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1. Introduction

In an attempt to generalize the concept of torsion for general rings, a right
R-moduleM is called a torsion module if Hom(M, Q) 0, where Q is Utumi’s
ring of right quotients of R. Dually, M is called reduced if Hom(Q, M) 0.
A module is then called torsion-free if no nonzero submodule is tor-
sion. Dually a module is called divisible if no nonzero factor module is re-
duced. Many of the usual theorems are shown to be preserved in 2 and 4,
and the new definitions are compared with earlier ones by L. Levy, A. Hattori,
E. Matlis, and others in 3 and 5. The new definition of torsion does indeed
generalize the classical one for integral domains. The same is true for di-
visibility, provided the integral domain R has a quotient field Q such that
Hom(Q, D) 0 for every classically divisible R-module D. The question
of when this condition holds is only partially answered.

I shall recall Utumi’s ring of right quotients of R. Let I be the minimal
in]ective extension of the right R-module R associated with the ring R, and
let H Hom(I, I) be the ring of endomorphisms of I. We write these
endomorphisms on the left of their arguments and obtain a bimodule I.
Again, let Q Hom(I, I) be the ring of endomorphisms of the left H-module
I. Q is called Utumi’s ring of right quotients of R.
In this paper, the letter Q always means, unless the contrary is stated, the

Utumi’s ring of right quotients of the ring R.

2. A generalized concept of torsion modules and
torsion-free modules

Let R be an. associative ring with unity, and M, a right R-module on which 1
acts as the identity. Let Q be Utumi’s maximal ring of right quotients of
R (See [9]). In the following, a module means a right R-module unless other-
wise stated. We also omit the subscript R or the superscript R ia Hom, (R).

DEFINITION. A module M is a torsion module if and only i

Hom(M, Q) 0.

DEFINITION. A module M is torsion-free if and only if no non-zero sub-
module of M is a torsion module.

Received September 11, 1967 and presented to the Society, Nov. 30, 1968.
This paper is based on a doctoral dissertation submitted to the McGill University.

414



TORSION AND DIVISIBILITY FOR GENERAL RINGS 415

It is not difficult to verify the following remarks.

Remark 1. A factor module of a torsion module is a torsion module.

Remark 2. If QR is injective, then any submodule of a torsion module is a
torsion module.

Remark 3. If A @ A. where A.’s are all submodules of a given
module, then A is a torsion module iff each A is a torsion module.

Remark 4. A submodule of a torsion-free module is torsion-free.

Remar 5. Q is a torsion-free module.

PIOPOSITION 1. An extension of a torsion module N by a torsion module
M/N is a torsion module M.

Proof. Since 0 ---+ N --+ M M/N 0 is an exact sequence, it induces an
exact sequence

0 Hom(M/N, Q) Hom(M, Q) --* Hom(N, Q).

Now Hom(M/N, Q) 0 and Hom(N, Q) 0, therefore Hom(M, Q) 0.
That is, M is a torsion module.

PROPOSITION 2. If M/L is a torsion-free module and N is a torsion sub-
module o M, then N c L.

Proof’. Assume L - N L, then by remark 1, we have that

0 (L+N)/L N/(NnL)

is a torsion submodule of M/L. This contradicts the fact that M/L is an
torsion-free module. Hence N c L.

PROPOSITION 3. Let T(M) sum o all torsion submodules of M, then
T(M) is the largest torsion submodule ofM. Moreover M/T(M) is the "largest’
torsion-free factor module of M. (We define M/N1 >-_ M/N ifNI c N.)

Proof. Let S be the direct sum of all torsion submodules S of M, then by
Remark 3, S is a torsion module. Now T(M) is a homomorphic image of S,
hence T(M) is a torsion submodule of M. Clearly, it is the largest torsion
submodule of M. Assume that M/T(M) is not a torsion-free factor module
of M, then there exists a non-zero torsion submodule K/T(M) of M/T(M),
such that T(M) c K M. Now, since T(M) is a torsion module and
KIT(M) is also a torsion module, by proposition 1, K is a torsion module.
This contradicts the fact that T(M) is the largest torsion submodule of M.
Therefore M/T(M) is torsion-free.
Assume M/L is a torsion-free factor module of M, we know T(M) is a

torsion submodule of M. By Proposition 2, then T(M) L. That is
M/T(M) >- M/L and therefore M/T(M) is the "largest" torsion-free factor
module of M.
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PROPOSITION 4. M is a torsion module if and only if no non-zero factor
module ofM is torsion-free.

Proof. LetM be a torsion module and M/L be a torsion-free factor module
of M, by Proposition 2, M c L, that is M/L 0. Conversely, assume M is
not a torsion module; then 0 c T(M) M where T(M) is the sum of all
torsion submodules of M. By Proposition 3., M/T(M) 0 is a torsion-free
factor module of M.

PROPOSITION 5. A projective module is a torsion-free module.

LEMIA. If A A where A’s are all submodules of a given module,
then A is torsion-free if and only if each A is torsion-free.

Proof. AssumeA is not a torsion-free module, for some i, then there exists
a non-zero torsion submodule B of A. Clearly, B is also a non-zero torsion
submodule of A and hence A is not torsion-free. Conversely, let B be any
torsion submodule of A. Let r be a canonical epimorphism from (R) ’ As
to A, for each i. DenoteB by B. Then B A and

is exact. This induces an exact sequence 0 -- Hom(B, Q) --* Horn(B, Q).
Since Hom(B, Q) 0, we have Hom(B, Q) 0 for each i. Now A is
torsion-free, for each i. ThereforeB 0 for each i. Hence B k-B

k0 0 where k is the canonical injection from A into A. Thus
A is a torsion-free module. The proof of Proposition 5 follows the lemma and
Remark 4 immediately.

DEFINITION. A module N extending M is called an "essential extension"
provided every non-zero submodule of N has non-zero intersection with M.
(In other words, M is a "large submodule" in N.)

PROPOSITION 6. If Q is injective, then an essential extension of a torsion-
free module is torsion-free.

Proof. Let C be an essential extension of a torsion-flee module A. Assume
C has a non-zero torsion submodule K, so that we have K n C K 0.
Since C is a large module in A, hence K n A 0. Now if Q. is injective, by
Remark 2, we have K n A is a torsion submodule of A, a contradiction to A
being torsion-free. Therefore C is torsion-free.

PROPOSITION 7. IfQ is injective, then a module M is torsion-free if and only
ifM is a subdirect product of submodules ofQ

Proof. First assume M is torsion-free. Let . range over all non-zero ele-
ments of Horn(M, Q). If r IIM --, b.M is the canonical epimorphism,
there exists a unique homomorphism k M --, H.M such that .k .
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IICaM

M’:,"

The kernel K of k is clearly given by

K No(,) Ker ,.
I claim that K 0.
Assume K 0, then 0 f, e Horn(K, Q) which may be extended to, e Horn(M, Q). But then K c Ker,, hence f,,K ,K 0, a contradic-

tion to f, 0. Thus K 0 and hence k is a monomorphism. Therefore M
is a subdirect product of submodules of Q.

Conversely, suppose M is a non-zero submodule of the product
P IIA where/A i e I} is the family of all submodules of Q. Let T
be any torsion submodule of M, then the mapping T -- M -- P -+ A must
be 0, for all i e I. Using the universal property of the direct product, we de-
duce that the monomorphism T - M --+ P is 0, hence T 0. Thus M is
torsion-free.

COROLLARY. If Q, is injective, then every torsion-free module M admits a
monomorphism into a direct product of copies of Qa

PROPOSITION 8. Horn(A, C) 0 for all torsion modules A if and only if C
is torsion-free.

Proof. For any f e Horn(A, C), fA is a torsion submodule of C. Since C is
torsion-free, hence fA is also torsion-free. Therefore fA 0. Thus f 0.
Conversely, let K be any torsion submodule of C, then by assumption, there
exists an inclusion map i e Horn(K, C) 0 and hence K 0. Therefore C
is torsion-free.

PROPOSITION 9. Let M be a right S module where R S Q and S is any
ring of right quotients of R; then Ms is a torsion module if and only if M is
torsion.

LEMMA. If Q is Utumi’s maximal ring of right quotients of R, then for any
q Q, qD 0 for some dense right ideal D implies q O.

Proof. By [3], Q
_

U. Horn (D, R)/0 where D ranges over all dense righ
ideals of R and 0 is the equivalence relation that holds betweenf e Horn (D, R)
and f’ e Horn (D’, R) if and only if (f f’) (D n D) 0. Now, let q Of
withfeHom(D,R). IffD 0thenq= Of=O.

Proof of Proposition 9. If M. is a torsion module, then Hom (M, Q) 0.
We haveHoms (M,Q) Hom, (M,Q) 0. That isHoms(M,Q) 0.
Therefore Ms is torsion. Conversely, for any f e Hom (M, Q) and m e M
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we have f(m) e Q. Let q’ f(ms) f(m)s. Since S c Q, then

D s-lR {r Rlsr
forms a dense right ideal in R. Thus q’d f(ms)d f(m)sd O, for all
d e D. Hence, by the previous lemma, we have q 0 and so f(ms)
f(m)s. Hence Hom. (M, Q) c Homs (M, Q) 0 and therefore Ms is
torsion if and only if M. is torsion.
A module N. is a rational extension ofM if

(n O e N) (Vn’ e N) (r e R) (nr 0 and n’r M)

or equivalently
HomK (K/M,N) 0 for all K

such that M

___
K

_
N.

A module C is called rationally complete if it has no proper rational ex-
tension.

PROPOSITION 10. Let Q be injective. If M is rationally complete and
torsion-free, then M is an S-module where S is any ring of right quotients of R,
R S Q. Moreover, Ms is torsion-free.

Proof. First, we want to prove that Q/R is a torsion module. Let be
an epimorphism from Q to Q/R. Let D q-IR r R lqr e R}, then D
forms a dense right ideal in R. Hence qD R and for anyf e Horn (Q/R, Q),
f(rq)D f(qD) c fir(R) f(O) 0 for any q e Q/R. Since f(rq) e Q,
hence f(rq) 0 for any q e Q/R. Then Hom (Q/R, Q) O. That is Q/R
is a torsion module. Since Q is injective, then by Remark 2, SIR is a torsion
submodule of Q/R. By Proposition 8, since M is torsion-free, we have
Horn (S/R, M) O. Similarly, we also have Hom (E, M) 0, for any
submodule E of SIR. Therefore 0 =< SIR(M) where R S Q (See [3]).
Since M is rationally complete, every homomorphism from R to M can be ex-
tended to a homomorphism from S to M. Let 0 e Hom (R, M) such
that r mr. This can be extended to Hom (S, M) so that ms ms.
Hence M is an S-module. By Proposition 9, since M, is torsion-free then Ms
is also torsion-flee.

PROPOSITION 11. A simple module S is torsion-free if and only if

O--s f-Q
is exact, for some f.

Proof. For any f e Horn (S, Q), since S is simple, then either Ker f 0
or Kerf S. Assume that Ker f S, for all f, then we have fS 0 in Q,
that is S is a torsion R-module, a contradiction to S is torsion-free, so that
Kerf 0, for some f. Therefore

O--SLQ
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is exact for some fi Conversely, assume that N is any torsion submodule of
S. Since S is simple then either N 0 or N S. Assume N S, then
for any f e Hom(S, Q) 0, we have Kerf S.
that

is exact for some f.
PROPOSITION 12.

module.

This contradicts the fact

o--.sf_Q
Hence S is torsion-free.

M is a torsion module if and only if M (R) ,Q is a torsion

LEMMA, Hom(Q, QR) Q Hom (Q, Q).

Proof. If we consider Hom (Q, Q) to be an abelian group, then we know
that Hom (Q, Q) Q. Now Hom (Q, Q) forms a right R-module
Q. Hence Hom(Q, Q)= Q, Clearly, Hom(Q, Q) c
Hom (Q., Q.). Conversely, I want to show that Horn. (Q., Q) c
Hom ( Q, Q). For any f HomR (Q, Q), let q" f(qq’) f(q)q’
where q, q’, q" all belong to Q. Let D q’-R {r R Iq’r R}. This is a
dense right ideal in R. Then for any d e D,

q’d [f(qq’) f(q)q’].d f(qq’d) f(qq’ d) O.

Hence by the lemma used in Proposition 9, we have q" 0, that is f(qq’)
f(q)q’. Hence Hom (Q., QR) c Homq ( Q, Q). Therefore this lemma
holds.

Proof of Proposition 12. Consider M., . Q and Q,; we have

Hom (M, Hom (Q, Q) Hom (M (R) , Q, Q). (1)

By lemma, we have

Hom (M, Hom (Q, Q)) Hom, (M, Q) (2)

Combining (1) and (2), we have Hom. (M (R) ,Q, Q) Hom (M, Q).
Therefore M is a torsion module if and only if M (R) Q is a torsion module.

3. A comparison of the definitions of torsion modules

Let R be an integral domain. We say that M is a torsion module in the
classical sense [1], provided that

M tM meMl 0 seR such that ms 0}.

THEOREM 1. M is a torsion module if and only if M is a torsion module in
the classical sense.

Proof. Assume M is a torsion module in the classical sense, then for any
meM, there exists 0 seRsuchthatms 0. For anyfeHom(M, Q)
and for any meM, we have f(ms)= f(O)= f(m)s 0 in Q. Since
Q is a field, 0 s implies f(m) 0. That is f= 0 for all m. Hence
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Horn (M, Q) O. Therefore M is a torsion module. Conversely, assume
that M is not a torsion module in the classical sense, then tM cM is a proper
torsion submodule of M. Hence there exists m M, such that ms 0 for
all 0 s R. Equivalently, there exists m eM such that for any
s e R(ms 0 implies s 0). Define a homomorphism f from mR into
Q, such that f(ms) s, for any s e R. Since Qe is injective, 0 f can be
extended to 0 e Horn (M, Q), because mR M, so Horn (M, Q) 0.
That is M is not a torsion module.

Let R be a ring with unity. Denote the semi-group of regular elements
(i.e. non-zero divisors) of R by R. We call an element m of an R-module M
a torsion element if there exists s e R such that ms O. We denote the set
of all torsion elements of M by M.L. Levy [4] has shown that tM forms a
submodule of M if and only if R has a classical ring of right quotients, equiva-
lently, R satisfies Ore’s condition.

THEOREM 2. Assume Re is finite-dimensional, if every large right ideal in R
has a regular element, then M is a torsion module if and only if M is a torsion
module in Levy’s sense.

Proof. See [2]. If RR is finite-dimensional and every large right ideal has
a regular element; then J(RR) 0, Qe is injective, every regular element in R
is a regular element in Q and Q Q(C1) (The classical rings of right quotients
of R). For any f e Home (M, R) and for any m e M, there exists s e R such
that ms 0, then f(m)s f(ms) f(0) 0. Since s is regular in Q, hence
f(m) 0 for all m. Therefore f 0, that is Horn (M, Q) 0. Conversely,
assume that M is a torsion module. For any m e M, construct an annihilator
ideal A of m such thut A {r R mr 0}. We want to show that A is
lrge right ideal in R. For, let B be ny right ideal of R such that A l B 0.
Define f mB --, Q such that f(mb) b. We have that mb 0 implies
b e A l B 0. Hence f is a mapping. Clearly, f is a homomorphism from
mB into Q. Since mB M and Q is injective, we have that Horn (M, Q)
Horn (mB, Q) - 0 is exact. By assumption Horn (M, Q) 0 and hence
Hom(mB, Q) 0, thatisf(mb) b 0forllb. HenceB 0. There-
fore A is a large right ideal in R. Hence A has a regular element s R. That
is ms 0 for some s e R. Thus m e tM. Therefore, M is a torsion module
in Levy’s sense.

Let R be a ring with unity. R.E. Johnson and E. T. Wong [7] have de-
fined the singular submodule J(Me) of an R-module M such that

J(MR) {m eMImD 0 for some large right ideal D of R}.
Recall that T(M) is the largest torsion submodule of M.
THEOREM 3. /f J(Re) 0 then T(M) J(MR).

Proof. For any m T(M) Sum of all torsion submodule M of M.

A module MR is called finite-dimensional (Goldie) if there do not exist infinitely
many non-zero submodules whose sum is direct.
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Hence m 2 m where m eM and all but a finite number of m are 0. By
using the argument in the proof of Theorem 2, we have for any m eM that
there exists a large right ideal A such that m A 0. Let L [’l1A
We know that L is again a large right ideal in R. Moreover mL O. That
is m e J(MR) and hence T(M) c J(MR). Conversely, let

L* q e Q qL 0 where L isalargerightidealin RI.
Now, L* R {r e R rL 0 where L is a large right ideal in R} J (RR) 0,
SinceRis alarge modulein Q,L* Q L* O. For anyf e Hom (J(MR), Q)
and for any m e M, and any e L we havef(m)t f(mt) f(O) O. Hence
f(m) eL* O. Therefore Hom (J(MR), Q) 0 and J(M)R is a torsion
submodule of M. Hence J(MR) c T(M).
THEORE 4. Let R be a non-commutative integral domain, and assume that

RR isfinite dimensional. ThenM is a torsion module if and only ifM is a torsion
module in Hattori’s sense.

Proof. See [5, Proposition 18]. Since R has a classical ring of right quo-
tients Q(C1), then M is a torsion module in Levy’s sense if and only if M is a
torsion module in Hattori’s sense. Also from Theorem 2, since every non-zero
element in R is a regular element in R, M is a torsion module in Levy’s sense if
and only if M is a torsion module.

4. A generalized concept of reduced modules and
divisible modules

Let R be an associative ring with unity, which acts as the identity in any
right R module M. Let Q be Utumi’s maximal ring of right quotients of R.
We say that a module M is reduced if and only if HomR (Q, M) 0. We de-
fine a module M to be divisible if and only if no non-zero factor module of M is
reduced.

It is not difficult to verify the following remarks"

Remarl 1". Any submodule of a reduced module is reduced.

Remarl 2*. If QR is proective, then any factor module of a reduced module
is a reduced module.

Remark 3*. If C IX c the direct product of modules C, then C is a
reduced module if and only if each C is reduced.

Remark 4*. Any factor module of a divisible module is a divisible module.

Remarl 5*. QR is a divisible module.

PROPOSITION 1". An extension of a reduced module N by a reduced module
M/N is als a reduced module.

Proof. Since 0 ---+ N -- M ----> M/N ---+ 0 is an exact sequence, it induces an
exact sequence

0 -- Hom (q, N) -- Hom (Q, M) --. Hom(O, M/N)
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By assumption, we have Hom (Q, N) 0 and Hom (Q, M/N) O. Hence
Horn (Q, M) 0, namely M is reduced.

PROPOSITION 2*. If L is a divisible submodule of M and M/N is a reduced
module then L c N.

Proof. Assume L AN L, then by Remark 1", 0 L/L AN
(L -t- N)/N is a reduced submodule of M/N. Hence L/L n N is a non-zero
reduced factor module of L which contradicts that L is divisible. Hence
LcN.

LEMMA. If D N S M M/Si is a reduced factor module of M}, then
there exists a monomorphism from M/D into II M/S

Proof. Let r" I-L M/Si ---* M/S and M ----> M/S canonically.
there exists a unique M II M/S such that

Then

We have
Ker {meMl(m) 0}

{me M I(V, 0)}

{meM (/,)(,m 0)

N Ker D.

We want to construct a monomorphism from M/D into II M/Si. Define
h" MID-- II M/S such that h(m + D) =m. If m + D 0 in M/D,
then m e D, hence m 0. Therefore h is a mapping. Clearly h is a homo-
morphism. Moreover Ker h {m + D ]Sin 0} 0 in MID. Hence h is
a monomorphism.

PIOeOSlTION 3*. Let D be the intersection of all submodules S of M such
that M/S is a reduced module; then MID is a reduced module and is the "largest"
reduced factor module of M. (We define M/N1 >= M/N2 if NI c N2.) Also D
is the largest divisible submodule of M.

Proof. By Remark 3", M/S is a reduced module for each i which implies

II M/S is reduced. By the lemma, MID is a submodule of II M/St.
Hence by Remark 1", MID i reduced. Since D S, for each reduced
factor module M/S, and according to our definition of "->" (greater than),
then MID >= M/S for each reduced factor module of M/Si. Hence MID
is the "largest" reduced factor module of M. Next, we want to show that D
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is divisible. Assume 0 D/K to be a non-zero reduced factor module of D.
By the above, we have shown MID M/K/D/K is a reduced factor module
of M. Since D/K and M/K/D/K are reduced modules, by Proposition 1",
M/K is a reduced factor module of M. Since MID is the "largest" reduced
factor module of M, we have M/K <- MID from which we can deduce D K.
This contradicts K D. Hence D is a divisible module. We have shown
before that MID is a reduced factor module of M, and for any divisible sub-
module L of M, by Proposition 2", L D. Hence D is the largest divisible
submodule of M.

PROPOSITION 4*. M is a reduced module if and only if no non-zero sub-
module of M is a dwisible module.

Proof. Let L be any divisible submodule of M. Since M M/O is a
reduced factor module of M, by Proposition 2", we have L 0. Hence
L 0. Conversely, assume M is not reduced. Let D [ {SI M/S is a
reduced factor module of M}. Clearly, 0 D M because M/O is not
reduced. By Proposition 3", we have that D is a nonzero divisible submodule
of M.

COROLLARY. [f M is a non-zero reduced module then M is not. a divisible
module

PROPOSITION 5*. Any injective module is a divisible module.

Proof. Let M be an injective module. Assume M is not divisible, then
there exists a submoduleN M such that Horn (Q, M/N) O. For any

&eHom (Q,M) we have r oh eGom (Q, M/N) where is an epimor-
phism from M to M/N. Since v b Q 0 in M/N, then Q N for any
b e Hom (Q, M). Let be the homomorphism from R into M such that

r ----> mr for some arbitrarily chosen m e M. Since M is injective, can be
extended to a homomorphism p from Q into M such that p. ] where ]c is
a monomorphism from R into Q. Thus mR CR p R pQ N. Since
m is arbitrary, we have M N, which is a contradiction of N M. There-
fore M is divisible.

DEFINITION. A module E is called an essential cover of M E/K if and
only if any submodule F E such that F E implies F K E.

PROPOSITION 6*. If Q is projective, an essential cover E of a divisible module

ElK is a divisible module.

Proof. Assume E is not divisible; then there exists a non-zero reduced
factor module ElL of E. Since E is an essential cover of ElK. We have
L E implies L -t- K E. Now Q is projective so, by Remark 2",
E/L/L - K/L ElL - K 0 is a reduced factor module of ElK. Hence,
ElK is not a divisible module which contradicts the fact that ElK is divisible.
Thus E is divisible.
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PROPOSITION 7*. If QR is projective, then a module M is divisible if and only
ifM is a sum offactor modules of QR

Proof. Assume that M is divisible. Let S 5-mom(,) im I claim
S M. Assume S # M, then M/S is not a reduced factor module of M.
Hence there exists 0 fie Horn (Q, M/S). By assumption Q is projective,
hence fi can be lifted to 0 i e Horn (Q, M), hence im S Ker ,
where :M M/S. This is a contradiction to im S. Therefore

Conversely, assume M o(,M) im, I claim M is divisible.
Let H be any reduced fuctor module of M, then the mapping

H M ieHom(Q,M im im

must be 0 for all i e I. Using the universal property of the direct sum, we
deduce that the epimorphism

H M ieom(Q,M)im
is 0, hence H 0. Thus M is divisible.

COOLAY. If Q is projective then every divisible module is a homomorphic
image of a direct sum of copies of Q

Proof. By Proposition 7" nd the fct that the sum of modules A where
A’s are 11 submodules of given module is homomorphic image of A.
POOSIION 8*. A module D is divisible module if and only if

Horn (D, U) 0 #r all reduced module U.

Proof. Assume D is divisible, then for ny f e Horn (D, U), where U is
reduced, we hve fD is divisible nd fD U. By Remark 1", fD is Mso
reduced. Therefore fD 0. Hence Hom (D, U) 0, for 11 reduced
modules U. Conversely, let fD be ny reduced fctor module of D. By
ssumption, Horn (D, fD) 0. Thus fD 0. By deflation of divisibility,
we hve D is divisible.

PnooslWlON 9*. IfM is a righ Q module, them Mn is a divisible module.

Proof. AssumeM is not divisible, then there exists submodule N M
such that Hom (Q, M/N)= 0. For ny e Hom (Q, M), we hve
z e Horn (Q, M/N) where z is n epimorphism from M to M/N. Since
zQ OinM/N, Q N forny eHom (Q,M). Define eHom (Q,M)
such that " q mq, for some rbitmrily chosen m e M. Then one cn
esily see that e Homn (Q, M). Hence M MQ N, contradiction.

PoosIIO 10. If A A is a direc sum o] submodus A A is
a divisible module if and only if each A is a divisible module.
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Proof. Assume A is divisible. Now the exact sequence

is direct for each A, that is there exists an epimorphism A --. A such
that ]c lx. Since A is divisible, by Remark 4", A is divisible for each i.
Conversely, assume each A is divisible. We want to show that A is divisible.
Let A/B be any reduced factor module of A, and consider the epimorphism

A --) A/B. Now we have A --. A/B, such that

A A A/B

where k is a monomorphism. Let B Ker vlc then there exists an epi-
morphism As A/B for each i, and A/B im c A/B. Since
0 A/B -- A/B is an exact sequence, it induces an exact sequence

0 -- Hom (Q, AdB) ---+ Hom (Q, A/B).

Since A/B is reduced, A/B is reduced for each i. By assumption, each As
is divisible. Hence As c Bs for each i. For any a e A @ A, we have
a ]c a with a e A where all but a finite number of a are 0, and the
expression is unique. Now a e B Kerv ks, hence v/(a) v(/ca) 0
and thus k a e Ker r B for each i. Hence a /c as e B from which
we can deduce that A c B, that is A/B 0. Therefore A is divisible.

PROPOSITION 11". A simple module S is divisible if and only if

Q f-,s---O
is an exact sequence for some f.

Proof. Assume a simple module S is divisible; then for anyf e Horn (Q, S),
eitherfQ O or fQ S. AssumefQ O for all f. ThenHom(Q,S) 0
which contradicts the assumption that S is divisible. Hence fQ S for some
$. Conversely, assume the sequence

Q f-. s-- O

is exact. For this particular f e Hom (Q, S), we have fQ S and, by using
Remark 5* and Remark 4", that S is divisible.

PROIOSITION 12". Let R be an integral domain. A module M is a reduced
module if and only if HomR Q, M) is a reduced R-module.

LEMMA. Q(R).Q=Q..

Proof. Since QR is fiat, (see [1, p. 130]) Q Q (R). R Q @ Q. Con-
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versely, for any a (R) b e Q (R)R Q. We have

aq (R) b a(r/s) (R) b a(r/s) (R) (s/s)b a(rs/s) (R) (b/s)

ar (R) (b/s) a (R) (rb/s)

a (R) qb where qeQ and r, seR R- {0}.

Hence Q (R) RQ Q (R) oQ.

Proof of Proposition 12".

Hom (Q., Hom (Q, M)) -- Hom. (Q (R) ,Q, M) Hom (Q, M)

hence Hom (Q, Hom (Q, M)) 0 if and only if Hom (Q, M) 0. Hence
if R is an integral domain then Hom (Q, M) is reduced if and only if M is
reduced.

PROPOSITION 13. Given rings R and S, let As be a right S module and C
be a bimodule. If C is an R-dwisible module, then A (R) C is also R-divisible.

Proof. Since C is an R-divisible module, we have by Proposition 8", that
for all reduced right R-module T, Hom (C, T) 0 Now,

Hom, (A (R) sC, T) =Homs (A, Hom (C, T)) =Homs (A, 0) 0
for all reduced modules T. By Proposition 8", A (R) sC is an R-divisible
module.

5. A comparison of the definition of reduced modules and
divisible modules

Let R be an integral domain. We say that a module M over R is divisible
in the classical sense if and only if Md M for any 0 d e R. We say that
a module M is reduced in the classical sense if and only if M has no non-zero
divisible submodules See [8].

THEOREM 1. If M is a reduced module in the classical sense, then M is a
reduced module.

Proof. For any f e Horn (Q, M), fQ c M. Since R is an integral domain,
Q is divisible in the classical sense. Hence by [1], fQ is divisible in the classical
sense. By the definition of a reduced module M in the classical sense, we
have fQ O. Hence Horn (Q, M) 0 and therefore M is a reduced module.

THEOREM 2. If R is a Dedekind domain and M is a reduced module, then M
is a reduced module in the classical sense.

Proof. Let N be any divisible (in the classical sense) submodule of M.
Assume N 0. Definef R -- N such that r nr for some arbitrary chosen
n 0 e N. It is easy to see that f e HomR (R, N). If R is a Dedekind do-
main, by [1], N is injective and hencef can be extended to 0 x Hom (Q, N).
Now 0 - N -- M is exact, and induces 0 --* Horn (Q, N) --. Horn (Q, M)
which is exact. By assumption, M is reduced, thus Hom (Q, N) 0. Let
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q 1, then 0 X" 1 f. 1 1.n, which is a contradiction to n 0. Hence
N 0 and therefore M is reduced in the classical sense.

LEMMA. Let R be an integral domain; then there exists a largest divisible
submodule in the classical sense D of M. Moreover MID is a reduced module.

Proof. Let M be any module over R. It is easily seen that the sum D of
all classically divisible submodules of M is classically divisible. Assume
M/D is not a reduced module in the classical sense, then it has a divisible
submodule in the classical sense N/D, such that D c N c M. Since N/D
is a divisible module in the classical sense, given any n e N, and any 0 r R,
there exists n’ N such that ntr n mod D. Thus n’r n D. Since D
is a divisible module in the classical sense, for n’r n D with r e R, there
exists d’ e D such that n’r n d’r. Thus (n’ - d’)r n. Therefore,
for any n in N, and any 0 r eR, there exists (n’-b dp) eN such that
(n’ d’) e N such that (n’ d’)r n. Hence N is a divisible submodule
in the classical sense of M. By the maximality of D, N D, that is N/D O.
Hence MID has no non-zero divisible submodule in the classical sense. Thus
MID is a reduced module in the classical sense. Now by Theorem 1, we have
that MID is a reduced module.

THEOREM 3. Let R be any integral domain. Any divisible module M is a
divisible module in the classical sense.

Proof. By a proposition in 4, we know that M is a divisible module if and
only if Horn. (M, E) 0 for all reduced modules E. In particular, let
E MID as ia the lemma, then Hom (M, M/D) O. Let r be the epi-
morphisms of M onto M/D, then r e Hom (M, M/D)= 0 and hence
rM MID O. Thus M D. Therefore M is a divisible module in the
classical sense.

THEOREM 4. Let R be an integral domain, Q be the quotient field of R, and
assume that Q is countably generated, then every divisible module in the classical
sense is a divisible module.

Proof. Refer to [6]. If R is an integral domain, then Q is divisible in the
classical sense and torsion-free. There exists a countable set of generators
{q} for Q over R and elements a+_} of R such that ql 1 and a+l q+ q.
Let

A qlR - q.R q_R

R + (1/a.)R - (l/a2 a3) R - + (1/a2 a3 a,_)R.

Clearly A A - (l/a2 a3 a,)R A q,, R. We want to show that for
anyf e Hom (A, D), f can be extended to g e Horn (A + q R, D). We
define

g(a r/a2a3 a,,) f(a) x,, r
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for some xn D, where x, is determined as follows:
Pick x, eD such that x, a, f(1/a2.., a,_l). This can be done since

D is divisible in the classical sense.
We must verify that g is a mapping. Hence suppose

a r/a2 a3...an.
Then f(a)an f(r/a2 a3 an-l) xn a, r. Since Q is torsion-free in the
classical sense, f(a) x,, as required. It is easily verified that g is an
R-homomorphism.

Writing A An_l, we see that any element of Hom (An_,, D) can be
extended to an element of Horn. (An, D).

Since Q (in An, it follows that any element of Hom (R, D) can be
extended to an element of Hom (Q, D).

Finally we want to show D is a divisible module. Assume that D is not
divisible, then there exists a submodule N cD such that Hom (Q, D/N) O.
Thus for any x Hom (Q, D), we have x e Hom (Q, D/N) 0 where is an
epimorphism from D to DIN. That is vxQ 0 in D/N, so that xQ c N.
Now, we define e Horn (R, D) such that : r -- dr for some arbitrary
chosen 0 deD. Hence can be extended to xeHom (Q, D). Thus
dR CR xR c N and so d.1 x’IN. Sincedisarbitrary, D N,
which is a contradiction to N c D. Hence D is a divisible module.

THEOREM 5. Let R be an integral domain with quotient field Q. A module M
is h-reduced module in Matlis’ sense [6] if and only if M is a reduced module.

Proof. Let h(M) denote the sum of all submodules M of M, each of which
is a homomorphic image of an injective module I. We will show h(M) is
the unique largest submodule of M which is a homomorphic image of an in-
jective module.

0 F --. F (R) Q

L

Let F be a free module mapping onto 14, then F (R) Q is torsion-free and
divisible in the classical sense and is a direct sum of copies Q. Therefore M
is u homomorphic image of @ Q. Now, let V (R) (F (R) Q), we have
an epimorphism V -- h(M). But V is torsion-free and divisible in the classi-
cal sense, hence injective. Therefore h(M) is the unique largest submodule
of M which is a homomorphic image of an injective module.

Next, I claim the sequence 0 --+ Horn (K, M) Horn (Q, M) -- h(M) 0
is exact, where K Q/R. The exact sequence 0 -- R -- Q -+ K --+ 0 induces
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an exact sequence

0 -- Hom (K, M) - Horn (Q, M) a_ i
where if f e Horn (Q, M), a(f) f(1). Homa (Q, M) is torsion-free and
divisible in the classical sense, hence injective, and so im a h(M). Con-
versely, let x h(M), then there exists an injective module I and a homo-
morphism g I - M such that g(y) x for some y e I. Now, we have a
diagram

OR i-Q

I
where h(1) .

Since I is injective, there exists a map/ Q -- I such that ki h. Let
f g], thenfeHom (Q,M) and (f) (g])(1) g(]c(1)) g(y) x.
Therefore x e im a and so h(M) c im a, so we have that

0 -- Hom (K, M) -- Hom (q, M) -- h(M) -- 0
is exact.

In view of the above, if M is reduced, that is Horn (Q, M) 0,
then h(M) 0. Therefore M has no non-zero submodule which is a homo-
morphic image of an injective module. That is, M is h-reduced in Matlis’
sense. Conversely, if M is h-reduced in 1V[atlis’ sense, then h(M) O.
For any f eHom (Q, M) Hom (Q, h(M)), fQ h(M) O. Hence
Horn (Q, M) 0, that is, M is a reduced module.

THEOREM 6. Let R be a Noetherian integral domain with the property that
every non-zero prime ideal is maximal. Then every divisible module in the
classical sense is a divisible module.

Proof. See [6 Theorem 3.3]. Every divisible module in the classical sense
D is a homomorphic image of an injective module. Thus D h(D) O.
Therefore D is not h-reduced in 5/[atlis’ sense. Thus, by the previous theorem,
D is not h-reduced.

Let 0 D/K be any factor module of D. Then by [1], D/K is a divisible
module in the classical sense. Hence from the above proof, we know D/K is
not a reduced module. Hence D has no non-zero reduced factor modules,
and so by definition, D is a divisible module.

COROLLARY. If R is a Dede]cind domain, then a divisible module in the
classical sense is a divisible module.

Let R be an associative ring with unity, which acts as the identity in every
module, and let Q be Utumi’s maximal ring of right quotients of R.



DEFINITION. A left module RB is called a "bad module" if and only if
Q(R)RB=O.

DEFINITION. A right module G is called a "good module" if and only if
G (R) . B 0 for any bad module . B
LEMMA. For any bad module B, and for any module X, Homz (B, X) is a

reduced module, where Z is the ring of integers.

Proof. For,

Hom (Q, Homz (B, X)) Homz (Q (R) B, X) Homz (0, X) 0.

Hence Homz (B, X) is reduced module.

,THEOREM 7. Every divisible module D is a good module.

Proof. For any bad module B, and for any module X, we have that

Homz (D (R) B, X) Hom (D, Homz (B, X)).

From Proposition 8", 4, since D is a divisible module and Homz (B, X) is a re-
duced module, Horn. (D, Homz (B, X)) 0, that is, Homz (D (R) B, X) 0.
Now letX D (R) B. Then we have thatHomz (D (R) B,D (R) B) 0.
Therefore D (R) B 0, for any bad module B. That is, D is a good module.

THEOREM 8. A module B is a bad module if and only ir

B* Homz (B, K/Z)

is a reduced module, where K is the field of rational numbers.

Proof. If B is a bd module, from the lemmu used in proving Theorem 7,
Homz (B, K/Z) is u reduced module. Conversely, if B* Homz (B, K/Z)
is a reduced module, since Q is divisible module then

(Q (R) B)* Homz (Q (R) B, g/z) HomR (Q, Homz (B, g/z)

Hom (Q, B*) 0.

From [10], we have Q (R) B 0. That is, B is a bad module.
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