

eitμ

πi

∫ ∞

0

λeitλ
2〈[

R+
V

(
λ2 + μ

)
−R−

V

(
λ2 + μ

)]
f, g
〉
dλ

=
eitμ

πi

(
2m+1∑
�=0

(−1)�
∫ ∞

0

λeitλ
2〈[

R+
0

(
λ2 + μ

)(
V R+

0

(
λ2 + μ

))�
−R−

0

(
λ2 + μ

)(
V R−

0

(
λ2 + μ

))�]
f, g
〉
dλ(6)

+

∫ ∞

0

λeitλ
2〈[(

R+
0

(
λ2 + μ

)
V
)m+1

R+
V

(
λ2 + μ

)(
V R+

0

(
λ2 + μ

))m+1

−
(
R+

0

(
λ2 + μ

))m+1
R−

V

(
λ2 + μ

)(
V R−

0

(
λ2 + μ

))m+1]
f, g
〉
dλ

)
.(7)

Here we are calculating the contribution of P+
c , the projection onto [μ,∞),

the contribution of P−
c is done in the same manner.
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In odd dimensions n≥ 3, (−Δ− z)−1 is an integral operator with kernel

(−Δ− z)−1(x, y) =
i

4

(
z

1
2

2π|x− y|

)n−2
2

H
(1)
n−2
2

(
z

1
2 |x− y|

)
.(8)

Here H
(1)
ν (·) is a Hankel function of the first kind of order ν. We use the fol-

lowing explicit representation for the kernel of the limiting resolvent operator
R±

0 (λ
2) (see, e.g., [33])

R±
0 (λ

2)(x, y) = Gn

(
±λ, |x− y|

)
,

where

Gn(λ, r) =Cn
eiλr

rn−2

n−3
2∑

�=0

(n− 3− 
)!


!(n−3
2 − 
)!

(−2irλ)�.(9)

We also define

G1(λ, r) =C1
eiλr

λ
.

Lemma 3.1. For n≥ 3 and odd, the following recurrence relation holds.(
1

λ

d

dλ

)
Gn(λ, r) =

1

2π
Gn−2(λ, r).

Proof. The proof follows from the recurrence relations of the Hankel func-
tions, found in [1] and the representation of the kernel given in (8). One can
also prove this (with a fixed constant instead of 2π) directly using (9). �

For the matrix operator (2), we have

R±
0

(
λ2 + μ

)
(x, y) =

(
Gn(λ, |x− y|) 0

0 Jn(λ, |x− y|)

)
,(10)

where Jn(λ, r) = Gn(i
√

2μ+ λ2, r). In particular, it is worth noting that
Jn(λ, r) is always real-valued and exponentially decaying in r.

Corollary 3.2. For n≥ 3, the following recurrence relation holds.

1

λ

d

dλ
Jn(λ, r) =

1

2π
Jn−2(λ, r).

We note that the five-dimensional kernel takes the form:

G5(λ, r) =C5e
iλr

(
iλ

r2
+

1

r3

)
.

We state the following lemma for the Fourier transforms of certain classes
of functions which will be used throughout the paper.
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Lemma 3.3. Let ψμ(λ) =
√
2μ+ λ2, then for m ∈N0

sup
b≥0

∥∥∥∥∫
R

e−iλuλ∂λe
−bψμ(λ) dλ

∥∥∥∥
Mu

= sup
μ≥0

∥∥∥∥∫
R

e−iλuλ∂λe
−
√

μ+λ2
dλ

∥∥∥∥
Mu

<∞,

sup
b≥0

∥∥∥∥∫
R

(
bψμ(λ)

)m
e−bψμ(λ)e−iλu dλ

∥∥∥∥
Mu

= sup
μ≥0

∥∥∥∥∫
R

(√
μ+ λ2

)m
e−

√
μ+λ2

e−iλu dλ

∥∥∥∥
Mu

<∞,

where ‖ · ‖M stands for the total variation norm of measures.

Proof. The first bound is proven in Section 7 of [52] as well as the m= 0
case of the second bound. The second bound follows from

∂λ
((√

μ+ λ2
)m

e−
√

μ+λ2)
= λ
(√

μ+ λ2
)m−2

e−
√

μ+λ2(√
μ+ λ2 +m

)
,

∂2
λ

((√
μ+ λ2

)m
e−

√
μ+λ2)

= e−
√

μ+λ2(√
μ+ λ2

)m−4[
m(m− 2)λ2

+
√

μ+ λ2(2m− 1)λ2 +
(√

μ+ λ2
)2(

λ2 −m
)

+
(√

μ+ λ2
)m]

.

As for m ∈ N0 each of these derivatives are in L1(R) with norms uniformly
bounded in μ > 0. It now follows that

sup
μ≥0

(
1 + u2

)∣∣∣∣∫
R

(√
μ+ λ2

)m
e−

√
μ+λ2

e−iλu dλ

∣∣∣∣� 1,

and the lemma is proven. �

4. The κth term of the Born series

From (6), to establish Theorem 1.2, we wish to prove estimates of the
form ∣∣∣∣∫ ∞

0

eitλ
2

λ�
[
R±

0

(
λ2 + μ

)[
V R±

0

(
λ2 + μ

)]κ]
ek dλ

∣∣∣∣� |t|−5/2,

here ek are the unit vectors e1 = (1,0)T and e2 = (0,1)T . By writing the ma-
trix resolvent R±

0 (λ
2 + μ) as a diagonal matrix whose entries are the kernels

Jn(λ, r) and Gn(λ, r) as in (10), we can reduce down to integral estimates of
the same form as considered by Erdoğan and the author in [20].

Let I and I∗ form a partition of {0,1, . . . , κ}. Noting that Jn(λ, r) is
real-valued and even in λ and the imaginary part of

∏
j∈I Gn(λ, rj) is even,
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we extend the λ integral to R. We are led to proving estimates of the
form

sup
z0,zκ+1

∣∣∣∣∣
∫
R5κ+1

eitλ
2

λ�
[∏
j∈I

G5(λ, rj)
∏
j∈I∗

J5(λ, rj)

κ∏
�=1

V (z�)

]
d�z dλ

∣∣∣∣∣(11)

� |t|−5/2,

where rj = |zj − zj+1| and d�z = dz1dz2 . . . dzκ.
We note that we can immediately ignore the case of I = ∅ as Jn is real-

valued. Further if I∗ = ∅, we can reduce to the scalar case which is handled by
Erdoğan and the author in [20] for n= 5,7. As such, we will assume that both
I and I∗ are nonempty. We can now differ from the scalar case by omitting
the large λ cut-off function χL as J5(λ, r) is exponentially decaying in λ.

As in the scalar case, we perform n−1
2 = 2 integration by parts in λ and

the left hand side of (11) becomes

|t|−2

∫
R5κ+1

eitλ
2

λ�
[∏
j∈I

G5−2αj (λ, rj)
∏
j∈I∗

J5−2αj (λ, rj)

κ∏
�=1

V (z�)

]
d�z dλ,

with α0, . . . , ακ ∈N0 such that
∑κ

j=0αj = 2.

4.1. The first term of the Born series. We can assume without loss of
generality that I = {1} and I∗ = {0} by the assumption that both sets are
nonempty. There are now three distinct cases which depend on where the λ
derivatives act.

Case 1. Consider the case when both λ derivatives act on the kernel
G5(λ, r). By Lemma 3.1, we have

|t|−2

∫
R5+1

eitλ
2

λJ5

(
λ, |z0 − z1|

)
V (z1)G1

(
λ, |z1 − z2|

)
dz1 dλ.

Recall we have ψμ(λ) =
√
2μ+ λ2, We first note the fact that ‖[eit(·)2 ]∨‖∞ �

|t|−1/2, then expanding the kernels as in (9) and ignoring constants, we have
an integral of the form |t|−2 multiplied by∣∣∣∣∫

R5+1

eitλ
2

eiλ|z1−z2|e−ψμ(λ)|z0−z1|
(

ψμ(λ)

|z0 − z1|2
+

1

|z0 − z1|3
)
V (z1)dz1 dλ

∣∣∣∣
=

∣∣∣∣∫
R5+1

eitλ
2

eiλ|z1−z2|e−ψμ(λ)|z0−z1|
(
1 + ψμ(λ)|z0 − z1|

|z0 − z1|3
)
V (z1)dz1 dλ

∣∣∣∣
� |t|−1/2

∥∥F((1 +√μ+ λ2
)
e−

√
μ+λ2)∥∥

M

∫
R5

|V (z)|
|z0 − z1|3

dz1 � |t|−1/2,

where we used Plancherel, Lemma 3.3 and the assumption that |V (x)| �
〈x〉−4− provides more than enough decay to ensure the z1 integral converges.
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Case 2. Consider when one λ derivative acts on each G5(λ, r) and J5(λ, r).
By Lemma 3.1 and Corollary 3.2, we have

|t|−2

∣∣∣∣∫
R5+1

eitλ
2

λJ3

(
λ, |z0 − z1|

)
V (z1)G3

(
λ, |z1 − z2|

)
dz1 dλ

∣∣∣∣
= |t|−2

∣∣∣∣∫
R5+1

eitλ
2

eiλ|z1−z2|e−
√

2μ+λ2|z0−z1| λV (z1)

|z0 − z1||z1 − z2|
dz1 dλ

∣∣∣∣.
Noting that

eiλ|z1−z2| =
i

λ
∇z1e

iλ|z1−z2| · ez2(z1),

where ex(y) is the unit vector in direction x− y. Now, we can integrate by
parts in z1 once to eliminate the λ power. The derivative can act on the
exponential, the potential, either point singularity or the unit vector.

If the derivative acts on the exponential, we gain a term of the form√
2μ+ λ2ez0(z1), which we can treat as in the first case using Plancherel

and Lemma 3.3. We need only bound the integral∫
R5

|V (z1)|
|z0 − z1|2|z1 − z2|

dz1,

up to reversal of z0 and z2. This integral is bounded if |V (x)| � 〈x〉−2−.
The same analysis holds if the derivative acts on the point singularity or unit
vector as

∇z1 · ez0(z1) =
1− n

|z0 − z1|
, ∇z1 |z0 − z1|−1 =

ez0(z1)

|z0 − z1|2
.

If the derivative acts on the potential, we need to bound∫
R5

|∇V (z1)|
|z0 − z1||z1 − z2|

dz1

which is bounded if |∇V (x)| � 〈x〉−3−.

Case 3. Finally, consider when both λ derivatives act on a J5. Here we
must use that we need only bound the imaginary part of the integrand in
(11). By Corollary 3.2, we have∫

R5+1

eitλ
2

λJ1

(
λ, |z0 − z1|

)
V (z1)G5

(
λ, |z1 − z2|

)
dz1 dλ

=

∫
R5+1

eitλ
2

eiλ|z1−z2|e−
√

2μ+λ2|z0−z1|V (z1)

×
(

λ2√
2μ+ λ2

1

|z1 − z2|2
+

λ√
2μ+ λ2

1

|z1 − z2|3
)
dz1 dλ.
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For the λ2 term, we note that

|z0 − z1|−1λ∂λe
−
√

2μ+λ2|z0−z1| =
λ2√

2μ+ λ2
e−

√
2μ+λ2|z0−z1|.

Thus Plancherel and Lemma 3.3 will yield the desired bound if∫
R5

|V (z1)|
|z0 − z1||z1 − z2|2

dz1

is bounded. This is true when |V (x)| � 〈x〉−2−.
For the λ term, we note that everything in the z1 integral is real except

the imaginary exponential, which becomes sin(λ|z1 − z2|). Writing

sin
(
λ|z1 − z2|

)
= λ

∫ |z1−z2|

0

cos(λα)dα,

we can apply Plancherel and Lemma 3.3 as long as∫
R5

|V (z1)|
|z0 − z1||z1 − z2|2

dz1

is bounded. Again if |V (x)| � 〈x〉−2− the above is bounded.
This suffices to show that Theorem 1.2 holds for the first term of the Born

series in (6).

4.2. Higher Born series terms. The integrals that arise from the higher
Born series terms are of the same form as the κ= 1 term. The strategies used
in the κ= 1 case can be applied to the higher κ terms. First of all, when a
J1(λ, rj∗) occurs, the lowest order λ term can be handled as in Case 3 above,
but with a series of iterated integrals of the form∫

R5κ

κ∏
�=1

V (zκ)
∏
j �=j∗

1

|zj − zj+1|3
.

When powers of λ occur, we simply follow the integration by parts scheme for
the Born series laid out in [20]. For this, we note that

∇ze
−
√

2μ+λ2|x−z| =
(
−
√

2μ+ λ2|x− z|
)
e−

√
2μ+λ2|x−z| x− z

|x− z|2 .(12)

When integrating by parts in the zj variables, if the derivative acts as in (12),
we use the following identity to perform the integration by parts

eiλ|z−y| =− i

λ

(
∇ze

iλ|z−y|) · y− z

|y− z| .

The above are needed for the case in which we have J5−2αj (λ, |x − z|) ×
G5−2αj+1(λ, |z − y|). This case is simpler than the scalar case due to the
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absence of the line singularity Exzzy , which is replaced by the unit vector
y−z
|y−z| . In [20], the following formula was used to perform the integration by
parts

eiλ(|x−z|+|z−y|) =− i

λ

(
∇ze

iλ(|x−z|+|z−y|)) ·Exzzy,

where Exzzy = x−z
|x−z| −

z−y
|z−y| is a superposition of two unit vectors. As seen

from (12), and Lemma 3.3, integrating by parts leads to positive powers of√
2μ+ λ2 or acts similar to the scalar case. we simply absorb them into an

expression with the decaying exponential whose Fourier transform will be a

measure. In effect we can treat any r−2
j

√
2μ+ λ2 as if it were the lower order

term r−3
j . It was seen in [20] that the analogous λ term of the free resolvent

in the scalar case caused the high energy difficulties and necessitated the
smoothness condition on the potential.

From [20], we know how to handle integrals of the form∫
R5κ+1

eitλ
2

λN 1

rm0
0

κ∏
j=1

V (zj)

r
mj

j

d�z dλ

for N ≤ κ. This allows us to effectively reduce the matrix Born series terms
to those of the scalar Born series.

4.3. Dimensions n > 5. In the same way that the Born series terms of
the five dimensional matrix case are reduced to the five dimensional scalar
case, the integration by parts scheme of [20] will reduce the seven dimensional
matrix case to the seven dimensional scalar case. In fact, if one can control
the terms of the scalar Born series for higher dimensions as in the scheme
suggested in Section 5 of [20], by the method of integration by parts show
here one can also control the terms of the matrix Born series.

5. Tail estimates for the scalar case

In this section, we prove a sharper estimate in terms of decay rate on
the tail of the Born series given below in (13). Essentially, we estimate the
scalar analogue of (7) in the scalar case, and in Section 6 we extend this
method to the matrix case. In [20], Erdoğan and the author proved dispersive
estimates for the scalar linear Schrödinger equation with optimal smoothness
assumptions on the potential V in dimensions five and seven. Their analysis
used tail estimates established by Goldberg and Visan in [31]. These estimates
required no smoothness on V , but required a decay of 〈x〉−β for some β >
3n+5

2 , far more than the optimally conjectured decay rate of β > 2. Though
in [31], the decay rate was not a main concern since they were constructing a
counterexample.
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We note that Yajima’s result [65] requires that the potential obeys |V (x)| �
〈x〉−(n+2)−, and its integrability requirements on the potential do not lead to
sharp smoothness requirements. As mentioned in the introduction, a series of
work has been done using techniques of semi-classical analysis. In [11], it is
shown that dispersive estimates hold if V ∈C1+(R5) and |∇jV (x)| � 〈x〉−5−

for j = 0,1. In [40], it is shown that low-frequency dispersive estimates re-
quire only that |V (x)| � 〈x〉−(n+2)/2−, however, their extension to include

high frequency requires V̂ ∈ L1 which does not yield optimal smoothness as-
sumptions of the potential. The method laid out here requires slightly more
decay, |V (x)| � 〈x〉−4− for both the high energy and low energy portions of
the evolution, but requires no smoothness of V .

In this section, we prove dispersive estimates on the tail of the Born series
in the scalar case that require only |V (x)| � 〈x〉−β for some β > 4 in dimension
five. The high energy argument can be extended to arbitrary odd dimensions

n > 3 assuming only that |V (x)| � 〈x〉−n+3
2 −. The low energy argument can

be duplicated in dimension seven with β > 5, but cannot be extended in this
form to n > 7.

In a slight bit of abuse of notation, let R±
0 (λ

2) be the scalar free resolvent
operator with kernel given in (9). By iterating the scalar resolvent identity

RV (z) =R0(z)−R0(z)V RV (z)

one obtains the Born series representation

RV (z) =

2m+1∑
κ=0

(−1)κR0(z)
[
V R0(z)

]κ
(13)

+
[
R0(z)V

]m+1
RV (z)

[
V R0(z)

]m+1
.

Here we used that R0V RV = RV V R0. This approach is standard for the
scalar case, see for example [20], [28], [30], [31], [46], [50]. We can control
the contribution of the terms of the finite Born series in (13) as in [20]. One
needs only control the tail of the Born series in (13). That is control the
contribution of [

R±
0

(
λ2
)
V
]m+1

R±
V

(
λ2
)[
V R±

0

(
λ2
)]m+1

for some m ∈ N0 which depends on the dimension. In this section, we prove
the following theorem.

Theorem 5.1. In dimension five, if zero is regular and |V (x)| � 〈x〉−β for
some β > 4 and m≥ 6,

sup
L≥1

∣∣∣∣∫
R

eitλ
2

λχL(λ)

∫
R(2m+3)5

(
R±

0 V
)m+1

R±
V

(
V R±

0

)m+1
d�z dλ

∣∣∣∣� |t|− 5
2 .
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We state several integral estimates which we use repeatedly in the analysis
of the tail of the Born series. We restate Lemma 6.3 of [20].

Lemma 5.2. Fix u1, u2 ∈ R
n, and let 0 ≤ k, 
 < n, β > 0, k + 
 + β ≥ n,

k+ 
 
= n. We have∫
Rn

〈z〉−β−dz

|z − u1|k|z − u2|�
�
{
( 1
|u1−u2| )

max(0,k+�−n), |u1 − u2| ≤ 1,

( 1
|u1−u2| )

min(k,�,k+�+β−n), |u1 − u2|> 1.

The following consequence of Lemma 5.2 is often useful.

Corollary 5.3. Fix u1, u2 ∈R
n, and let 0≤ k, 
 < n, β > 0, k+ 
+β ≥ n,

k+ 
 
= n. We have∫
Rn

〈z〉−β− dz

|z − u1|k|z − u2|�
�
(

1

|u1 − u2|

)min(k,�,k+�+β−n)

.

We also note Lemma 3.8 of [31].

Lemma 5.4. Let μ and σ be such that μ < n and n < σ+ μ. Then∫
Rn

dy

〈y〉σ|x− y|μ �
{
〈x〉n−σ−μ, σ < n,
〈x〉−μ, σ > n.

Lemma 5.5. Let 0< μ,γ be such that and n < γ + μ. Then∫
Rn

〈x〉−γ〈x+ y〉−μ dx � 〈y〉−min(γ,μ,γ+μ−n).

Proof. If |y| < 1 the result is trivial, assume |y| > 1. We divide R
n into

four regions. First, on |x|< 1
2 |y|, we have |x− y| ≈ y, and this contributes

|y|−μ

∫
|x|< 1

2 |y|
〈x〉−γ dx � |y|−μ + |y|n−γ−μ

by considering the regions |x|< 1 and |x|> 1 separately. Similarly on |x+y|<
1
2 |y|, this region contributes

|y|−γ

∫
|x+y|< 1

2 |y|
〈x+ y〉−μ dx � |y|−γ + |y|n−γ−μ.

On the complement of the above regions in |x|< 2|y|, we have |x| ≈ |x+y| ≈ |y|
and thus this region contributes |y|n−γ−μ. Finally, on |x| > 2|y| we have
|x+ y| ≈ |y| and this region contributes∫

|x|>2|y|
〈x〉−γ−μ dx� |y|n−γ−μ. �

Finally, we have the following lemma for stationary phase type estimates.
This lemma is essentially Lemma 2 in [50].
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Lemma 5.6. Let φ′(0) = 0 and 1≤ φ′′ ≤C. Then,∣∣∣∣∫ ∞

−∞
eitφ(λ)a(λ)dλ

∣∣∣∣ � ∫
|λ|<|t|−

1
2

∣∣a(λ)∣∣dλ
+ |t|−1

∫
|λ|>|t|−

1
2

(
|a(λ)|
|λ2| +

|a′(λ)|
|λ|

)
dλ.

Proof. Let η ∈C∞
c be such that η(x) = 1 if |x|< 1 and η(x) = 0 if |x|> 2.

Let η2(x) = η(x/2|t|−1/2). Writing 1 = η2 + (1− η2), we rewrite the integral
as follows ∣∣∣∣∫ ∞

−∞
eitφ(λ)a(λ)dλ

∣∣∣∣ � ∣∣∣∣∫ ∞

−∞
eitφ(λ)a(λ)η2(λ)dλ

∣∣∣∣
+

∣∣∣∣∫ ∞

−∞
eitφ(λ)a(λ)

(
1− η2(λ)

)
dλ

∣∣∣∣.
The first term is bounded as in the claim since supp(η2) = [−|t|− 1

2 , |t|− 1
2 ]. For

the second term, we integrate by parts once in λ to bound with

|t|−1

∣∣∣∣∫ ∞

−∞
eitφ(λ)

(
a(λ)(1− η2(λ))

φ′(λ)

)′
dλ

∣∣∣∣.
By Taylor’s theorem,

φ′(λ) = φ′(0) + λφ′′(c) = λφ′′(c)

for some c between 0 and λ. By assumptions, we have that φ′′ is bounded
above and below, we have ∣∣φ′(λ)

∣∣≈ |λ|.

This completes the proof of the desired bound. �

5.1. Five dimensional high energy. For the high energy portion of the
evolution, we examine〈

eitHχ

(√
H

L

)[
1− χ

(√
H

λ0

)]
Pacf, g

〉
(14)

=

∫ ∞

0

eitλ
2

λχ

(
λ

L

)[
1− χ

(
λ

λ0

)]
×
〈[
RV

(
λ2 + i0

)
−RV

(
λ2 − i0

)]
f, g
〉dλ
πi

.

Here λ0 > 0 is a small constant which is determined by the analysis in Sec-
tion 5.2.

We first establish some properties of iterated resolvents.
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Lemma 5.7. If |V (x)| � 〈x〉−β for some β > 4 in dimension five, for any
σ > 1

2 , ∥∥∥∥∫
R5

R±
0

(
λ2
)
(x, z)V (z)R±

0

(
λ2
)
(z, y)dz

∥∥∥∥
L2,−σ

x

� 〈λ〉2,∥∥∥∥∫
R5

(
1 +

1

λ

)
d

dλ

[
R±

0

(
λ2
)
(x, z)V (z)R±

0

(
λ2
)
(z, y)

]
dz

∥∥∥∥
L2,−σ−1

x

� 〈λ〉2,∥∥∥∥∫
R5

d

dλ

1

λ

d

dλ

[
R±

0

(
λ2
)
(x, z)V (z)R±

0

(
λ2
)
(z, y)

]
dz

∥∥∥∥
L2,−σ−2

x

� 〈λ〉,

uniformly for y ∈R
5.

Proof. Using the explicit expansion for the kernel of R±
0 from (9), we apply

Lemma 5.2. We can see that one integration is enough to establish local
L2 behavior. Considering the slowest decaying terms that result from the
integration, one can establish the weighted L2 behavior. �

Our analysis depends on estimates on the limiting absorption principle of
Agmon, [2], and some estimates we establish for certain functions.

Lemma 5.8 (The limiting absorption principle). In dimension n, for all
λ > λ0, ∥∥∥∥( d

dλ

)j

R±
0

(
λ2
)∥∥∥∥

L2, 1
2
+j+→L2,− 1

2
−j−

�
{
λ−1, j = 0,
1, j ≥ 1,∥∥∥∥( d

dλ

)j

R±
V

(
λ2
)∥∥∥∥

L2, 1
2
+j+→L2,− 1

2
−j−

�
{
λ−1, j = 0,
1, j ≥ 1,

where 0≤ j ≤ n+1
2 .

This result is due to Agmon, [2]. For another proof, one can see [19].
We define the following kernels

G±,x

(
λ2
)
(·) := e∓iλ|x|R0

(
λ2 ± i0

)
(·, x).(15)

Such kernels have been used first by Yajima, see [66], and in the three-
dimensional case by Goldberg and Schlag [30]. These kernels inserted in (14)
will allow us to differentiate more than n−1

2 times in λ without leading to
growth in x. Further, this modulation merely shifts the phase when using
stationary phase methods. As such, we examine∫ ∞

0

eitλ
2

e±iλ(|x|+|y|)χ(λ/L)
[
1− χ(λ/λ0)

]
(16)

× λ
〈
V R±

V

(
λ2
)
V
(
R±

0

(
λ2
)
V
)m

G±,x

(
λ2
)
,
(
R∓

0

(
λ2
)
V
)m

G∗
±,x

(
λ2
)〉

dλ.

We now define the following.

J±
y (λ, ·) :=

∫
R5

R±
0

(
λ2
)
(·, z)V (z)G±,y

(
λ2
)
(z)dz.(17)
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We establish estimates on three λ derivatives of J±
y (λ).

Lemma 5.9. If |V (x)| � 〈x〉−β for some β > 4, the following estimates hold
for λ derivatives of J±

y . For 0≤ j ≤ 2,∣∣∣∣( d

dλ

)j

J±
y (λ,x)

∣∣∣∣� 〈λ〉2
{
|x− y|−1, |x− y|< 1,
|x− y|j−2, |x− y|> 1,

and ∣∣∣∣ d3dλ3
J±
y (λ,x)

∣∣∣∣� 〈λ〉2
{
|x− y|−1, |x− y|< 1,
λ〈x〉, |x− y|> 1.

Proof. We note the following inequality.∣∣∣∣( d

dλ

)j[
eiλφ
(
aλ2 + bλ+ c

)]∣∣∣∣ � λ2
[
aφj
]
+ λ
[
aφj−1 + bφj

]
+
[
aφj−2 + bφj−1 + cφj

]
,

where we take φ� = 0 if 
 < 0. Taking φ = |x − z| + |z − y| − |y| and a, b, c
the coefficients of the λ powers that arise in J±

y . The proof now follows
Lemma 5.2, the fact that ||z − y| − |y|| � 〈z〉.

For j = 3, on must use that |φ| � 〈x〉+ 〈z〉 at most once to avoid growth in
|x− z|. �

Corollary 5.10. If |V (x)| � 〈x〉−β for some β > 4, and 0≤ j ≤ 3,∥∥∥∥( d

dλ

)j

J±
y (λ, ·)

∥∥∥∥
L2,−σ

� 〈λ〉2

for σ > j + 1
2 .

We can improve Corollary 5.10 to push forward decay in y by increasing
the degree of the polynomial weight.

Proposition 5.11. If |V (x)| � 〈x〉−β− for some β > 4, then∥∥J±
y (λ, z)

∥∥
L

2,− 3
2
−

z

� 〈λ〉2
〈y〉2 ,∥∥ d

dλ
J±
y (λ, z)

∥∥
L

2,− 5
2
−

z

� 〈λ〉2
〈y〉2 .

Proof. The statement for j = 0 arises from the following calculations. First,
consider the contribution of the λ2 term of (17) to the weighted L2 norm.[∫

R5

∣∣∣∣∫
R5

〈z〉−4−

|x− z|2|z − y|2 dz
∣∣∣∣2〈x〉−3−

] 1
2

.

We note that

1

|x− z|2|z − y|2 � 1

|x− y|2
[

1

|x− z|2 +
1

|z − y|2
]
.
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Using this fact and Lemma 5.4, we bound with[∫
R5

∣∣∣∣∫
R5

〈z〉−4−

|x− z|2|z − y|2 dz
∣∣∣∣2〈x〉−3− dx

] 1
2

�
[∫

R5

∣∣∣∣∫
R5

〈z〉−4−
(

1

|x− z|2 +
1

|z − y|2
)
dz

∣∣∣∣2 〈x〉−3−

|x− y|4 dx
] 1

2

�
[∫

R5

(
〈x〉−2 + 〈y〉−2

) 〈x〉−3−

|x− y|4 dx
] 1

2

� 1

〈y〉2 .

We handle the λ0 term of (17) similarly, we note

1

|x− z|3|z − y|3 � 1

|x− y|2
[

1

|x− z|4 +
1

|z − y|4
]
.(18)

Thus, this term contributes the following to the weighted L2 norm.[∫
R5

∣∣∣∣∫
R5

〈z〉−4−
(

1

|x− z|4 +
1

|z − y|4
)
dz

∣∣∣∣2 〈x〉−3−

|x− y|4 dx
] 1

2

�
[∫

R5

〈x〉−3−

|x− y|4
(
〈x〉−6 + 〈y〉−6

)
dx

] 1
2

� 1

〈y〉2 .

We note that the λ coefficient of J±
y is bounded by the sum its λ2 and λ0

coefficients.
For the term with a λ derivative, we take a bit more care. We note that in

Lemma 5.9, we bound |φ| � |x− z|+ 〈z〉, for this estimate, we wish to retain
the |x− z| decay, so instead we use the bound |φ| � 〈x〉+ 〈z〉. Again, we need
only concern ourselves with the λ2 and λ0 terms. We bound these terms as
follows,

λ2

|x− z|2|z − y|2
(
〈x〉+ 〈z〉

)
,(19)

1

|x− z|3|z − y|3
(
〈x〉+ 〈z〉

)
.(20)

We note that each bound is a sum of two terms. However, if we take the
term with 〈x〉, it reduces down to the case with no derivatives since this term
merely cancels out the extra weight σ > 5

2 . Let us first consider the λ2 term.

We need to bound the weighted L2 norm, that is for the 〈z〉 term of (19), we
use [∫

R5

∣∣∣∣∫
R5

〈z〉−3−

|x− z|2|z − y|2 dz
∣∣∣∣2〈x〉−5− dx

] 1
2

�
[∫

R5

〈x〉−5−

|x− y|4 dx
] 1

2

� 1

〈y〉2 .
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Where we used Lemma 5.2 in the second to last line with max(0, k+ 
−n)≤
min(k, 
, k+ 
+β−n) = 2 as k = 
= 2 and β = 3, and we used Lemma 5.4 in
the last line.

Turning our attention to (20), the λ0 term, as in the case of no derivatives
and using (18), we need to bound[∫

R5

∣∣∣∣∫
R5

〈z〉−3−
(

1

|z − y|3 +
1

|x− z|3
)
dz

∣∣∣∣2 〈x〉−5−

|x− y|4
] 1

2

�
[∫

R5

(
〈y〉−2 + 〈x〉−2

) 〈x〉−5−

|x− y|4
] 1

2

� 1

〈y〉2 .

Where we used Lemma 5.4 throughout this calculation. �

We rewrite (16) as

I±x,y(t) =

∫ ∞

0

eitλ
2±iλ(|x|+|y|)χL(λ)

(
1− χ0(λ)

)
× λ
〈
V R±

V V
(
R±

0 V
)m−1

J±
y (λ, ·),

(
R±

0 V
)m−1

J±
x (λ, ·)

〉
dλ

=

∫ ∞

0

eitλ
2±iλ(|x|+|y|)a±x,y(λ)dλ.

For 0< t < 1, we note that by Corollary 5.10 and Lemma 5.8,∣∣a±x,y(λ)∣∣ � λ‖Jx‖
L2,− 1

2
−

∥∥R±
0 V
∥∥2m−2

L2,− 1
2
−→L2,− 1

2
−‖RV V ‖

L2,− 1
2
−→L2,− 1

2
−

× ‖V ‖
L2,− 1

2
−→L2, 1

2
+

∥∥J±
y

∥∥
L2,− 1

2
−

� λ〈λ〉4
(
λ−1
)2m−2

λ−1 � 〈λ〉6−2m.

We see taking m= 4 suffices and that∣∣I±x,y(t)∣∣� ∫ ∞

0

〈λ〉−2 dλ � 1.

When t > 1, we note that the phase has critical point λ1 =∓ |x|+|y|
2t . We have

that a±x,y has three derivatives in λ that satisfy the following bounds∣∣a±x,y(λ)∣∣ � 〈λ〉−2
(
〈x〉〈y〉

)−2
for all λ > 1,∣∣∣∣( d

dλ

)j

a±x,y(λ)

∣∣∣∣ � 〈λ〉−2 for j = 1,2,3 for all λ > 1.

In particular, this justifies taking L=∞ in (16).
We note that for I+x,y , the critical point of the phase is outside of the support

of a±x,y . Three integration by parts in λ yield the bound |I+x,y(t)| � |t|−3.
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We can similarly integrate by parts and bound |I−x,y(t)| � |t|−3 away from
the critical point of the phase. Further if λ1 � λ0, we can again inegrate by
parts three times. Finally, if λ1 � λ0 we can also have the bound max(|x|,
|y|)� |t|. From Lemma 5.6 and Proposition 5.11, we see that stationary phase
contributes |t|−1/2(〈x〉〈y〉)−2 � |t|−5/2, as desired.

5.2. Five dimensional low energy. We now control the low-energy portion
of the evolution,〈

eitHχ(
√
H/λ0)Pacf, g

〉
(21)

=

∫ ∞

0

eitλ
2

λχ(λ/λ0)
〈
[RV

(
λ2 + i0

)
−RV

(
λ2 − i0

)
f, g
〉 dλ
πi

.

We use the resolvent identity

R±
V

(
λ2
)
=R±

0

(
λ2
)
−R±

0

(
λ2
)
V
(
I +R±

0

(
λ2
)
V
)−1

R±
0

(
λ2
)
.(22)

The free resolvents in dimension five have explicit expansion

R±
0

(
λ2
)
(x, y) =C5e

±iλ|x−y| 1∓ iλ|x− y|
|x− y|3 .(23)

We note that in particular R±
0 (λ

2)(x, y) is not locally in L2(R5), so it cannot
be Hilbert–Schmidt.

We follow the approach of Goldberg and Schlag in [30], in particular we
establish invertibility of S±(λ) = (I +R±

0 (λ
2)V ) as a perturbation from zero

energy. We then expand in a Neumann series in certain Hilbert–Schmidt
norms.

We note the following Proposition from [31].

Proposition 5.12. Suppose |V (x)| � 〈x〉−β for some β > n+1
2 and also

that zero energy is neither an eigenvalue nor a resonance of H = −Δ+ V .
Then

sup
λ≥0

∥∥[S±]−1
(λ)
∥∥
L2,−σ→L2,−σ <∞

for all σ ∈ (12 , β − 1
2 ).

We rewrite R±
0 (λ

2) =R±
0 (0) +B±

5 (λ). Then, we can write[
I +R±

0

(
λ2
)]−1

= S−1
0

[
I +B±

5 (λ)V S−1
0

]−1
.

The integral kernel has form

B±
5 (λ) =C5

(
eiλ|x−y| 1∓ iλ|x− y|

|x− y|3 − 1

|x− y|3
)
,(24)

which satisfies the size estimate∣∣B±
5

(
λ2
)∣∣� λ

|x− y|2 .(25)
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This follows as |eiθ − 1| � |θ|.
Proposition 5.13. If σ,α > 1

2 , and σ+ α > 3, then

sup
λ≥0

λ−1
∥∥B±

5 (λ)
∥∥
HS(σ,−α)

≤Cσ,α.

Proof. We note that∥∥B±
5 (λ)

∥∥2
HS(σ,−α)

= λ2

∫ ∫
R10

〈x〉−2σ〈y〉−2α

|x− y|4 dxdy

� λ2

∫
R5

〈y〉−2α−min(4,2σ−1) dy � λ2

by Lemma 5.4. �
Corollary 5.14. If σ,α > 1

2 , and σ+ α> 3, then

lim
λ→0

∥∥B±
5 (λ)

∥∥
HS(σ,−α)

= 0.

Corollary 5.15. If |V (x)| � 〈x〉−β for some β > 4, then

lim
λ→0

∥∥B±
5 (λ)V S−1

0

∥∥
HS(σ,σ)

= 0

for all σ ∈ (−7
2 ,−

1
2 ).

Proof. We know V S−1
0 : L2,σ → L2,σ+4+ for − 7

2 < σ < −1
2 from Proposi-

tion 5.12. Corollary 5.14 implies that ‖B±
5 ‖HS(σ+4+,σ) → 0 as λ→ 0. �

For derivatives of B±
5 (λ)(x, y), we note that (B±

5 )′(λ)(x, y) =Ce±iλ|x−y| ×
λ

|x−y| . So that 1
λ

d
dλB

±
5 (λ)(x, y) = CR3(λ

2)(x, y) where R3(λ
2)(x, y) is the

three-dimensional free resolvent. Further, we have that d
dλ

1
λ

d
dλB

±
5 (λ2)(x, y) =

Ce±iλ|x−y|.

Claim. ‖ 1
λ

d
dλB

±
5 (λ)‖HS(σ,−α) ≤C if σ,α > 3

2 and σ+ α> 4.

Claim. ‖ d
dλ

1
λ

d
dλB

±
5 (λ)‖HS(σ,−α) ≤C if σ,α > 5

2 .

We prove the existence of λ0 > 0 such that for 0< λ< λ0 we can expand

B̃±
5 (λ) =

[
I +B±

5 (λ)V S−1
0

]−1

as a Neumann series in the norms ‖·‖HS(σ,σ) for −7
2 < σ <−1

2 . The symmetry

B̃−
5 (λ) = B̃+

5 (−λ) is still valid.
Define χ0(λ) = χ( λ

λ0
), and note that (21) and (22) lead us to bounding

sup
x,y∈R5

∣∣∣∣∫ ∞

0

λχ0(λ)

[(
3∑

j=0

R+
0

(
λ2
)[
−V R+

0

(
λ2
)]j

(26)

−R−
0

(
λ2
)[
−
(
λ2
)
V R−

0

(
λ2
)]j)
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−
[
R+

0

(
λ2
)
V R+

0

(
λ2
)
V S−1

0 B̃+
5 R+

0

(
λ2
)
V R+

0

(
λ2
)

−R−
0

(
λ2
)
V R−

0

(
λ2
)
V S−1

0 B̃−
5 R−

0

(
λ2
)
V R−

0

(
λ2
)]]

(x, y)dλ

∣∣∣∣.(27)

We note that (26) is the low-energy part of the Schrödinger evolution which
is known to disperse if |∇jV (x)| � 〈x〉−3− for j = 0,1. This was proved in [20]
and is nearly optimal with respect to decay of the potential. We bound the
tail as follows.

sup
x,y∈R5

∣∣∣∣∫ ∞

−∞
eitλ

2

λ

∫ ∫
R10

A
(
λ, |x− x1|

)
V S−1

0

(
χ0B̃

+
5

)
(λ)(x1, x2)

×A
(
λ, |x2 − y|

)
dx1 dx2 dλ

∣∣∣∣,
where A =

∫
R±

0 V R±
0 , integrated in the appropriate variable, which is seen

to be in certain weighted L2 spaces by Lemma 5.7. Following the standard
approach first laid out in [46] by Rodnianski and Schlag, we integrate by parts
in λ twice and bound.

sup
x,y∈R5

∣∣∣∣ 1t2
∫ ∞

−∞
eitλ

2

∫ ∫
R10

d

dλ

1

λ

d

dλ
A(λ, |x− x1|)(28)

× V S−1
0

(
χ0B̃

+
5

)
(λ)(x1, x2)A

(
λ, |x2 − y|

)
dx1 dx2 dλ

∣∣∣∣.
There are several different cases to consider, depending on where the λ deriva-
tives act. We first consider when derivatives don’t act on the cut-off func-
tion χ0(λ). We estimate the resolvent and its derivatives as a mapping from
L2,σ(Rn) to L2,−α(Rn). We recall that the Hilbert–Schmidt norm is defined
by

‖R‖2HS(σ,−α) =

∫ ∫
R2n

〈x〉−2σ
∣∣R(x, y)

∣∣2〈y〉−2α dxdy

Consider the term from (28) which arises when all derivative act on B̃+
5 ,

the other cases are similarly managed. Using Parseval and the fact that

‖(eit(·)2 )̂‖L∞ � |t|− 1
2 , we need only bound

sup
x,y∈R5

|t|− 5
2

∫ ∞

−∞

∣∣∣∣∫ ∫
R10

Ax(x1)V S−1
0

(
χ0

d

dλ

1

λ

d

dλ
B̃+

5

)∨
(ξ)(x1, x2)(29)

×Ay(x2)dx1 dx2

∣∣∣∣du,
with ξ := u+ |x− x1|+ |y − x2|. We note that we only use the fact that the
kernels A(λ, ·) are in weighted L2 spaces. Their λ dependence is not important
to our mapping argument, see Remark 5.19 below. We now denote them as
Ax(x1) and Ay(x2) since their properties with respect to x, y are what we
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are most interested in here. Now, using Fubini, we interchange the order of
integration to bound (29) with

sup
x,y∈R5

|t|− 5
2

∫ ∫
R10

∫
R

∣∣Ax(x1)V
∣∣∣∣∣∣S−1

0

(
χ0

d

dλ

1

λ

d

dλ
B̃+

5

)∨
(ξ)(x1, x2)

∣∣∣∣
×
∣∣Ay(x1)

∣∣dudx1 dx2.

≤ sup
x,y∈R5

|t|− 5
2 ‖AxV ‖L2,3+

∥∥∥∥∫ ∣∣∣∣S−1
0

(
χ0

d

dλ

1

λ

d

dλ
B̃+

5

)∨
(u)

∣∣∣∣du∥∥∥∥
HS(−1−,−3−)

× ‖Ay‖L2,−1− .

The weighted L2 bounds follow from Lemma 5.7. We need only control the
size of ∥∥∥∥∫ ∣∣∣∣S−1

0

(
χ0

d

dλ

1

λ

d

dλ
B̃+

5

)∨
(u)

∣∣∣∣du∥∥∥∥
HS(−1−,−3−)

.

Using Minkowski allows us to bring the Hilbert–Schmidt norm inside the
integral. By Proposition 5.12, S−1

0 is a bounded operator on L2,−3−(R5)
and the fact that composition of a bounded operator with a Hilbert–Schmidt
operator is Hilbert–Schmidt, we can reduce to showing the existence of a value
λ0 > 0 such that∫

R

∥∥∥∥(χ0
d

dλ

1

λ

d

dλ
B̃+

5

)∨
(u)

∥∥∥∥
HS(−1−,−3−)

du <∞.

To this end, we establish the following estimates.

Lemma 5.16. The inverse Fourier transform of χ0B
+
5 in λ satisfies∫ ∞

−∞

∥∥[χ0B
+
5

]∨
(u)
∥∥
HS(σ,−α)

du < Cλ0

(
1 + λ

1
2+
0

)
if σ,α > 1 and σ+ α > 7

2 .

Proof. We note that by construction of B+
5 , we can use Taylor’s theorem

to cancel out the non-locally L2 behavior. Specifically,∣∣[B+
5 χ0

]∨
(ξ)
∣∣� λ2

0

|x− y|2 .

We use this on the region |ξ| < 2
λ0
, and the fact that |x − y|−2 has finite

Hilbert–Schmidt norm under the above hypotheses. One can see with two
applications of Lemma 5.4 the contribution of this region to the ξ integral is
bounded by Cλ0.

On the region |ξ| > 2
λ0
, we must take some additional care. Consider

the region on which |ξ| < 1
2 |x − y|, it then follows that |x − y|−1 � λ0, and
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||x− y|+ ξ| ≈ |x− y| � |ξ|. Here we use

∣∣[B+
5 χ0

]∨
(ξ)
∣∣ � λ2

0

1∑
j=0

λ−j
0

|x− y|2+j

(
d

dξ

)j[
χ∨(λ0(ξ + |x− y|)

)
+ χ∨(λ0ξ)

]
� λ2

0

|x− y|2 〈λ0ξ〉−10 � λ2
0

|x− y|2
1

λ10
0 |ξ|10 .

Again, the Hilbert–Schmidt norm is finite, and this region contributes λ
n−3
2

0

to the integral.
On the region where |ξ|> 2|x− y|, we have that ||x− y|+ ξ| ≈ |ξ|, so using

Taylor’s theorem on the inverse Fourier transform, we have∣∣[B+
5 χ0

]∨
(ξ)
∣∣� λ2

0

|x− y|2
d

dξ

[
χ∨(λ0ξ) + χ∨(λ0c)

]
.

Here c ∈ B(ξ, 12 |ξ|). So the inverse Fourier transforms of the cut-off are of
comparable in size. The bound then follows as in the previous region.

Finally, one must take care in the annular region 1
2 |x− y|< |ξ|< 2|x− y|.

We do not use the bound that arises from the use of Taylor’s theorem, but
instead bound as in the region |ξ|< 1

2 |x− y|,∣∣[B+
5 χ0

]∨
(ξ)
∣∣� λ2

0

|x− y|2
[〈
λ0

(
ξ + |x− y|

)〉−10
+ 〈λ0ξ〉−10

]
.

The second term with 〈λ0ξ〉−10 can be handled as in the previous two regions.
The first term requires more care as we can have ξ + |x − y| = 0 on this
region. Let us now consider the contribution of this region to the square of
the Hilbert–Schmidt norm. We wish to bound

λ2
0

∫
|ξ|� 1

λ0

[∫ ∫
|x−y|≈|ξ|

〈x〉−2σ〈λ0(ξ + |x− y|)〉−20〈y〉−2α

|x− y|4 dxdy

] 1
2

dξ.(30)

By a switch to polar coordinates and scaling the λ0 out of the integrals, we
have

(30) = λ
1
2
0

∫
|s|�1

[∫
S4

∫
r≈|s|

∫
R5

〈x〉−2σ〈s+ r〉−20

〈
x+

rθ

λ0

〉−2α

dxdr dθ

] 1
2

dξ

� λ
1
2
0

∫
|s|�1

[∫
S4

∫
r≈|s|

〈s+ r〉−20

(
r

λ0

)−q

dr dθ

]
dξ

� λ
1+q
2

0

∫
|s|�1

|s|− q
2 ds � λ

1+q
2

0 .

As in Lemma 5.17, we use Lemma 5.5 to estimate the x integral with q =
min(2α,2σ,2α+ 2σ− 5). By assumption, we have q > 2. �
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Lemma 5.17. The inverse Fourier transform of χ0
1
λ

d
dλB

+
5 in λ satisfies∫ ∞

−∞

∥∥∥∥[χ0
1

λ

d

dλ
B+

5

]∨
(u)

∥∥∥∥
HS(σ,−α)

du < C <∞

uniformly as λ0 → 0 if σ,α > 2, and σ+ α > 9
2 .

Proof. First note that by Lemma 3.1,

1

λ

d

dλ
B+

5 =CR+
3

(
λ2
)
=C

eiλ|x−y|

|x− y| .

It now follows that, up to a constant multiplier,[
χ0

1

λ

d

dλ
B+

5

]∨
(u) =

[
χ0

eiλ|x−y|

|x− y|

]∨
(u) =

λ0χ
∨(λ0(u+ |x− y|))

|x− y| .

By scaling of the inverse Fourier transform and the fact that χ ∈ S(R), in this
case we have ∣∣∣∣[χ0

1

λ

d

dλ
B+

5

]∨
(u)

∣∣∣∣� λ0

|x− y|
〈
λ0(u+ |x− y|)

〉−10
.(31)

We first consider when |u| ≤ 2
λ0
. Ignoring the 〈λ0(u+ |x− y|)〉−10 in (31), it

is clear, by Lemma 5.4, that σ,α > 2, σ+ α > 9
2 is sufficient to establish∥∥∥∥[χ0

1

λ

d

dλ
B+

5

]∨
(u)

∥∥∥∥
HS(σ,−α)

� λ0.

Thus, ∫
|u|≤ 2

λ0

∥∥∥∥[χ0
1

λ

d

dλ
B+

5

]∨
(u)

∥∥∥∥
HS(σ,−α)

du �
∫
|u|≤ 2

λ0

λ0 du � 1.

Now if |u| ≥ 2
λ0
, we have∣∣∣∣[χ0
1

λ

d

dλ
B+

5

]∨
(u)

∣∣∣∣� λ0

|x− y|
〈
λ0(u+ |x− y|)

〉−10
.

We can further bound by

∣∣∣∣[χ0
1

λ

d

dλ
B+

5

]∨
(u)

∣∣∣∣�
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

λ8
0|u|10|x− y| , |x− y| ≤ 1

2
|u|,

1

λ8
0|u|10|x− y| , |x− y| ≥ 2|u|,

λ0

|u| 〈λ0(u+ |x− y|)〉−10,
1

2
|u|< |x− y|< 2|u|.

The first two regions, the estimates follow from the triangle inequality. The
integral of the Hilbert–Schmidt norm is bounded as before,∫

|u|≥ 2
λ0

1

λ8
0|u|10

∥∥|x− y|−1
∥∥
HS(σ,−α)

du � 1

λ8
0

∫
|u|≥ 2

λ0

|u|−10 du � λ0.
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We now need only bound the function on the annular region. We change the
y integral to polar, y = x+ rθ where θ ∈ S4, the four-dimensional sphere. We
now need to bound

λ0

∫
|u|� 1

λ0

[∫
S4

∫
|r|≈|u|

∫
R5

〈x〉−2σ
〈
λ0(r+ u)

〉−20
(32)

× 〈x+ rθ〉−2αr4 dxdr dθ

] 1
2 du

|u| .

Rescaling, and defining F (x, r, s, θ) := 〈x〉−2σ〈r+ s〉−20〈x+ rθ
λ0
〉−2α, we have

(32) � λ
− 3

2
0

∫
|s|�1

[∫
S4

∫
r≈|s|

∫
R5

F (x, r, s, θ)r4 dxdr dθ

] 1
2 ds

|s|

� λ
q−3
2

0

∫
|s|�1

1

|s|

[∫
r≈|s|

r4−q〈r+ s〉−20 dr

] 1
2

ds

� λ
q−3
2

0

∫
|s|�1

|s|1−q ds � λ
q−3
2

0 .

Where we used Lemma 5.5 with q =min(2α,2σ,2α+2σ−5) and the fact that
q− 1> 1. �

Lemma 5.18. The inverse Fourier transform of χ0
1
λ

d
dλB

+
5 in λ satisfies∫ ∞

−∞

∥∥∥∥[χ0
d

dλ

1

λ

d

dλ
B+

5

]∨
(u)

∥∥∥∥
HS(3+,−3−)

du < C <∞

uniformly as λ0 → 0.

Proof. This proof is identical in form to that of Lemma 15 in [30]. We note
that by Lemma 3.1,

d

dλ

1

λ

d

dλ
B+

5 (λ) =
(
R+

3

)′(
λ2
)
.

Where R3 is the three-dimensional free resolvent. The need for larger Hilbert–
Schmidt weights is a consequence of the ambient space being R

5 instead of
R

3. �

We now present two cases that arise in the analysis of (28), that in which

no λ derivatives act on B̃+
5 and that in which all λ derivatives act on B̃+

5 .

The intermediate case of one derivative acting on B̃+
5 is handled similarly.

No derivatives act on B̃+
5 :

If no λ derivatives act on B̃+
5 (λ) in (28), they must act on the leading and

trailing A(λ, ·) terms. From Lemma 5.7, we see that we must establish

V S−1
0

[
χ0B̃

+
5

]∨ ∈ L1
(
L2,γ−3−,L2,γ+

)
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for 1
2 ≤ γ ≤ 5

2 . From Proposition 5.12, we need only establish that[
χ0B̃

+
5

]∨ ∈ L1
(
L2,γ−3−,L2,γ−4−).

We define B̃+
5 as a convergent Neumann series

B̃+
5 (λ) =

[
I +B+

5 (λ)V S−1
0

]−1
=

∞∑
n=0

(
−B+

5 (λ)V S−1
0

)n
.(33)

We define χ1(λ) = χ( λ
2λ0

) so that χn
1χ0 = χ0 for any n≥ 0. We use this and

(33) to define χ0B
+
5 as a Neumann series.

χ0B̃
+
5 (λ) = χ0

[
I +B+

5 (λ)V S−1
0

]−1
(34)

= χ0(λ)

∞∑
n=0

(
−χ1(λ)B

+
5 (λ)V S−1

0

)n
.

Upon applying the inverse Fourier transform to (34), we note that as in the
scalar case multiplication of operator-valued functions yields convolution of
their inverse Fourier transforms. We can bound the L1 norm of the repeated
convolutions by the product of the L1 norms of each piece provided the range
of each operator is contained in the domain of the operator following it. So
that we have ∥∥[χ0B̃

+
5

]∨∥∥
L1(L2,γ−3−,L2,γ−4−)

(35)

≤
∥∥χ∨

0 I
∥∥
L1(L2,γ−3−,L2,γ−4−)

+

∞∑
n=1

∥∥[χ0B
+
5

]∨
V S−1

0

∥∥
L1(HS(γ−3−,γ−4−))

.

In view of Proposition 5.12 and Lemma 5.16 we see that the sum converges
for λ0 chosen small enough.

We check the mappings for (35) with γ = 5
2 . Here we need to establish the

sum holds in L1(HS(− 1
2−,−3

2−)).[
χ0B

+
5

]∨
V S−1

0 ∈ L1
(
HS(−1/2−,−1−)

)
,[

χ0B
+
5

]∨
V S−1

0 ∈ L1
(
HS(−1−,−1−)

)
,[

χ0B
+
5

]∨
V S−1

0 ∈ L1
(
HS(−1−,−3/2−)

)
.

The other values of γ that arise are treated similarly.
All derivatives act on B̃+

5 :

If all the λ derivatives in (28) act on B̃+
5 (λ), we have that both the leading

at the trailing A(λ, ·) terms are in L2,− 1
2−(R5). We need to show that(

d

dλ

1

λ

d

dλ

[
V S−1

0 χ0B̃
±
5 (λ)

])∨
∈ L1

(
L2,− 1

2−,L2, 12+
)
.
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From Proposition 5.12, we need only show(
d

dλ

1

λ

d

dλ

[
χ0B̃

±
5 (λ)

])∨
∈ L1

(
L2,−σ−,L2, 12+

)
for σ ∈ (12 ,

7
2 ).

We defined B̃+
5 as a convergent Neumann series in (33), we now consider

the action of derivatives on this series. If both derivatives act on B̃+
5 , and

for the time being we assume the derivatives do not act on the cut-off χ0, we
have the following Neumann series to consider.

∞∑
n=1

n−1∑
m=0

(−1)n

[(
χ1B

+
5 V S−1

0

)m
(36)

×
(
χ0

d

dλ

1

λ

d

dλ
B+

5 V S−1
0

)(
χ1B

+V S−1
0

)n−(m+1)

+
m−1∑
j=0

(
χ1B

+
5 V S−1

0

)j(
χ0

d

dλ
B+

5 V S−1
0

)(
χ1B

+
5 V S−1

0

)m−(j+1)

×
(
χ1

1

λ

d

dλ
B+

5 V S−1
0

)(
χ1B

+
5 V S−1

0

)n−(m+1)
(37)

+
(
χ1B

+
5 V S−1

0

)m(
χ0

1

λ

d

dλ
B+

5 V S−1
0

)
×

n−m−2∑
j=0

(
χ1B

+
5 V S−1

0

)j
(38)

×
(
χ1

d

dλ
B+

5 V S−1
0

)(
χ1B

+
5 V S−1

0

)n−(j−m−1)

]
.

Three subcases arise from the Neumann series above. We first present the
subcase of (36), then the analysis for (37). We note that the analysis of (38)
is similar to that of (37).

As in the case when no derivatives act on B̃+
5 , we evaluate the Neumann

series in the L1 norm, but this time it will take values in different Hilbert–
Schmidt spaces. We note that the terms of the series in (36) are controlled
by Lemmas 5.16 and 5.18.(

χ1B
+
5

)∨
V S−1

0 ∈ L1
(
HS(−1/2−,−1−)

)
,(

χ0
d

dλ

1

λ

d

dλ
B+

5

)∨
V S−1

0 ∈ L1
(
HS(−1−,−3−)

)
,(

χ1B
+
5

)∨
V S−1

0 ∈ L1
(
HS(−3−,−3−)

)
.

Finally, one uses V S−1
0 : L2,−3− → L2, 12+. Again, the series for (36) converges

for λ0 small enough.
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For the series in (37), we apply the same process. This time we use Lemmas

5.16 and 5.17 to control the various terms.

(
χ1B

+
5

)∨
V S−1

0 V S−1
0 ∈ L1

(
HS(−1/2−,−1−)

)
,(

χ0
1

λ

d

dλ
B+

5

)∨
V S−1

0 ∈ L1
(
HS(−1−,−2−)

)
,(

χ1B
+
5

)∨
V S−1

0 ∈ L1
(
HS(−2−,−3/2−)

)
,(

χ1
d

dλ
B+

5

)∨
∈ L1

(
HS(−3/2−,−3/2−)

)
.

Now, one uses that V S−1
0 : L2,− 3

2− → L2, 12+. Again, the series for (37) con-

verges for λ0 small enough.

Remark 5.19. In our analysis we have not accounted for the powers of λ

that arise from terms of the leading and trailing resolvents, A(λ, ·). Each

contributes a sum of terms λ2 + λ + 1. Our analysis concentrated only on

when the zero order λ term arose. To handle higher λ powers, one notes that

the estimates considered in Lemmas 5.16, 5.17, and 5.18 gain positive powers

of λ0 for each power of λ that occurs due to scaling considerations.

Similar estimates hold when derivatives act on the cut-off χ0, since

( 1λ
d
dλ )

kχ ∈ S(R) is supported on the annulus |λ| ≈ 1. By scaling consider-

ations, each application of a derivative or 1
λ multiplies the bounds in Lemmas

5.16, 5.17 and 5.18 by λ−1
0 .

5.3. Higher dimensional tail estimates. The low energy argument used

in dimension five in this paper cannot be extended to dimensions n > 7 as

the kernel R±
n (λ

2)−R±
0 (0) is not locally L2(Rn). Thus, one cannot estimate

these kernels as Hilbert–Schmidt operators on weighted L2 spaces. The n= 7

low energy argument is essentially the same as the five dimensional argument,

though one needs to take one more λ derivative and work with larger Hilbert–

Schmidt weights due to the ambient space being R
7. By the arguments here

and in Sections 4 and 6, one can prove the analogue of Theorems 1.1 and 1.2

in dimension seven if zero energy is regular and the potential and its first two

derivatives decay like 〈x〉−8−.
For dimensions n > 7, we note that one can adapt the tail argument of

Goldberg and Visan in Section 4 of [31]. This relies on the observation that

one can bound the kernels dj

dλj R
±
0 (λ

2 + μ) with fractional integral operators.

While this will not lead to sharp results with respect to the decay rate of the

potentials, the method we use here no longer applies when n > 7.
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6. Tail estimates for the matrix case

It now remains to transfer the tail estimates of the scalar case in Section 5
to the matrix case, (7). As this process is nearly identical to the scalar case
in Section 5, as such we only provide a sketch, omitting most of the details.

First, for high energy evolution, we again need the modulated kernels. With
a slight abuse of notation, we define

G±,x

(
λ2
)
(x1) :=

[
e∓iλ|x| 0

0 1

]
R±

0

(
λ2 + μ

)
(x1, x).(39)

Here we modulated the scalar kernel to the same end as the scalar case, we
need not modulate the exponentially decaying portion of the kernel. Let
χ(λ) be a cut-off away from ±μ, as appropriate. Again, let e1 = (1,0)T and
e2 = (0,1)T , so that upon removing f, g from (7) we wish to bound∣∣∣∣∫ ∞

0

eitλ
2

e±iλ(|x|+|y|)χ(λ)λ
〈
V R±

V

(
λ2
)
V
(
R±

0

(
λ2
)
V
)m

G±,y

(
λ2
)
e1,(40)

(
R∓

0

(
λ2
)
V ∗)mG∗

±,x

(
λ2
)
e1
〉
dλ

∣∣∣∣,
as well as∣∣∣∣∫ ∞

0

eitλ
2

e±iλ|x|χ(λ)λ
〈
V R±

V

(
λ2
)
V
(
R±

0

(
λ2
)
V
)m

G±,y

(
λ2
)
e2,(

R∓
0

(
λ2
)
V ∗)mG∗

±,x

(
λ2
)
e1
〉
dλ

∣∣∣∣,∣∣∣∣∫ ∞

0

eitλ
2

e±iλ|y|χ(λ)λ
〈
V R±

V

(
λ2
)
V
(
R±

0

(
λ2
)
V
)m

G±,y

(
λ2
)
e1,(

R∓
0

(
λ2
)
V ∗)mG∗

±,x

(
λ2
)
e2
〉
dλ

∣∣∣∣,∣∣∣∣∫ ∞

0

χ(λ)λ
〈
V R±

V

(
λ2
)
V
(
R±

0

(
λ2
)
V
)m

G±,y

(
λ2
)
e2,(

R∓
0

(
λ2
)
V ∗)mG∗

±,x

(
λ2
)
e2
〉
dλ

∣∣∣∣,
by |t|−5/2 uniformly in x, y ∈ R

5. Similar to the scalar case, one can easily
check that

sup
y∈R5

∥∥∥∥ dj

dλj
R±

0 V G±,yek

∥∥∥∥
L2,−σ

� 〈λ〉2
〈y〉2 if σ >

3

2
+ j, and 0≤ j ≤ 1,

(41)

sup
y∈R5

∥∥∥∥ dj

dλj
R±

0 V G±,yek

∥∥∥∥
L2,−σ

� 〈λ〉2 if σ >
1

2
+ j, and 0≤ j ≤ 3,
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for k = 1,2. As in the scalar case, we rewrite the high energy integral of (7)
as

IM (x, y, t) :=

∫ ∞

0

eitλ
2

e±iλ(|x|+|y|)a±x,y(λ)dλ.

Here we use the subscript “M” to denote the matrix tail integral. Now, with
the limiting absorption principle, Proposition 2.2 along with the estimates of
(41) we can conclude the following bounds on three derivatives of a±x,y(λ).∣∣∣∣ djdλj

a±x.y(λ)

∣∣∣∣� 〈λ〉−2

〈x〉2〈y〉2 for j = 0,1, and λ≥ 1,∣∣∣∣ djdλj
a±x.y(λ)

∣∣∣∣� 〈λ〉−2 for j = 2,3, and λ≥ 1.

(42)

This ensures that the integral in (40) converges. We need to takem sufficiently
large to ensure ample iterations of the limiting absorption principle to provide
the λ decay and |V (x)| � 〈x〉−4− as in the scalar case.

For |t|> 1, I+M can be estimated by integrating by parts three times as the
critical point of the phase is outside of the support of a+x,y(λ). This yields a

bound of |I+M | � |t|−3. For I−M , one must take care as the critical point of the

phase λ1 =
|x|+|y|

2t can be in the support of a−x,y(λ). Away from the critical

point, one can integrate by parts three times which yields a bound of |t|−3. If
λ1 is in the support of a−x,y , then the bound max(|x|, |y|)� |t| and stationary

phase contributes |t|−1/2(〈x〉〈y〉)−2 � |t|−5/2 as desired. For |t|< 1, one sees
from (42) the |I±M | � 1 holds.

For the integrals following (40) with one e1 and one e2, the same analysis

holds with the critical point being |x|
2t or |y|

2t respectively. For the case of two
e2s, one notes that the critical point is now at λ= 0 which is outside of the
support of the integrand. Thus, integrating by parts three times for |t| large
and no times for |t| small establishes the desired bounds.

We now need to establish dispersive bounds for λ near the edge of the
essential spectrum, ±μ. We need to show that〈

eitH
(
1− χ(H)

)
P+
c f, g

〉
(43)

=
eitμ

πi

∫ ∞

0

eitλ
2

λ(1− χ)
(
λ2 + μ

)
×
〈[
R+

V

(
λ2 + μ

)
−R−

V

(
λ2 + μ

)]
f, g
〉
dλ

is bounded by |t|−5/2‖f‖1‖g‖1. We employ the resolvent identity

R±
V

(
λ2 + μ

)
(44)

=R±
0

(
λ2 + μ

)
−R±

0

(
λ2 + μ

)[
I +R±

0

(
λ2 + μ

)
V
]−1

R±
0

(
λ2 + μ

)
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and write R±
0 (λ

2 + μ) =R±
0 (μ) +B±(λ). Then we have[

I +R±
0

(
λ2 + μ

)]−1
= S−1

0

[
I +B±(λ)V S−1

0

]−1
,

where here S0 = I +R±
0 (μ). By the definition of the matrix resolvent, (10),

up to a constant multiple

R±
0 (μ)(x, y) =

[
1

|x−y|3 0

0 e−
√

2μ|x−y|

|x−y|3 (
√
2μ|x− y|+ 1)

]
.

As in the scalar case, invertibility of S0 follows from the Fredholm alternative
and the assumption that ±μ is regular. From the fact that

lim
λ→0

∥∥B±(λ)V S−1
0

∥∥
HS(σ,σ)

= 0

for all σ ∈ (−7
2 ,−

1
2 ) where HS(σ,σ) is the Hilbert–Schmidt norm of L2,σ ×

L2,σ → L2,σ ×L2,σ . This allows us to expand

B̃±(λ) =
[
I +B±(λ)V S−1

0

]−1

in a Neumann series in Hilbert–Schmidt norms. The proof of the dispersive
bound now follows as in the low energy of the scalar case given in Section 5.
One needs to make small adjustments for the exponentially decaying resolvent
using the fact that∫ ∞

−∞
eiτλe−a

√
2μ+λ2(−a

√
2μ+ λ2 + 1

)
dλ := νa(dτ)

is a measure with mass supa>0 ‖νa‖<∞. See Lemma 3.3.
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[7] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground
state, Arch. Ration. Mech. Anal. 82 (1983), no. 4, 313–345. MR 0695535

[8] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infin-

itely many solutions, Arch. Ration. Mech. Anal. 82 (1983), no. 4, 347–375. MR 0695536

[9] V. S. Buslaev and G. S. Perelman, Scattering for the nonlinear Schrödinger equation:
States that are close to a soliton (russian), Algebra i Analiz 4 (1992), no. 6, 63–102;

translation in St. Petersburg Math. J. 4 (1993), no. 6, 1111–1142. MR 1199635

[10] V. S. Buslaev and G. S. Perelman, On the stability of solitary waves for nonlinear
Schrödinger equations. Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser.

2, vol. 164, Amer. Math. Soc., Providence, RI, 1995, pp. 75–98. MR 1334139

[11] F. Cardoso, C. Cuevas and G. Vodev, Dispersive estimates for the Schrödinger equa-
tion in dimensions four and five, Asymptot. Anal. 62 (2009), no. 3–4, 125–145.

MR 2521760

[12] F. Cardoso, C. Cuevas and G. Vodev, Dispersive estimates for the Schrödinger equa-
tion with potentials of critical regularity, Cubo 11 (2009), no. 5, 57–70. MR 2568252

[13] F. Cardoso, C. Cuevas and G. Vodev, High frequency dispersive estimates for the

Schrödinger equation in high dimensions, Asymptot. Anal. 71 (2011), no. 4, 207–225.
MR 2815001

[14] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear

Schrödinger equations, Comm. Math. Phys. 85 (1982), 549–561. MR 0677997

[15] C. V. Coffman, Uniqueness of positive solutions of Δu − u + u3 = 0 and a varia-
tional characterization of other solutions, Arch. Ration. Mech. Anal. 46 (1972), 81–95.

MR 0333489

[16] A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with
minimal energy, Comm. Pure Appl. Math. 56 (2003), no. 11, 1565–1607. MR 1995870

[17] S. Cuccagna, Stablization of solutions to nonlinear Schrödinger equations, Comm.

Pure Appl. Math. 54 (2001), no. 9, 1110–1145. MR 1835384

[18] L. Demanet and W. Schlag, Numerical verification of a gap condition for linearized
NLS, Nonlinearity 19 (2006), 829–852. MR 2214946
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