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LINEAR INDEPENDENCE OF PARSEVAL WAVELETS

MARCIN BOWNIK AND DARRIN SPEEGLE

Abstract. We establish several results yielding linear indepen-
dence of the affine system generated by ψ in exchange for condi-
tions on the space V (ψ) of negative dilates. A typical assumption

yielding linear independence is that the space V (ψ) is shift-

invariant. In particular, the affine system generated by a Par-
seval wavelet is linearly independent. As an illustration of our

techniques, we give an alternative proof of the theorem of Linnell

(see Proc. Amer. Math. Soc. 127 (1999), 3269–3277) on linear
independence of Gabor systems.

1. Introduction

A frame for a Hilbert space H is a collection of vectors {xi : i ∈ I} such
that there exist constants 0 < A ≤ B < ∞ satisfying

(1.1) A‖x‖2 ≤
∑
i∈I

| 〈x,xi〉|2 ≤ B‖x‖2

for all x ∈ H. The optimal constants A and B above are called the frame
bounds. An unresolved conjecture due to Feichtinger states that every frame
which is norm bounded below can be decomposed into finitely many Riesz
sequences. The conjecture of Feichtinger is known to be equivalent to the
Kadison Singer Problem [10]. Recent progress on this problem has been made
in [8], where it was proven that every frame can be decomposed into �B/C2	
linear independent sets, where B is the upper frame bound in (1.1) and C ≤
‖xi‖ for all i ∈ I . By considering the example of H = R and {xi = 1 : 1 ≤
i ≤ N }, one can see that the bound �B/C2	 cannot be improved for general
frames.
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In this paper, we consider the problem of decomposing affine systems into
linearly independent sets. Let D : L2(R) → L2(R) denote the dilation op-
erator given by (Df)(x) =

√
2f(2x), and let Ty : L2(R) → L2(R) denote the

translation operator by y ∈ R, given by Tyf(x) = f(x − y). Recall that a Par-
seval wavelet is a function ψ ∈ L2(R) such that the affine system generated
by ψ,

W (ψ) := {DjTkψ : j, k ∈ Z},

is a frame for L2(R) with frame bounds A = B = 1. Note that if ‖ψ‖ = 1,
then W (ψ) is linearly independent, since �B/C2	 = 1 in this case. In fact, it
can be shown that when ‖ψ‖ = 1, W (ψ) is an orthonormal basis for L2(R).
The main result of this paper is that whenever ψ is a Parseval wavelet, W (ψ)
is linearly independent. Combining this with a recent result [9, Theorem 1.4],
we obtain as a corollary that whenever W (ψ) is a Parseval frame, it can be
partitioned into two �2-linearly independent subsets.

To achieve this goal, we establish a series of results yielding linear inde-
pendence of affine systems in exchange for conditions on the shift-invariance
(SI) of the space V of negative dilates. A remarkable feature of our methods
is that we do not need to assume that ψ is a frame wavelet. Our main result,
Theorem 1.1, guarantees linear independence of W (ψ) in two disjoint cases:
either the space V is Z-SI, or it lacks shift-invariance with respect to lattices
sparser than Z.

Theorem 1.1. Let V = V (ψ) = span{DjTkψ : j < 0, k ∈ Z} be the space of
negative dilates of some 0 �= ψ ∈ L2(R). Assume either that:

(i) the space V is Z-SI, or
(ii) the space V is not 2j

Z-SI for any integer j ≥ 1.
Then, the affine system W (ψ) is linearly independent.

The linear independence of affine systems should be compared with the
Gabor case. The Gabor system generated by g ∈ L2(R) with frequency and
time shift parameters a, b > 0 is given by

G(a, b, g) := {MakTblg : k, l ∈ Z}.

Here, My : L2(R) → L2(R) is the modulation operator by y ∈ R, given by
Myf(x) = e2πixyf(x). Linnell [15] showed that every nonzero Gabor system
is linearly independent. This solves a special case of the HRT Conjecture [14],
which states that arbitrary time frequency shifts of an L2 function are linearly
independent, see [13] for details. In the affine system case, it is clear that there
are affine systems which are not linearly independent (such as those generated
by a compactly supported scaling function for an orthonormal wavelet), so it
is perhaps more surprising that affine systems generated by Parseval wavelets
are linearly independent. As an illustration of our methods, we finish the
paper by giving a simple proof of Linnell’s theorem [15] without using von
Neumann algebra techniques. The connection between linear independence
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of affine and Gabor systems has also been a subject of a recent paper by
Rosenblatt [18], albeit from a different perspective.

2. Preliminaries

The main idea of this paper is to reduce the analysis of linear independence
of an affine system to the analysis of linear independence of translates of an
L2 function. Hence, we will need the following well-known lemma.

Lemma 2.1. If 0 �= ψ ∈ L2(Rn), then {Tkψ : k ∈ Z
n} is linearly indepen-

dent.

Lemma 2.1 is a folklore result and its standard proof uses the Fourier
transform. One can also give a more complicated proof of Lemma 2.1 for
functions on the line using facts about recurrence relations. This proof also
holds for more general spaces such as Lp(R), 0 < p < ∞. The situation for
Lp(Rn) is considerably more delicate, see [12], [17] for details.

2.1. Shift-invariant spaces. The general properties of SI spaces were stud-
ied by a number of authors, see [2], [3], [16]. Here, we only list the results
that will be used later on.

Definition 2.1. Suppose that Γ is a (full rank) lattice, that is, Γ = PZ
n,

where P is a real n × n invertible matrix. We say that a closed subspace
V ⊂ L2(Rn) is Γ-shift-invariant (Γ-SI), if

f ∈ V =⇒ Tγf ∈ V for all γ ∈ Γ.

Given a countable family Φ ⊂ L2(Rn) and a lattice Γ, we define the Γ-SI
system by

EΓ(Φ) = {Tγϕ : ϕ ∈ Φ, γ ∈ Γ}.

When Γ = Z
n, we often drop the superscript Γ, and we simply say that V is

SI. Likewise, E(Φ) means EZ
n

(Φ).

We will need the following two widely known lemmas regarding SI spaces.
We include the proof of Lemma 2.2 for completeness. The proof of Lemma 2.3
can be found in [2], [3].

Lemma 2.2. Let V be a shift invariant subspace of L2(Rn), and denote by
PV the orthogonal projection onto V . For every k ∈ Z

n, TkPV = PV Tk.

Proof. Since V is a SI space, so is its orthogonal complement V ⊥ =
L2(Rn) � V . Take any f ∈ L2(Rn) and decompose it as f = f0 + f1, where
f0 ∈ V and f1 ∈ V ⊥. Then,

TkPV (f) = Tkf0 = PV (Tkf0 + Tkf1) = PV Tk(f). �
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The Fourier transform F : L2(Rn) → L2(Rn) is defined initially for f ∈
L1(Rn) by

f̂(ξ) =
∫

Rn

f(x)e−2πi〈x,ξ〉 dx.

Lemma 2.3. Suppose V is a Z
n-SI space and ϕ ∈ V . If f ∈ L2(Rn) satisfies

f̂(ξ) = mf (ξ)ϕ̂(ξ) a.e. ξ ∈ R
n,

for some Z
n-periodic measurable function mf , then f ∈ V .

The spectral function of SI spaces was introduced by Bownik and Rzeszot-
nik in [5]. The following result, see [5, Lemma 2.5], can serve as its definition.

Lemma 2.4. If V ⊂ L2(Rn) is SI, then there exists a countable family Φ ⊂ V
such that E(Φ) = {Tkϕ : ϕ ∈ Φ, k ∈ Z

n} is a Parseval frame for V . Then, the
spectral function of V satisfies

(2.1) σV (ξ) =
∑
ϕ∈Φ

|ϕ̂(ξ)|2 for a.e. ξ ∈ R
n.

In particular, the above sum does not depend (except on a set of measure zero)
on the choice of Φ as long as E(Φ) is a Parseval frame for V .

The dimension function (also called the multiplicity function) of a SI space
V is a Z

n-periodic function dimV : R
n → N ∪ {0, ∞}. It is given by

dimV (ξ) = dimspan
{(

ϕ̂(ξ + k)
)
k∈Zn : ϕ ∈ Φ

}
,

where Φ ⊂ V is a countable set of generators of V , that is, V = spanE(Φ). Al-
ternatively, one can use the spectral function to define the dimension function
of V as

(2.2) dimV (ξ) =
∑

k∈Zn

σV (ξ + k).

We refer the reader to [5] for the proof of this fact.

2.2. Frame wavelets. Despite the fact that our results are motivated by
the classical case of dyadic dilations in R, we will adopt a more general setting
of expansive integer-valued dilations in R

n. More specifically, we shall assume
that we are given an n × n integer-valued matrix A that is expansive, that is,
all its eigenvalues have modulus greater than 1.

We say that ψ ∈ L2(Rn) is a frame wavelet if its associated affine system

W (ψ) = {DjTkψ : j ∈ Z, k ∈ Z
n}

is a frame for L2(Rn). Here, the dilation operator D = DA is given by
Df(x) = | detA|1/2f(Ax) and the translation operator Tkf(x) = f(x − k) for
some k ∈ Z

n. In the case when the affine system is a tight frame with con-
stant 1, we say that ψ is a Parseval wavelet. We say that a frame wavelet φ
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is a canonical dual to a frame wavelet ψ if W (φ) is the canonical dual frame
of W (ψ). That is,

DjTkφ = S−1(DjTkψ) for all j ∈ Z, k ∈ Z
n,

where S is the frame operator of W (ψ) given by

Sf =
∑
j∈Z

∑
k∈Zn

〈f,DjTkψ〉DjTkψ.

Not every frame wavelet has a canonical dual, or even a dual frame wavelet,
see [7]. But, every Parseval wavelet is the canonical dual of itself, since its
frame operator S is the identity on L2(Rn).

For ψ ∈ L2(Rn) we define its space of negative dilates by

V (ψ) = span{DjTkψ : j < 0, k ∈ Z
n}.

Later we will need the following result due to Weber and the first author [7].

Theorem 2.5. Suppose that ψ ∈ L2(Rn) is a frame wavelet which has a
canonical dual frame wavelet. That is, the canonical dual of W (ψ) is of the
form W (φ) for some frame wavelet φ. Then, the space V (ψ) of negative dilates
of ψ is Z

n-SI.

3. Linear independence of affine systems

In this section, we establish a series of results yielding linear independence
of affine systems in exchange for conditions on the space of negative dilates.
Note that we do not need to assume that ψ is a frame wavelet in any of the
results except Corollaries 3.8 and 3.9. We start with the following basic result
taking advantage of shift-invariance.

Theorem 3.1. Suppose ψ ∈ L2(Rn) and let

V = V (ψ) = span{DjTkψ : j < 0, k ∈ Z
n}

be its space of negative dilates. If V is SI and DV �= V , then W (ψ) is linearly
independent.

Proof. On the contrary, assume that there exists a nonzero finitely sup-
ported sequence (cj,k) such that∑

j∈Z

∑
k∈Zn

cj,kDjTkψ = 0.

Applying the dilation operator, we can assume that the largest scale j such
that cj,k �= 0 for some k ∈ Z

n is the zero scale. Hence,

(3.1)
∑

k∈Zn

c0,kTkψ +
∑
j<0

∑
k∈Zn

cj,kDjTkψ = 0.
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Let PV be the orthogonal projection onto V . Then, applying I − PV to (3.1),
we have ∑

k∈Zn

c0,k(I − PV )Tkψ =
∑

k∈Zn

c0,kTk(I − PV )ψ = 0,

where we used that V is SI. Hence, by Lemma 2.1, (I − PV )ψ = 0. Therefore,
Tkψ ∈ V for all k ∈ Z

n, since V is SI. This implies that DV = V , which is a
contradiction with our assumption. Hence, W (ψ) is linearly independent. �

Using a similar technique as in Theorem 3.1, we can prove an analogous
result involving the space of positive dilates.

Theorem 3.2. Suppose 0 �= ψ ∈ L2(Rn) and let

Z = Z(ψ) = span{DjTkψ : j > 0, k ∈ Z
n}

be its space of positive dilates. If DZ �= Z, then W (ψ) is linearly independent.

To prove Theorem 3.2, one needs to follow the proof of Theorem 3.1 by
observing that Z is automatically SI. As a corollary of Theorem 3.2, we obtain
the following result.

Corollary 3.3. Suppose 0 �= ψ ∈ L2(Rn) is such that the affine system
W (ψ) is complete. If Z �= L2(Rn), then W (ψ) is linearly independent.

Proof. Suppose first that DZ = Z. This implies that Z =
⋃

j∈Z
Dj(Z) =

L2(Rn) by the completeness assumption, which is a contradiction. Hence,
DZ �= Z, and Theorem 3.2 can be applied. �

The following theorem plays a key role in our considerations. Theorem 3.4
shows that linear dependence of the affine system W (ψ) implies that the space
of negative dilates V (ψ) must be shift-invariant with respect to a certain
sublattice of Z

n.

Theorem 3.4. Suppose 0 �= ψ ∈ L2(Rn) and W (ψ) is linearly dependent.
Then, the space of negative dilates V = V (ψ) is AJ

Z
n-SI for some J ≥ 1.

Moreover, V is finitely generated.

Proof. Suppose that W (ψ) is linearly dependent. Then, there exists a
nonzero finitely supported sequence (cj,k) such that∑

j∈Z

∑
k∈Zn

cj,kDjTkψ = 0.

Applying the dilation operator, we can assume that the smallest scale j such
that cj,k �= 0 for some k ∈ Z

n is the zero scale. Hence, for some J ∈ N,

(3.2) ϕ :=
∑

k∈Zn

c0,kTkψ = −
J∑

j=1

∑
k∈Zn

cj,kDjTkψ.
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For any j1 ≤ j2 ∈ Z ∪ { −∞, ∞}, define the spaces

(3.3) Vj1,j2 = span{DjTkψ : j1 ≤ j ≤ j2, k ∈ Z
n}.

Since DjTk = TA−jkDj and the dilation A preserves the lattice Z
n, the space

Vj1,j2 is A−j1Z
n-SI. Taking the Fourier transform of (3.2), we have

ϕ̂(ξ) = m(ξ)ψ̂(ξ) ∈ F (V1,J), where m(ξ) =
∑

k∈Zn

c0,ke−2πi〈k,ξ〉.

Since the zero set of the trigonometric polynomial m has null measure, we
can define a Z

n-periodic function mf (ξ) = 1/m(ξ) for a.e. ξ. By (3.2) and
(3.3), ϕ ∈ V1,J . Since V1,J is A−1

Z
n-SI, and hence Z

n-SI, by Lemma 2.3 we
have that ψ ∈ V1,J . Again, using that V1,J is Z

n-SI we must have

(3.4) V0,J = V1,J .

Applying the dilation operator Dk, (3.4) yields

(3.5) Vk,k+J = Vk+1,k+J for any k ∈ Z.

We claim that

(3.6) Vr,J = V1,J for all r ≤ 0.

We shall proceed by induction. Suppose that (3.6) is true for some r ≤ 0.
Then, by (3.5)

Vr−1,r−1+J = Vr,r−1+J ⊂ Vr,J = V1,J .

Hence,
Vr−1,J = span(Vr−1,r−1+J ∪ Vr,J) ⊂ V1,J .

Clearly, the last inclusion is the equality and (3.6) is established with r re-
placed by r − 1. This proves (3.6). Consequently,

V− ∞,J = span
(⋃

r≤0

Vr,J

)
= V1,J .

Applying the dilation operator D−J −1, we have that the space of negative
dilates satisfies

V (ψ) = V− ∞,−1 = V−J,−1.

Observe that V−J,−1 is a AJ
Z

n-SI space. It is also finitely generated. This is
because the affine system W (ψ) at the scale j ≥ −J is generated by AJ

Z
n-

shifts of | detA|j+J functions. Consequently, V (ψ) is a finitely generated
AJ

Z
n-SI space. �

As an application of Theorem 3.4, we establish our main result on the
linear independence of affine systems. In particular, we will show that one
can improve Theorem 3.1 by removing the hypothesis that DV = V . To
achieve this, we need the following result about SI spaces.
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Lemma 3.5. Suppose that a non-zero space V ⊂ L2(Rn) is SI and DV ⊂ V .
Then, dimV (ξ) = ∞ for a.e. ξ. In particular, V is not finitely generated.

Proof. In general, if V is SI, then DV is also SI since the dilation A pre-
serves the lattice Z

n. Moreover, by [5, Corollary 3.5], the dimension functions
V and DV are related by

(3.7) dimDV (ξ) =
∑
d∈D

dimV (B−1ξ + d) for a.e. ξ,

where B = AT and D is a collection of distinct coset representatives of (B−1 ×
Z

n)/Z
n. Indeed, (3.7) is an immediate consequence of (2.2) and the identity

σDV (ξ) = σV (B−1ξ), which was shown in [5].
To finish the proof, we use a standard ergodic argument. Since the linear

map B : R
n → R

n preserves the lattice Z
n, it induces a measure preserving

endomorphism B̃ : T
n → T

n, where T
n = R

n/Z
n. Moreover, B̃ is ergodic by

[20, Corollary 1.10.1] since B is expansive. Let E = {ξ ∈ T
n : dimV (ξ) ≥ 1}.

Since

(3.8) dimV (ξ) ≥ dimDV (ξ) =
∑
d∈D

dimV (B−1ξ + d),

we have that E ⊂ B̃−1E. Thus, B̃−1E = E (modulo null sets) since B̃ is
measure preserving. Thus, by the ergodicity of B̃, we have either |E| = 0
or |E| = 1. Since the space V is nonzero, we must have E = T

n. Since D
has | detA| elements, we can apply repeatedly (3.8) to obtain that dimV (ξ) ≥
| detA|N a.e. for any N ≥ 1. This implies that dimV (ξ) = ∞ a.e. �

Theorem 3.6. Suppose 0 �= ψ ∈ L2(Rn) and its space of negative dilates
V = V (ψ) is SI. Then, W (ψ) is linearly independent.

Proof. We need to consider two possible scenarios. If DV �= V , then W (ψ)
is linearly independent by Theorem 3.1, and we are done.

Hence, it remains to deal with the case when DV = V . By Lemma 3.5, the
Z

n-SI space V is not finitely generated. Therefore, by the contrapositive of
Theorem 3.4, W (ψ) must be linearly independent. Hence, in either case we
have the linear independence of W (ψ). �

Combining Theorems 3.4 and 3.6 we can prove our main result on lin-
ear independence of affine systems in terms of the space of negative dilates.
Roughly speaking, Theorem 3.7 guarantees linear independence if this space
is either Z

n-SI or lacks any SI with respect to lattices sparser than Z
n.

Theorem 3.7. Let V (ψ) be the space of negative dilates of some 0 �= ψ ∈
L2(Rn). Let

J = inf{j ∈ Z : V (ψ) is Aj
Z

n-SI}.

If −∞ ≤ J ≤ 0 or J = ∞, then W (ψ) is linearly independent.
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Proof. The case J = ∞ means that the space V is not Aj
Z

n-SI for any
j ∈ Z. Hence, by the contrapositive of Theorem 3.4, W (ψ) must be lin-
early independent. On the other hand, J ≤ 0 implies that V is Z

n-SI, since
Aj

Z
n ⊂ Aj−1

Z
n for all j ∈ Z. Thus, by Theorem 3.6, W (ψ) must be linearly

independent as well. �

Remark 3.1. The idea of defining the parameter J corresponding to the
shift-invariance of the space V (ψ) is due to Behera [1]. If ψ is an orthogonal
wavelet, then J is easily seen to be an integer ≤ 0 or −∞. A result of Behera
[1, Theorem 3.4] says that each of these values can be attained by some
orthogonal wavelet ψ.

As a corollary of Theorems 2.5 and 3.6, we obtain the linear independence
of Parseval wavelet frames.

Corollary 3.8. Suppose ψ ∈ L2(Rn) is a frame wavelet which has a
canonical dual frame wavelet. In particular, ψ could be any Parseval wavelet.
Then, W (ψ) is linearly independent.

Proof. By Theorem 2.5, the space of negative dilates V = V (ψ) is auto-
matically SI. Hence, Theorem 3.6 applies and yields the linear independence
of W (ψ). �

Remark 3.2. Note that the case of DV = V in Corollary 3.8 is purely hy-
pothetical, since no examples of canonical dual frame wavelets ψ with “large”
space V = V (ψ) of negative dilates are known. In fact, Baggett’s conjecture
states that the space of negative dilates V of any Parseval wavelet ψ satisfies⋂

j∈Z
DjV = {0}, see [4], [6]. Consequently, if Baggett’s conjecture is true,

then necessarily DV �= V . We also note that for general frame wavelets it
might happen that V is very “large.” For an example of a frame wavelet ψ
such that V = L2(Rn), see [4], [6]. Hence, the case of DV = V in the proof
of Theorem 3.6 can indeed happen. In this case, Theorem 3.6 guarantees
that the affine system W (ψ) is necessarily linearly independent. This might
seem counter-intuitive since the fact that space of negative dilates V = L2(Rn)
means that W (ψ) is highly overcomplete.

Remark 3.3. Suppose that φ satisfies a refinement equation

φ(x) =
∑

k∈Zn

ckφ(Ax − k),

where only finitely many of the coefficients ck are nonzero. In particular,
φ could be a compactly supported scaling function of some multiresolution
analysis such as a Haar-type scaling function. In the notation of Theorem 3.4,
this implies that φ ∈ V1,1 and consequently, V0,0 ⊂ V1,1. Therefore, the space
of negative dilates V (φ) = V−1,−1 is AZ

n-SI. Note that this is consistent with
Theorem 3.7. Indeed, to conclude that the affine system W (φ) is linearly
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independent we would need to know that V (φ) is Z
n-SI and not merely AZ

n-
SI as in this example.

Example 3.1. Given ε > 0, define the function ψ = ψ0 + εψ1, where

ψ̂0 = 1[−1/4,−1/8]∪[1/8,1/4], ψ̂1 = 1[−1/2,−1/4]∪[1/4,3/4].

By [7, Theorem 2(i)], ψ is a frame wavelet for sufficiently small ε > 0. More-
over, the space of negative dilates is

V (ψ) = {f ∈ L2(R) : supp f̂ ⊂ [−1/4,3/8],

f̂(ξ − 1/2) = f̂(ξ) for a.e. ξ ∈ [1/4,3/8]}.

Consequently, V (ψ) is 2Z-SI, but not Z-SI. Thus, Theorem 3.7 does not apply.
Despite this, one can easily see that the affine system W (ψ) is linearly inde-
pendent. Indeed, take any nontrivial finite linear combination of functions in
W (ψ). Without loss of generality, we can assume that the largest scale j with
non-zero coefficients is j = 0. Then, the fact that K = supp ψ̂ is bounded im-
mediately implies that there will be no cancelations on K \ (K/2). Thus, any
such linear combination yields a nonzero function. Therefore, Theorem 3.7
gives only a sufficient, but not a necessary condition for linear independence
of affine systems.

We now move to the problem of �2-linear independence of affine systems.
Recall that a sequence {xj : j ∈ N} in a Banach space is said to be �2-linearly
independent if

(3.9) {αj } ∈ �2,
∞∑

j=1

αjxj = 0 ⇒ αj = 0, ∀j ∈ N.

Note that the order of the indexing set matters in general; we do not assume
that the convergence in the sum is unconditional. However, if {xj : j ∈ N} is
a Bessel sequence in a Hilbert space, then the ordering is irrelevant.

Corollary 3.9. Suppose ψ ∈ L2(Rn) is a frame wavelet which has a
canonical dual frame wavelet. In particular, ψ could be any Parseval wavelet.
Then, W (ψ) can be partitioned into two �2-linearly independent sets.

Proof. In [9], it was shown that a linearly independent Bessel sequence can
be partitioned into two �2-linearly independent sequences. The result follows
now from Corollary 3.8. �

Example 3.2. Let ψ ∈ L2(R) be a Parseval wavelet defined by

ψ̂ = 1[−1/2,−1/4]∪[1/4,1/2].

It is easy to see that {Tkψ : k ∈ Z} is not �2-linearly independent. In particu-
lar, the Parseval frame W (ψ) is not �2-linearly independent as well. Further
information on this and related examples can be found in [19].
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We close this section by giving another application of Theorem 3.4. We
show how to obtain a result of Christensen and Lindner [11, Theorem 3.2]
with some improvements in the constants.

Corollary 3.10. Let a ∈ N, a > 1, b > 0 and assume that 0 �= ψ ∈ L2(R)
has compact support. Define

c := sup suppψ − inf suppψ,

and suppose that there is an interval of positive length d on which ψ �= 0 a.e.
For any choice of integers m and n such that

bm > c and an(bm − c) > 2bm − c,

W (ψ) = {ψj,k = Dj
aTkbψ : j, k ∈ Z} can be partitioned into mn linearly inde-

pendent sets. In particular, for any r ∈ {0, . . . ,m − 1} and s ∈ {0, . . . , n − 1},
the set {ψnj+s,mk+r : j, k ∈ Z} is linearly independent.

Proof. We begin with the case s = r = 0. In the notation of the proof of
Theorem 3.4, we show that V− ∞,0 is not equal to V−J,0 for any nonnegative
integer J . Since the support of ψ contains an interval, it suffices to show that
for each J , there is a set E = E(J) of positive measure and a positive number
M = M(J) such that every interval of length M intersects E and and such
that every ψ ∈ V−J,0 vanishes on E. For then, there is some j sufficiently
large so that anjd > M , which implies that the set where D−njψ is nonzero
intersects the set where every function in V−J,0 vanishes.

We proceed by induction on J , and we will show that M(J) can be chosen
to be anJ(2mb − c). For J = 0, it is clear from the condition bm > c that all
ψ ∈ V0,0 vanish on the bmZ periodization of a set with length at least bm − c.
Hence, any interval of length greater than or equal to bm + (bm − c) = M(0)
will contain a subinterval of length bm − c on which all ψ ∈ V0,0 vanish.

Assume the above is true for 0, . . . , J − 1. Note that all D−nJTmbkψ van-
ish on an interval I of length anJ(mb − c). By periodicity, all D−nJTmbkψ
vanish on Ik = I + anJmbk as well. Since anJ(bm − c) = an(J −1)an(bm − c) >
an(J −1)(2bm − c), it follows that each interval Ik has nontrivial intersection
with E(J − 1). Therefore, for each k ∈ Z and ψ ∈ V−J,0, ψ vanishes on a
subset of Ik of positive measure. Finally, by the anJmbZ periodicity of the
Ik’s, it follows that any interval of length anJ(mb − c) + anJmb = M(J) must
contain one of the Ik’s, and in particular, contain a set of positive measure
on which every ψ ∈ V−J,0 vanishes.

To finish the proof, replace ψ by ψ̃ = ψ0,r and see that {ψnj+s,mk+r : j, k ∈
Z} is linearly independent if and only if {ψ̃nj,mk : j, k ∈ Z} is linearly inde-
pendent. �
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4. Linear independence of Gabor systems

The goal of this section is to give an alternative proof of Linnell’s theorem
[15] on the linear independence of the Gabor system G(a, b, g). Linnell’s proof
uses von Neumann algebra techniques, and it was not previously known how to
prove the same result using other techniques. We will show that the techniques
of the previous section, especially Theorem 3.4, achieve this goal in the one
dimensional case. The higher dimensional case is not readily accessible with
these methods.

Lemma 4.1. Suppose that a nonzero space V ⊂ L2(R) is SI and V ⊂ Ma(V )
for some a > 0. Then,

(4.1)
∫ 1

0

dimV (ξ)dξ = ∞.

In particular, V is not finitely generated.

Proof. In general, when V is SI, then Ma(V ) is also SI and the spectral
functions are related by

(4.2) σMa(V )(ξ) = σV (ξ − a).

Indeed, (4.2) is an immediate consequence of Lemma 2.4, see also [5]. Thus,
V ⊂ Ma(V ) implies that σV (ξ − a) ≥ σV (ξ) by [5, Proposition 2.6]. Let E =⋃

k∈Z
(ak + suppσV ) be the aZ-periodization of the support of σV . Thus,

∑
k∈Z

σV (ξ + ak) =

{
∞, ξ ∈ E,

0, otherwise.

Hence, using (2.2),∫ 1

0

dimV (ξ)dξ =
∫ 1

0

(∑
k∈Z

σV (ξ + k)
)

dξ =
∫

R

σV (ξ)dξ

=
∫ a

0

(∑
k∈Z

σV (ξ + ak)
)

dξ = ∞.
�

Theorem 4.2. Suppose that 0 �= g ∈ L2(R) and a, b > 0. Then, G(a, b, g) is
linearly independent.

Proof. For simplicity, we shall assume that time shift parameter b = 1.
Indeed, applying a standard dilation argument one can always reduce to the
special case where a > 0 and b = 1.

On the contrary, suppose that G(a,1, g) is linearly dependent. Then, there
exists a nonzero finitely supported sequence (cj,k) such that∑

j∈Z

∑
k∈Z

cj,kMajTkg = 0.
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Applying the modulation operator we can assume that the smallest j such
that cj,k �= 0 for some k ∈ Z is j = 0. Hence, for some J ∈ N,

(4.3) ϕ :=
∑
k∈Z

c0,kTkg = −
J∑

j=1

∑
k∈Z

cj,kMajTkg.

For any j1 ≤ j2 ∈ Z ∪ { −∞, ∞}, define the SI spaces

(4.4) Vj1,j2 = span{MajTkg : j1 ≤ j ≤ j2, k ∈ Z}.

Taking the Fourier transform of (4.3), we have

ϕ̂(ξ) = m(ξ)ĝ(ξ) ∈ F (V1,J), where m(ξ) =
∑
k∈Z

c0,ke−2πikξ.

Since the zero set of the trigonometric polynomial m is finite, we can define
a Z-periodic function mf (ξ) = 1/m(ξ) for a.e. ξ. By (4.3) and (4.4), ϕ ∈ V1,J .
Since V1,J is SI, by Lemma 2.3, we have that g ∈ V1,J . Again, using that V1,J

is SI we must have

(4.5) V0,J = V1,J .

Applying the modulation operator Mak, (4.5) yields

(4.6) Vk,k+J = Vk+1,k+J for any k ∈ Z.

We claim that

(4.7) Vr,J = V1,J for all r ≤ 0.

We shall induct on r. Suppose that (4.7) is true for some r ≤ 0. Then, by
(4.6)

Vr−1,r−1+J = Vr,r−1+J ⊂ Vr,J = V1,J .

Hence,
Vr−1,J = span(Vr−1,r−1+J ∪ Vr,J) ⊂ V1,J .

Clearly, the last inclusion is the equality and (4.7) is established. Conse-
quently,

V− ∞,J = span
(⋃

r≤0

Vr,J

)
= V1,J .

In particular, V− ∞,J must be finitely generated. On the other hand, applying
the modulation operator Ma, we have

V− ∞,J ⊂ V− ∞,J+1 = Ma(V− ∞,J ).

By Lemma 4.1, V− ∞,J is not finitely generated, which is a contradiction.
Thus, G(a,1, g) is linearly independent. �
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Remark 4.1. Using metaplectic transforms, see [13, Section 5.1], one can
immediately generalize Theorem 4.2 to Gabor systems corresponding to any
lattice Λ ⊂ R

2, that is,

G(Λ, g) := {MxTyg : (x, y) ∈ Λ}.

Hence, we recover Linnell’s result [15] in one dimension.
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