ON THE CONCEPT OF TORSION AND DIVISIBILITY FOR
GENERAL RINGS

BY
Diana Yun-pEE WEL

1. Introduction

In an attempt to generalize the concept of torsion for general rings, a right
R-module M is called a torsion module if Homz(M, Q) = 0, where Q is Utumi’s
ring of right quotients of . Dually, M is called reduced if Hom.(Q, M) = 0.
A module is then called torsion-free if no nonzero submodule is tor-
sion. Dually a module is called divisible if no nonzero factor module is re-
duced. Many of the usual theorems are shown to be preserved in §2 and §4,
and the new definitions are compared with earlier ones by L. Levy, A. Hattori,
E. Matlis, and others in §3 and §5. The new definition of torsion does indeed
generalize the classical one for integral domains. The same is true for di-
visibility, provided the integral domain R has a quotient field @ such that
Homg(Q, D) = 0 for every classically divisible R-module D. The question
of when this condition holds is only partially answered.

I shall recall Utumi’s ring of right quotients of B. Let I be the minimal
injective extension of the right R-module R associated with the ring R, and
let H = Homg(Z, I) be the ring of endomorphisms of Ir. We write these
endomorphisms on the left of their arguments and obtain a bimodule xI- .
Again, let @ = Homg (1, I) be the ring of endomorphisms of the left H-module
al. @ is called Utumi’s ring of right quotients of R.

In this paper, the letter @ always means, unless the contrary is stated, the
Utumi’s ring of right quotients of the ring R.

2. A generalized concept of torsion modules and
torsion-free modules

Let R be an associative ring with unity, and M, a right R-module on which 1
acts as the identity. Let @z be Utumi’s maximal ring of right quotients of
R (See[9]). In the following, a module means a right B-module unless other-
wise stated. We also omit the subscript R or the superscript R in Hom, ®.

DEeriNITION. A module M is a torsion module if and only if
Hom(M, Qg) = 0.
DrriNiTION. A module M is torsion-free if and only if no non-zero sub-

module of M is a torsion module.
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It is not difficult to verify the following remarks.

Remark 1. A factor module of a torsion module is a torsion module.

Remark 2. 1If Qg is injective, then any submodule of a torsion module is a
torsion module.

Remark 3. 1f A = ® Y, A; where A,’s are all submodules of a given
module, then A is a torsion module iff each 4 ; is a torsion module.

Remark 4. A submodule of a torsion-free module is torsion-free.
Remark 5. @ is a torsion-free module.

ProrosiTION 1. An extension of a torsion module N by a torsion module
M/N s a torsion module M.

Proof. Since 0 - N — M — M /N — 0 is an exact sequence, it induces an
exact sequence

0 — Hom(M/N, Q) — Hom(M, Q) — Hom(N, Q).

Now Hom(M/N, @) = 0 and Hom(N, Q) = 0, therefore Hom(M, Q) = 0.
That is, M is a torsion module.

ProrosiTioN 2. If M/L is a torsion-free module and N is a torsion sub-
module of M, then N C L.

Proof. Assume L + N > L, then by remark 1, we have that
0#(L+ N)/L=N/(NnlL)

is a torsion submodule of M /L. This contradicts the fact that M /L is an
torsion-free module. Hence N C L.

ProposiTioN 3. Let T(M) = sum of all torsion submodules of M, then
T (M) is the largest torsion submodule of M. Moreover M /T (M) is the “largest’
torsion-free factor module of M. (We define M /N1 = M/N,if Ny C N,.)

Proof. Let S be the direct sum of all torsion submodules S; of M, then by
Remark 3, S is a torsion module. Now T (M) is a homomorphic image of S,
hence T (M) is a torsion submodule of M. Clearly, it is the largest torsion
submodule of M. Assume that M/T (M) is not a torsion-free factor module
of M, then there exists a non-zero torsion submodule K/T (M) of M/T(M),
such that T(M) C. K C M. Now, since T(M) is a torsion module and
K/T(M) is also a torsion module, by proposition 1, K is a torsion module.
This contradicts the fact that T'(M) is the largest torsion submodule of M.
Therefore M /T (M) is torsion-free.

Assume M/L is a torsion-free factor module of M, we know T (M) is a
torsion submodule of M. By Proposition 2, then 7(M) < L. That is
M/T(M) = M/L and therefore M /T (M) is the “largest” torsion-free factor
module of M.
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ProposiTioN 4. M is a torsion module if and only if no non-zero factor
module of M <s torsion-free.

Proof. Let M be a torsion module and M /L be a torsion-free factor module
of M, by Proposition 2, M C L, that is M/L = 0. Conversely, assume M is
not a torsion module; then 0 € T (M) . M where T(M) is the sum of all
torsion submodules of M. By Proposition 3., M /T (M) # 0 is a torsion-free
factor module of M.

ProposiTION 5. A projective module is a torsion-free module.

Lemma. IfA = @ D A; where AJs are all submodules of a given module,
then A 1s torsion-free if and only if each A ; is torsion-free.

Proof. Assume A; is not a torsion-free module, for some ¢, then there exists
a non-zero torsion submodule B; of A;. Clearly, B; is also a non-zero torsion
submodule of A and hence 4 is not torsion-free. Conversely, let B be any
torsion submodule of A. Let 7; be a canonical epimorphism from ® > A4;
to A;, for each 7. Denote 7;B by B;. Then B; C 4, and

B-TH B, —0

is exact. This induces an exact sequence 0 — Hom(B;, @) — Hom(B, Q).
Since Hom(B, Q) = 0, we have Hom(B;, Q) = 0 for each 7. Now 4; is
torsion-free, for eachs. Therefore B; = Oforeachi. Hence B = ) kB =
> k0 = 0 where k; is the canonical injection from A;into @ > A;. Thus
A is a torsion-free module. The proof of Proposition 5 follows the lemma and
Remark 4 immediately.

DrrFiniTION. A module N extending M is called an “essential extension”
provided every non-zero submodule of N has non-zero intersection with .
(In other words, M is a ‘“large submodule’ in N.)

ProrosirioN 6. If Qg is injective, then an essential extension of a torsion-
Sfree module is torsion-free.

Proof. Let C be an essential extension of a torsion-free module A. Assume
C has a non-zero torsion submodule K, so that we have K n C = K = 0.
Since C is a large module in 4, hence K n 4 = 0. Now if Qg is injective, by
Remark 2, we have K n A is a torsion submodule of 4, a contradiction to A
being torsion-free. Therefore C is torsion-free.

ProrosrTioN 7. If Qg s injective, then a module M <s torsion-free if and only
if M is a subdirect product of submodules of Qx .

Proof. First assume M is torsion-free. Let ¢, range over all non-zero ele-
ments of Hom(M, Q). If . : ] ¢aM — ¢.M is the canonical epimorphism,
there exists a unique homomorphism % : M — [] ¢.M such that .k = . .
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Hé.M

k W

The kernel K of k is clearly given by

K = Nyacrrom(n,0) Ker ¢a .
I claim that K = 0.

Assume K # 0, then 0 # f, ¢ Hom(K, @) which may be extended to
¢o € Hom(M, Q). But then K C Kerg, , hence f.K = ¢.K = 0, a contradic-
tion to f« # 0. Thus K = 0 and hence k is a monomorphism. Therefore
is a subdirect product of submodules of Qr .

Conversely, suppose M is a non-zero submodule of the product
P = J].:A:where {A;| i eI} is the family of all submodules of Qz . Let T
be any torsion submodule of M, then the mapping 7 — M — P — A; must
be 0, for all 7 ¢ I. Using the universal property of the direct product, we de-
duce that the monomorphism 7' — M — P is 0, hence T = 0. Thus M is
torsion-free.

CoROLLARY. If Qg s injective, then every torsion-free module M admits a
monomorphism into a direct product of copies of Qr .

ProrosiTion 8. Hom(4, C) = 0 for all torsion modules A if and only if C
18 torsion-free.

Proof. For any f e Hom(4, C), fA is a torsion submodule of C. Since C' is
torsion-free, hence fA is also torsion-free. Therefore fA = 0. Thus f = 0.
Conversely, let K be any torsion submodule of C, then by assumption, there
exists an inclusion map 7x ¢ Hom(K, C) = 0 and hence K = 0. Therefore C
is torsion-free.

ProrositioN 9. Let M be a right S module where R < S C Q and S is any
ring of right quotients of R; then Mg is a torsion module if and only of My s
torsion.

Lemma. If Q is Utumi’s maximal ring of right quotients of R, then for any
q € Q, gD = 0 for some dense right ideal D implies ¢ = 0.

Proof. By [3], Q = U, Hom (D, R)/6 where D ranges over all dense right
ideals of R and 0 is the equivalence relation that holds between f ¢ Hom (D, B)
and f’ e Hom (D', R) if and only if (f — f/)(D N D’) = 0. Now, let ¢ = 6f
with f ¢e Hom (D, R). If fD = 0theng = 6f = 0.

Proof of Proposition 9. If My is a torsion module, then Homz (M, Q) = 0.
We have Homgs (M, Q) € Homg (M, Q) = 0. That is Homs (M, Q) = 0.
Therefore M is torsion. Conversely, for any f ¢ Homg (M, @) and m e M
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we have f(m) e Q. Letq = f(ms) — f(m)s. Since 8 C @, then
D=5s"R={reR|sreR}

forms a dense right ideal in R. Thus ¢'d = f(ms)d — f(m)sd = 0, for all
d ¢D. Hence, by the previous lemma, we have ¢ = 0 and so f(ms) =
f(m)s. Hence Homg (M, Q) < Homg (M, @) = 0 and therefore My is
torsion if and only if M is torsion.

A module Ny is a rational extension of M5 if

(Vn #0eN)(Vn' e N)(AreR)(nr %0 and n'reM)

or equivalently
Homg (K/M,N) =0 forall K

such that ¥ C K C N.
A module Cr is called rationally complete if it has no proper rational ex-
tension.

ProrosiTion 10. Let Qr be injective. If Mz is rationally complete and
torsion-free, then M is an S-module where S is any ring of right quotients of R,
Rc 8 c Q. Moreower, Myis torsion-free.

Proof. TFirst, we want to prove that @/R is a torsion module. Let = be
an epimorphism from Q to Q/R. Let D = ¢'R = {reR|qreR}, then D
forms a dense right ideal in R. Hence ¢D C R and for any f ¢e Hom (Q/R, Q),
f(zq)D = fr(¢gD) < fx(R) = f(0) = O for any =g e @/R. Since f(7q) €@,
hence f(rq) = 0 for any 7q ¢ Q/R. Then Hom (Q/R, @) = 0. Thatis Q/R
is a torsion module. Since @ is injective, then by Remark 2, S/R is a torsion
submodule of Q/R. By Proposition 8, since M is torsion-free, we have
Hom (S/R, M) = 0. Similarly, we also have Homg (E, M) = 0, for any
submodule E of S/R. Therefore 0 < S/R(M) where R C 8 € @ (See [3]).
Since M is rationally complete, every homomorphism from R to M can be ex-
tended to a homomorphism from S to M. Let 0 % 7 ¢ Hom (R, M) such
that 7w = mr. This can be extended to 7 ¢ Hom (S, M) so that #iis = ms.
Hence M is an S-module. By Proposition 9, since My, is torsion-free then M4
is also torsion-free.

ProrosiTioN 11. A simple module S s torsion-free if and only if

0-84 ¢
18 exact, for some f.

Progf. For any f e Hom (8, Q), since S is simple, then either Ker f = 0
or Ker f = 8. Assume that Ker f = S, for all f, then we have fS = 0 in Q,
that is S is a torsion R-module, a contradiction to S is torsion-free, so that
Ker f = 0, for some f. Therefore

08¢
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is exact for some f. Conversely, assume that N is any torsion submodule of
S. Since S is simple then either N = 0 or N = S. Assume N = S, then
for any f ¢ Hom(S, Q) = 0, we have Ker f = S. This contradicts the fact
that

0-8L¢q
is exact for some f. Hence S is torsion-free.

ProrosiTion 12. Mg s a torsion module if and only if M ® rQ is a torsion
module.

Lemma. Homz(Qr, Qz) = Qr = Homg (Qq, Qo).

Proof. If we consider Homg (@, @) to be an abelian group, then we know
that Homg (@, Q) = Q. Now Homg (Qq, Q) forms a right R-module
Qr. Hence Homg (zQq, Q¢) = Qr, Clearly, Homg (rQo, Qo) C
Homg (Qr, Qz). Conversely, I want to show that Homg (Qz, Qz) C
Homg (2 Qa, Qo). For any feHomg (Qr, Qz), let ¢’ = f(g¢') — f(@)¢
where ¢, ¢/, ¢” all belong to Q. Let D = ¢ 'R = {reR | ¢r ¢R}. Thisisa
dense right ideal in B. Then for any d ¢ D,

q"d = [f(qd") — f()q']-d = f(gg'd) — f(ag’ d) = 0.

Hence by the lemma used in Proposition 9, we have ¢” = 0, that is f(¢¢’) =
f(@)q’. Hence Hompz (Qr, Qz) € Homq (r @q¢, Qo). Therefore this lemma
holds.

Proof of Proposition 12. Consider My , z Qz and Q; we have

Homz (M, Homz (Q, Q)) = Hom: (M ® = Q, Q). (1)
By lemma, we have
Homg (M, Homg (@, Q)) = Homz (M, Q) (2)

Combining (1) and (2), we have Homz (M ® :Q, Q) = Homg (M, Q).
Therefore M is a torsion module if and only if M ® @ is a torsion module.

3. A comparison of the definitions of torsion modules

Let B be an integral domain. We say that M is a torsion module in the
classical sense [1], provided that

M=tM={meM|3 0 seR suchthat ms = 0}.

TarorREM 1. M is a torsion module if and only if M is a torsion module in
the classical sense.

Proof. Assume M is a torsion module in the classical sense, then for any
m e M, there exists 0 > s ¢ R such that ms = 0. For any f e Hom (M, Q)
and for any m eM, we have f(ms) = f(0) = f(m)s = 0 in Q. Since
Q is a field, 0 # s implies f(m) # 0. That is f = 0 for all m. Hence
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Hom (M, Q) = 0. Therefore M is a torsion module. Conversely, assume
that M is not a torsion module in the classical sense, then tM C_. M is a proper
torsion submodule of M. Hence there exists m ¢ M, such that ms # 0 for
all 0 # seR. Equivalently, there exists m eM such that for any
seR(ms = 0 implies s = 0). Define a homomorphism f from mR into
Q, such that f(ms) = s, for any s ¢ B. Since @z is injective, 0 = f can be
extended to 0 # ¢ e Hom (M, @), because mR < M, so Hom (M, Q) # 0.
That is M is not a torsion module.

Let R be a ring with unity. Denote the semi-group of regular elements
(i.e. non-zero divisors) of R by R¥. We call an element m of an R-module M
a torsion element if there exists s ¢ R such that ms = 0. We denote the set
of all torsion elements of M by ¢ M.L. Levy [4] has shown that tM forms a
submodule of M if and only if R has a classical ring of right quotients, equiva-
lently, R satisfies Ore’s condition.

THEOREM 2. Assume Ry is finite-dimensional,’ if every large right ideal in R
has a reqular element, then M s a torsion module if and only if M s a torsion
module in Levy’s sense.

Proof. See [2]. If Ry is finite-dimensional and every large right ideal has
a regular element; then J(Rz) = 0, Qz is injective, every regular element in R
is a regular element in Q and @ = Q(C1) (The classical rings of right quotients
of R). For any f ¢ Homg (M, R) and for any m ¢ M, there exists s ¢ B such
that ms = 0, then f(m)s = f(ms) = f(0) = 0. Since s is regular in @, hence
f(m) = 0for all m. Therefore f = 0, that is Hom (M, Q) = 0. Conversely,
assume that M is a torsion module. For any m e M, construct an annihilator
ideal 4 of m such that A = {r e B | mr = 0}. We want to show that 4 is a
large right ideal in . For, let B be any right ideal of R such that A N B = 0.
Define f : mB — @ such that f(mb) = b. We have that mb = 0 implies
bed N B = 0. Hencefis a mapping. Clearly, f is a homomorphism from
mB into Q. Since mB C M and @ is injective, we have that Hom (M, @) —
Hom (mB, Q) — 0 is exact. By assumption Hom (M, @) = 0 and hence
Hom (mB, Q) = 0, that is f(mb) = b = 0 for allb. Hence B = 0. There-
fore 4 is a large right ideal in R. Hence A has a regular element s e R. That
is ms = 0 for some s e R¥. Thus m ¢tM. Therefore, M is a torsion module
in Levy’s sense.

Let R be a ring with unity. R. E. Johnson and E. T. Wong [7] have de-
fined the singular submodule J (M%) of an R-module M such that

J(Mz) = {meM|mD = 0 for some large right ideal D of R}.

Recall that T (M) is the largest torsion submodule of M.

TuroreM 3. If J(Rz) = Othen T(M) = J(Mg).
Proof. For any m e T(M) = Sum of all torsion submodule M; of M.

2 A module My is called finite-dimensional (Goldie) if there do not exist infinitely
many non-zero submodules whose sum is direct.
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Hence m = Z m; where m; e M ; and all but a finite number of m; are 0. By
using the argument in the proof of Theorem 2, we have for any m; ¢ M ; that
there exists a large right ideal A; such that m; A; = 0. Let L = N4 A, .
We know that L is again a large right ideal in B. Moreover mL = 0. That
ism e J(Mz) and hence T(M)  J(Mg). Conversely, let

L* = {qeQ|gL = 0 where L isalarge right idealin Rj.

Now,L*NR = {reR|rL = 0where Lis alarge right idealin R} = J (Rz) = 0,
Since R is alarge modulein @, L* N Q = L* = 0. Forany f ¢ Hom (J(M3), Q)
and for any m e M, and any ¢ ¢ L we have f(m)¢ = f(mt) = f(0) = 0. Hence
f(m) e L* = 0. Therefore Hom (J(Mz), Q) = 0 and J(M)y is a torsion
submodule of M. Hence J(Mz) < T(M).

TaHEOREM 4. Let R be a non-commutative integral domain, and assume that
Ry is finite dimensional. Then M 1s a torsion module if and only 1f M s a torsion
module in Hattor?’s sense.

Proof. See [5, Proposition 18]. Since R has a classical ring of right quo-
tients Q(C1), then M is a torsion module in Levy’s sense if and only if M is a
torsion module in Hattori’s sense. Also from Theorem 2, since every non-zero
element in R is a regular element in R, M is a torsion module in Levy’s sense if
and only if M is a torsion module.

4. A generalized concept of reduced modules and
divisible modules

Let R be an associative ring with unity, which acts as the identity in any
right R module M. Let @ be Utumi’s maximal ring of right quotients of E.
We say that a module M is reduced if and only if Hom, (@, M) = 0. Wede-
fine a module M to be divisible if and only if no non-zero factor module of M is
reduced.

It is not difficult to verify the following remarks:

Remark 1*. Any submodule of a reduced module is reduced.

Remark 2*. If Qg is projective, then any factor module of a reduced module
is a reduced module.

Remark 3*. 1f C = J] C; = the direct product of modules C;, then C is a
reduced module if and only if each C; is reduced.

Remark 4*.  Any factor module of a divisible module is a divisible module.
Remark 5%. Qg is a divisible module.

ProrositionN 1%, An extension of a reduced module N by a reduced module
M/N is als a reduced module.

Proof. Since 0 — N — M — M /N — 0 is an exact sequence, it induces an
exact sequence

0 — Hom (@, N) — Hom (@, M) — Hom (Q, M/N) — -+
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By assumption, we have Hom (@, N) = 0 and Hom (@, M/N) = 0. Hence
Hom (@, M) = 0, namely M is reduced.

Prorostrion 2%, If L is a divisible submodule of M and M/N is a reduced
module then L C N.

Proof. Assume L NN s L, then by Remark 1*, 0 = L/LNN =
(L 4+ N)/N is a reduced submodule of M/N. Hence L/L N N is a non-zero
reduced factor module of L which contradicts that L is divisible. Hence
L cCN.

Lemma. IfD = N;{S; © M | M/8; is a reduced factor module of M}, then
there exists a monomorphism from M /D into [ M/8: .

Proof. Letm;: [[:M/S:— M/S;and ¢; : M — M/S; canonically. Then
there exists a unique ¢ : M — []: M/8; such that =; ¢ = ¢;.
o.M/8;

A

¢,
N
M/8:

Ker¢ = {meM |¢(m) = 0}

= {m eM |(V¥;)(xip(m) = 0)}
{meM (¥:)(¢im = 0)}
=; Ker ¢; = D.

We want to construct a monomorphism from M/D into [[: M/S:. Define
h: M/D — []: M/8; such that h(m + D) = ¢m. 1f m 4+ D = 0in M/D,
then m e D, hence ¢m = 0. Therefore h is a mapping. Clearly A is a homo-
morphism. Moreover Kerh = {m 4+ D |¢m = O} = 0in M/D. Henceh is
a monomorphism.

ProrosttionN 3*. Let D be the intersection of all submodules S; of M such
that M /8; is a reduced module; then M /D s a reduced module and 1s the “largest”
reduced factor module of M. (We define M/Ny = M/Nyif Ny C Na.) AlsoD
1s the largest divisible submodule of M.

Proof. By Remark 3%, M/S; is a reduced module for each ¢ which implies
II: M/8; is reduced. By the lemma, M/D is a submodule of IL:my/8:.
Hence by Remark 1%, M/D i$ reduced. Since D C S, for each reduced
factor module M/S;, and according to our definition of “Z’’ (greater than),
then M/D = M/8S; for each reduced factor module of M/S;. Hence M/D
is the “largest” reduced factor module of M. Next, we want to show that D

We have
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is divisible. Assume 0 > D/K to be a non-zero reduced factor module of D.
By the above, we have shown M /D = M/K/D/K is a reduced factor module
of M. Since D/K and M/K/D/K are reduced modules, by Proposition 1%
M/K is a reduced factor module of M. Since M /D is the “largest” reduced
factor module of M, we have M /K < M /D from which we can deduce D C K.
This contradicts K .. D. Hence D is a divisible module. We have shown
before that M /D is a reduced factor module of M, and for any divisible sub-
module L of M, by Proposition 2*, . € D. Hence D is the largest divisible
submodule of M.

ProposITION 4%, M is a reduced module if and only if no non-zero sub-
module of M s a dwisible module.

Proof. Let L be any divisible submodule of M. Since M = M/0 is a
reduced factor module of M, by Proposition 2*, we have L < 0. Hence
L = 0. Conversely, assume M is not reduced. Let D = N; {S;| M/8S;is a
reduced factor module of M}. Clearly, 0 % D C M because M /0 is not

reduced. By Proposition 3%, we have that D is a nonzero divisible submodule
of M.

CoROLLARY. If M s a non-zero reduced module then M is not a divisible
module

ProrosITION 5. Any injective module s a divisible module.

Proof. Let M be an injective module. Assume M is not divisible, then
there exists a submodule N ©« M such that Hom (@, M/N) = 0. For any
Y e Hom (Q, M) we have 7 o ¢ ¢ Gom (@, M/N) where = is an epimor-
phism from M to M/N. Since # ¢ @ = 0 in M/N, then ¢y Q C N for any
Y eHom (Q, M). Let ¢ be the homomorphism from R into M such that
¢ : r — mr for some arbitrarily chosen m e¢ M. Since M is injective, ¢ can be
extended to a homomorphism p from @ into M such that ¢ = p-k where £ is
a monomorphism from R into Q. ThusmR = ¢R = pk R C pQ < N. Since
m is arbitrary, we have M C N, which is a contradiction of N . M. There-
fore M is divisible.

DrriniTION. A module E is called an essential cover of M = E/K if and
only if any submodule F C E such that F = E implies F + K = E.

ProrosrrioN 6%, If Q is projective, an essential cover E of a divisible module
E/K 1s a diistble module.

Proof. Assume E is not divisible; then there exists a non-zero reduced
factor module E/L of E. Since E is an essential cover of E/K. We have
L C. E implies L + K c. E. Now Qz is projective so, by Remark 2%,
E/L/L 4+ K/L = E/L + K 5 01is a reduced factor module of E/K. Hence,
E/K is not a divisible module which contradicts the fact that E/K is divisible.
Thus E is divisible.
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ProposiTioN 7. If Q is projective, then a module M s divisible if and only
if M is a sum of factor modules of Qg .

Proof. Assume that M is divisible. Let S8 = znﬁ;eﬂom(e,‘u) imgy; ; I claim
S = M. Assume S = M, then M /S is not a reduced factor module of M.
Hence there exists 0 5 f; e Hom (@, M/S). By assumption @ is projective,
hence f; can be lifted to 0 = ¢; e Hom (Q, M), hence im ¢; ¢ S = Ker =,
where = : M — M /8. This is a contradiction to im ¢; < S. Therefore
S=M.

Conversely, assume M = 2 4 czom(e, a0 im ¢; , I claim M is divisible.
Let H be any reduced factor module of M, then the mapping

H— M « @ Z¢,‘6Hom(0,M) im ¢i — im ()]

must be 0 for all 2el. Using the universal property of the direct sum, we
deduce that the epimorphism

He M~ @ Z¢¢eHom(Q,M) im ¢i
is 0, hence H = 0. Thus M is divisible.

CoroLLARY. If Qg s projective then every divisible module is a homomorphic
image of a direct sum of copies of Qx .

Proof. By Proposition 7* and the fact that the sum of modules 4 ; where
A s are all submodules of a given module is a homomorphic image of @ > 4.

Prorosrrion 8%, A module D is divisible module if and only if
Hom (D, U) = 0 for all reduced module U.

Proof. Assume D is divisible, then for any f e Hom (D, U), where U is
reduced, we have fD is a divisible and fD < U. By Remark 1% fD is also
reduced. Therefore fD = 0. Hence Hom (D, U) = 0, for all reduced
modules U. Conversely, let fD be any reduced factor module of D. By
assumption, Hom (D, fD) = 0. Thus fD = 0. By definition of divisibility,
we have D is divisible.

ProposrrioN 9%, If M is a right Q module, them My, is a divisible module.

Proof. Assume My is not divisible, then there exists a submodule N €. M
such that Hom (Q, M/N) = 0. For any ¢ e¢Hom (Q, M), we have
woy ¢ Hom (@, M/N) where 7 is an epimorphism from M to M/N. Since
¢ Q = 0inM/N,yQ C N foranyy ¢ Hom (Q, M). Define ¢ e Hom (Q, M)
such that ¢ : ¢ — mgq, for some arbitrarily chosen m ¢ M. Then one can
easily see that ¢ ¢ Homg (Q, M). Hence M = MQ C N, a contradiction.

ProposiTioN 10. If A = @ D A, s a direct sum of submodules A, , A is
a divisible module if and only if each A ; is a divisible module.
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Proof. Assume A is divisible. Now the exact sequence

is direct for each A;, that is there exists an epimorphism =, : A — A4, such
that m; ks = 14, . Since 4 is divisible, by Remark 4*, A4, is divisible for each <.
Conversely, assume each 4 ; is divisible. We want to show that A is divisible.

Let A/B be any reduced factor module of 4, and consider the epimorphism
m:A—A/B. Now wehaverk; : A;— A/B, such that

A% 47 4B

where k; is a monomorphism. Let B; = Ker «k; ; then there exists an epi-
morphism ¢; : A; — A./B; for each 7, and A;,/B; = im ¢; C A/B. Since
0 — A4./B; — A/B is an exact sequence, it induces an exact sequence

0 — Hom (Q, A:;/B;) — Hom (Q, A/B).

Since A/B is reduced, A,;/B; is reduced for each z. By assumption, each A4;
is divisible. Hence A; C B;foreachi. Foranyaed = ® ), A;, we have
@ = 2 kia; with a; e A; where all but a finite number of a; are 0, and the
expression is unique. Now a; ¢ B; = Ker 7 k;, hence 7k;(a;) = w(kia;) = 0
and thus k;a; e Ker 7 = B for each 7. Hence a = 2 ks a; ¢ B from which
we can deduce that A C B, thatis A/B = 0. Therefore A is divisible.

ProposiTioN 11%. A simple module S is divisible if and only if

el s=o
18 an exact sequence for some f.

Proof. Assume a simple module S is divisible; then for any f ¢ Hom (Q, S),
either fQ = O or fQ = 8. Assume fQ = O for all f. Then Hom (@, S) = 0
which contradicts the assumption that S is divisible. Hence f@ = S for some
J. Conversely, assume the sequence

el s—o

is exact. For this particular f e Hom (@, S), we have fQ = S and, by using
Remark 5* and Remark 4%, that S is divisible.

ProrosiTioN 12%.  Let R be an integral domain. A module M is o reduced
module if and only if Homg (Q, M) is a reduced R-module.

Levva. Q ®rzQ = Qz.
Proof. Since Qr is flat, (see [1, p. 130]) @z = @ ®z R C Q ®z Q. Con-
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versely, foranya ® beQ ®z Q. We have
ag®b=a(r/s) ®b=a(r/s) ® (s/s5)b = a(rs/s) ® (b/s)
=ar ® (b/s) = a ® (rb/s)
=a®qb where geQ and r,seR* =R — {0}.
Hence Q ® zQ = Q ® Q.
Proof of Proposition 12,
Homg (Qr, Homg (Q, M)) = Homz (Q ® zQ, M) = Homg (Q, M)

hence Hom; (Q, Hom (Q, M)) = 0if and only if Hom (Q, M) = 0. Hence
if R is an integral domain then Homy (Q, M) is reduced if and only if M is
reduced.

Prorositrion 13. Given rings B and S, let As be a right 8 module and sCp
be a bimodule. If C is an R-divisible module, then A ® s C is also R-divisible.

Proof. Since C is an R-divisible module, we have by Proposition 8%, that
for all reduced right B-module 7, Hom (C, T) = 0 Now,
Homy (A ® sC, T) = Homg (4, Hom (C, T)) = Homg (4,0) = 0
for all reduced modules 7. By Proposition 8%, 4 ® <C is an R-divisible
module.

5. A comparison of the definition of reduced modules and
divisible modules

Let R be an integral domain. We say that a module M over R is divisible
in the classical sense if and only if Md = M for any 0 £ d e R. We say that
a module M is reduced in the classical sense if and only if M has no non-zero
divisible submodules See [8].

TuaeoreMm 1. If M is a reduced module in the classical sense, then M s a
reduced module.

Proof. For any f e Hom (Q, M), fQ < M. Since R is an integral domain,
Q is divisible in the classical sense. Hence by [1], /@ is divisible in the classical
sense. By the definition of a reduced module M in the classical sense, we
have fQ = 0. Hence Hom (Q, M) = 0 and therefore M is a reduced module.

TueoreM 2. If R is a Dedekind domain and M is a reduced module, then M
18 a reduced module in the classical sense.

Proof. Let N be any divisible (in the classical sense) submodule of M.
Assume N # 0. Definef : R — N such that r — nr for some arbitrary chosen
n % 0eN. Itis easy to see that fe Homg (R, N). If R is a Dedekind do-
main, by [1], N is injective and hence f can be extended to 0 5= x ¢ Hom (Q, N).
Now 0 — N — M is exact, and induces 0 — Hom (Q, N) — Hom (@, M)
which is exact. By assumption, M is reduced, thus Hom (@, N) = 0. Let
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g =1,then0 = x-1 = f-1 = 1.n, which is a contradiction to n # 0. Hence
N = 0 and therefore M is reduced in the classical sense.

LEMMA. Let R be an integral domain; then there exists a largest divisible
submodule in the classical sense D of M. Moreover M /D 1is a reduced module.

Proof. Let M be any module over B. It is easily seen that the sum D of
all classically divisible submodules of M is classically divisible. Assume
M/D is not a reduced module in the classical sense, then it has a divisible
submodule in the classical sense N/D, such that D € N < M. Since N/D
is a divisible module in the classical sense, given any n ¢ N, and any 0 # r e R,
there exists n’ ¢ N such that nr = n mod D. Thus n'r — neD. Since D
is a divisible module in the classical sense, for n'r — n ¢ D with r ¢ R, there
exists d’ e D such that nr — n = d'r. Thus (n’ + d')r = n. Therefore,
for any n in N, and any O 5% r ¢ R, there exists (n' + d') ¢ N such that
(n' 4+ d') e N such that (n’ + d’)r = n. Hence N is a divisible submodule
in the classical sense of M. By the maximality of D, N = D, thatis N/D = 0.
Hence M /D has no non-zero divisible submodule in the classical sense. Thus
M /D is a reduced module in the classical sense. Now by Theorem 1, we have
that M /D is a reduced module.

TueoreEM 3. Let R be any integral domain. Any divisible module M is o
divisible module in the classical sense.

Proof. By a proposition in §4, we know that M is a divisible module if and
only if Homg (M, E) = 0 for all reduced modules E. In particular, let
E = M/D as in the lemma, then Homz (M, M/D) = 0. Let r be the epi-
morphisms of M onto M/D, then = eHomg (M, M/D) = 0 and hence
#M = M/D = 0. Thus M = D. Therefore M is a divisible module in the
classical sense.

TueoreEM 4. Let R be an inlegral domain, Q be the quotient field of R, and
assume that Q is countably generated, then every divisible module in the classical
sense is a dwisible module.

Proof. Refer to [6]. If R is an integral domain, then  is divisible in the
classical sense and torsion-free. There exists a countable set of generators

{gs} for @ over R and elements {a@,+1} of B such that ¢1 = 1 and @41 gnyr = ¢ .
Let

A=qagR+ @R+ -+ R
=R+ (1/a:)R + (1/azas)R + -+ + (1/az a3 - -+ an1)R.

ClearlyA € A + (1/azas -+ - a»)R = A + ¢, R. We want to show that for
any f e Homz (4, D), f can be extended to g e Hom (4 + ¢. R, D). We
define

gla — r/asas -+ an) = f(a) — @a v
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for some x, € D, where x, is determined as follows:

Pick x, ¢ D such that z,a, = f(1/as - - a,). This can be done since
D is divisible in the classical sense.

We must verify that ¢ is a mapping. Hence suppose

a =71/0203 ° Qn.

Then f(a)a, = f(r/asas + -+ 1) = Tna, 7. Since @ is torsion-free in the
classical sense, f(a) = xz,, as required. It is easily verified that ¢ is an
R-homomorphism.

Writing A = A,_;, we see that any element of Homz (A,.-1, D) can be
extended to an element of Homy (4., D).

Since @ = Un An, it follows that any element of Homy (R, D) can be
extended to an element of Homy (@, D).

Finally we want to show D is a divisible module. Assume that D is not
divisible, then there exists a submodule N C .. D such that Hom (@, D/N) = 0.
Thus for any x ¢ Hom (@, D), we have mx ¢ Hom (Q, D/N) = 0 where 7 is an
epimorphism from D to D/N. That is 7xQ = 0 in D/N, so that x < N.
Now, we define ¢ e Hom (R, D) such that ¢ : r — dr for some arbitrary
chosen 0 5 deD. Hence ¢ can be extended to x e Hom (@, D). Thus
dR = ¢R = xR C N and so d-1 = x-1e¢N. Since d is arbitrary, D < N,
which is a contradiction to N .. D. Hence D is a divisible module.

TuEOREM 5. Let R be an integral domain with quotient field Q. A module M
18 h-reduced module tn Matlis’ sense [6] if and only if M s a reduced module.

Proof. Let h(M) denote the sum of all submodules M ; of M, each of which
is a homomorphic image of an injective module I;,. We will show A(M) is
the unique largest submodule of M which is a homomorphic image of an in-
jective module.

0 — F, - F,.® Q
I;
)
M;

Let F; be a free module mapping onto I;, then F; ® @ is torsion-free and
divisible in the classical sense and is a direet sum of copies @. Therefore M;
is a homomorphic image of ® > Q. Now,let V =@ Y (F; ® Q), we have
an epimorphism ¥V — h(M). But V is torsion-free and divisible in the classi-
cal sense, hence injective. Therefore (M) is the unique largest submodule
of M which is a homomorphic image of an injective module.

Next, I claim the sequence 0 — Hom (K, M) — Hom (Q, M) — k(M) —0
is exact, where K = Q/R. The exact sequence 0 — R — @ — K — 0 induces
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an exact sequence

0 — Hom (K, M) — Hom (Q, M) & M

where if f e Hom (Q, M), «(f) = f(1). Homg (Q, M) is torsion-free and
divisible in the classical sense, hence injective, and so im « < k(M). Con-
versely, let x e h(M), then there exists an injective module I and a homo-

morphism g : I — M such that g(y) = x for some y eI. Now, we have a
diagram

0 - R ——11—>Q
W
I

where (1) = y.

Since I is injective, there exists a map £ : @ — I such that k2 = h. Let
f = gk, then f e Hom (Q, M) and a(f) = (gk)(1) = g(k(1)) = g(y) = =
Therefore z ¢ im o and so A(M) C im e, so we have that

0 — Hom (K, M) — Hom (Q, M) — h(M) — 0
is exact.

In view of the above, if M is reduced, that is Hom (Q, M) = 0,
then (M) = 0. Therefore M has no non-zero submodule which is a homo-
morphic image of an injective module. That is, M is h-reduced in Matlis’
sense. Conversely, if M is h-reduced in Matlis’ sense, then A(M) = 0.
For any fe Hom (Q, M) = Hom (Q, h(M)), fQ < h(M) = 0. Hence
Hom (Q, M) = 0, that is, M is a reduced module.

TuroreM 6. Let R be a Noetherian integral domain with the property that
every mon-zero prime ideal is maximal. Then every divisible module in the
classical sense is a divisitble module.

Proof. See [6 Theorem 3.3]. Every divisible module in the classical sense
D is a homomorphic image of an injective module. Thus D = A(D) = 0.
Therefore D is not h-reduced in Matlis’ sense. Thus, by the previous theorem,
D is not h-reduced.

Let 0 # D/K be any factor module of D. Then by [1], D/K is a divisible
module in the classical sense. Hence from the above proof, we know D/K is
not a reduced module. Hence D has no non-zero reduced factor modules,
and so by definition, D is a divisible module.

CoroLLARY. If R is a Dedekind domain, then a divisible module in the
classical sense is a diwisible module.

Let R be an associative ring with unity, which acts as the identity in every
module, and let @ be Utumi’s maximal ring of right quotients of R.
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DErFiNITION. A left module ;B is called a “bad module” if and only if
Q ® zB = 0.

DeFiNiTION. A right module Gy is called a “good module” if and only if
G ® B = 0 for any bad module ; B

Lemma. For any bad module B, and for any module X, Homz (B, X) is a
reduced module, where Z 1s the ring of integers.

Proof. For,
Homg (Q, Hom; (B, X)) = Homz (@ ® B, X) = Hom; (0, X) = 0.

Hence Hom; (B, X) is a reduced module.

TureoreM 7. Every divisible module D is a good module.

Proof. For any bad module B, and for any module X, we have that

Hom; (D ® B, X) = Homg (D, Hom; (B, X)).

From Proposition 8%, §4, since D is a divisible module and Hom (B, X) is a re-
duced module, Hom (D, Hom; (B, X)) = 0, that is, Hom; (D ® B, X) = 0.

Now let X = D ® B. Then we have that Hom; (D ® B, D ® B) = 0.
Therefore D ® B = 0, for any bad module B. That is, D is a good module.

TueoreM 8. A module B is a bad module if and only <f
B* = Hom; (B, K/Z)
s a reduced module, where K 1is the field of rational numbers.

Proof. If B is a bad module, from the lemma used in proving Theorem 7,
Hom; (B, K/Z) is a reduced module. Conversely, if B* = Hom; (B, K/Z)
is a reduced module, since @ is a divisible module then

(Q ® B)* = Hom; (Q ® B, K/Z) = Hom; (Q, Hom; (B, K/Z))
= Hom; (Q, B*) = 0.
From [10], we have Q ® B = 0. That is, B is a bad module.
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