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A UNIFYING RADON-NIKODÝM THEOREM THROUGH
NONSTANDARD HULLS

G. BEATE ZIMMER

Abstract. We present a Radon-Nikodým theorem for vector measures
of bounded variation that are absolutely continuous with respect to the

Lebesgue measure on the unit interval. Traditional Radon-Nikodým
derivatives are Banach space-valued Bochner integrable functions de-
fined on the unit interval or some other measure space. The derivatives
we construct are functions from ∗[0, 1], the nonstandard extension of the
unit interval into a nonstandard hull of the Banach space E. For these

generalized derivatives we have an integral that resembles the Bochner
integral. Furthermore, we can standardize the generalized derivatives
to produce the weak*-measurable E′′-valued derivatives that Ionescu-

Tulcea, Dinculeanu and others obtained in [8] and [5].

1. Introduction and notation

For notions and notations not defined here we refer to the book by Albeve-
rio, Fenstad, Hoegh-Krøhn and Lindstrom [1] and the survey on nonstandard
hulls by Henson and Moore [6]. An introduction to nonstandard analysis can
be found in the book [11] by Loeb and Wolff, or in the book [7] by Hurd and
Loeb. We think of the nonstandard model in terms of superstructures V (X)
and V (∗X) connected by the monomorphism ∗ : V (X)→ V (∗X) and call an
element b ∈ V (∗X) internal if it is an element of a standard entity, i.e., if there
is an a ∈ V (X) with b ∈ ∗a. The most important example of a set which is
not internal is the set of natural numbers N ⊆ ∗N. For elements in ∗R which
are bounded by a standard real number, we can define the standard part map
◦ : fin(∗R) → R. Sometimes this map is also denoted by st : fin(∗R) → R.
We assume that the nonstandard model is at least ℵ-saturated, where ℵ is
an uncountable cardinal number. In standardizing to bidual-valued deriva-
tives we need to assume that the nonstandard extension is κ-saturated, where
card(E′′) < κ for the standard Banach space E and where the cardinality of
the Lebesgue measurable subsets of [0, 1] is less than κ.
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Our underlying measure space is ([0, 1], C, λ), the unit interval with Lebesgue
measure. Let (∗[0, 1], Lλ(∗C), λ̂) denote the Loeb space constructed from the
nonstandard extension of the Lebesgue unit interval. This measure space is
obtained by extending the measure ◦ ∗λ from ∗C to the σ-algebra generated by
∗C. The completion of this σ-algebra is denoted by Lλ(∗C). The Loeb measure
λ̂ is a standard countably additive measure. Most of what we do in this paper
also works for a more general measure space. Only for the existence of the
lifting choice function S : [0, 1]→ ∗[0, 1], which we need in standardizing to a
function defined on [0, 1] instead of a derivative defined on ∗[0, 1], we would
need additional assumptions on a more general measure space than [0, 1].

The functions we work with take their values in a Banach space E or its
nonstandard hull Ê, which is defined as Ê = fin(∗E)/ ≈, the quotient of the
elements of bounded norm by elements of infinitesimal norm. The nonstan-
dard hull is a standard Banach space and contains E as a subspace. We denote
the quotient map from fin(∗E) onto Ê by π. By a result of Loeb in [9], there
exists an internal *-finite partition of ∗[0, 1] consisting of sets A1, . . . , AH ∈ ∗C
(H ∈ ∗N) such that the partition is finer than the image under ∗ of any fi-
nite partition of [0, 1] into sets in C. The proof uses a concurrent relation
argument. From this fine partition we discard all partition sets of ∗λ-measure
zero. The remaining sets still form an internal collection. In particular we
discard all standard singleton sets {x} for x ∈ [0, 1]. This exclusion of the
standard points will prevent us from standardizing the generalized derivative,
whose domain is ∗[0, 1], by simply restricting it to the standard points in
∗[0, 1]. We use a notation introduced by Loeb: for a set C ∈ C we define
IC = {i ∈ {1, . . . ,H} : Ai ⊆ ∗C} .

2. The nonstandard hull valued derivative

Given the fine nonstandard partition {A1, . . . , AH} of ∗[0, 1], for which we
assume that ∗λ(Ai) 6= 0 for i = 1, . . . ,H, we define a nonstandard Radon-
Nikodým derivative in the same way as we would construct it in the case of a
finite σ-algebra. We then show that the nonstandard derivative is an internal
simple S-integrable function. Such functions are λ̂-almost everywhere fin(∗E)-
valued. This allows us to compose an S-integrable internal function with the
quotient map π : fin(∗E)→ Ê to make it a nonstandard hull valued function
defined on the Loeb space ∗[0, 1].

In [13] we defined a Banach space M(λ̂, Ê) of extended integrable func-
tions as the set of equivalence classes under equality λ̂-almost everywhere of
functions f : ∗[0, 1] → Ê for which there is an internal simple S-integrable
ϕ : ∗[0, 1]→ ∗E such that π ◦ ϕ = f except on a set of λ̂-measure zero. Such
a ϕ is called a lifting of f . On M(λ̂, Ê) we defined an integral by setting∫
f dλ̂ = π

(∫
ϕd∗λ

)
, where the integral of the internal simple function ϕ is
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defined in the obvious way. This integral generalizes the Bochner integral
in the sense that M(λ̂, Ê) contains L1(λ̂, Ê) and the integrals agree on that
subspace. But M(λ̂, Ê) does also contain functions which fail to be essentially
separably valued and hence fail to be measurable. Surprisingly, the extended
integral does not coincide with the Pettis intgral.

Lemma 2.1. Let ν : C → E be a λ-absolutely continuous (countably addi-
tive) vector measure of bounded variation. Then the function ϕν : ∗[0, 1]→ ∗E
defined by

ϕν(x) =
H∑
i=1

∗ν(Ai)
∗λ(Ai)

1Ai(x)

is S-integrable.

Proof. If ν is of bounded variation, then for all finite standard partitions
{C1, . . . , Cn} ⊂ C of [0, 1] into disjoint sets one has

∑n
k=1 ‖ν(Ck)‖ ≤ |ν|([0, 1]).

For our nonstandard partition, it follows that
∑H
i=1 ‖∗ν(Ai)‖ ≤ |ν|([0, 1]), that

is,
H∑
i=1

‖∗ν(Ai)‖
∗λ(Ai)

∗λ(Ai) =
∫
∗[0,1]

‖ϕν‖ d∗λ ≤ |ν|([0, 1]).

By the absolute continuity of the total variation |ν| with respect to λ,
if A ∈ ∗C with ∗λ(A) ≈ 0, then |∗ν|(A) ≈ 0. We use this fact to show
that the integral of ‖ϕν‖ over a set of infinitesimal measure is infinitesimal.
Assume that A ∈ ∗C with ∗λ(A) ≈ 0. As the variation of ν is also countably
additive (see [4], Proposition I.1.9), the internal variation of ∗ν is internally
hyperfinitely additive; hence∫

A

‖ϕν‖ d∗λ =
∫
A

∥∥∥∥∥
H∑
i=1

∗ν(Ai)
∗λ(Ai)

1Ai(x)

∥∥∥∥∥ d∗λ(x)

=
H∑
i=1

‖∗ν(Ai ∩A)‖ ≤ |∗ν|(A) ≈ 0. �

Assume from now on that ν is λ-absolutely continuous and of bounded
variation. By the previous lemma, ‖ϕν‖ is S-integrable and therefore finite λ̂
almost everywhere on ∗[0, 1]. Hence we can compose ϕν with π, the projection
from fin(∗E) onto the nonstandard hull Ê. We thus define a function fν :
∗[0, 1]→ Ê which has ϕν as a lifting and which is extended integrable in the
sense that it is in M(λ̂, Ê) and the integral defined in [13] can be used for it.
We call the function fν the generalized Radon-Nikodým derivative of ν. From
the generalized Radon-Nikodým derivative we can recover the vector measure
using the extended integral as follows.
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Theorem 2.2. Let ν be an λ-absolutely continuous vector measure of
bounded variation and construct fν : ∗[0, 1] → Ê as above. Then for any
set C ∈ C

(1)
∫
∗C
fν dλ̂ = ν(C) and

(2) |ν|(C) =
∫
∗C
‖fν‖ dλ̂.

Proof. (1) The nonstandard extension of any set C ∈ C equals (up to a null
set that was discarded from the fine partition)

⋃
i∈IC Ai. Therefore∫

∗C

fν dλ̂ = π

(∫
∗C

ϕν d
∗λ

)
= π

(∫
∗C

∗ν(Ai)
∗λ(Ai)

· 1Ai d∗λ
)

= π

(∑
i∈IC

∗ν(Ai)

)
= π

(
∗ν(

⋃
i∈IC

Ai)

)
= π(∗ν(∗C)) = ν(C).

(2) We already know from the proof of Lemma 2.1 that ◦
∫
∗[0,1]

‖ϕν‖ d∗λ ≤
|ν|([0, 1]). The same argument works with the set C in place of [0, 1]. Hence∫
∗C
‖fν‖ dλ̂ ≤ |ν|(C). By the definition of the total variation, the other

inequality is obvious. �

Remark 2.3. By a result of Anderson (see Theorem 3.6 in [2]), λ̂(∗C 4
st−1(C)) = 0 for every set C ∈ C. Hence it is also true that∫

st−1(C)

fν dλ̂ = ν(C).

Example 2.4. Look at the measure ν : C → L1(λ) defined by ν(C) = 1C .
The generalized Radon-Nikodým derivative fν of this measure is given by

fν(x) = π

(
H∑
i=1

1Ai
∗λ(Ai)

1Ai(x)

)
.

Integrating fν over a set ∗C we get∫
∗C

fν dλ̂ = π

(∑
i∈IC

1Ai

)
= π(1∗C) = 1C ,

where 1C is identified with its image in the nonstandard hull of L1(λ).

3. Radon-Nikodým derivatives

As a next step we show that the generalized Radon-Nikodým derivatives
we construct are infinitesimally close to the nonstandard extension of the
traditional Radon-Nikodým derivative on each set Ai in the fine partition,
provided that the traditional Radon-Nikodým derivative exists.
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Lemma 3.1. Let f : [0, 1]→ E be Bochner integrable and let {A1, . . . , AH}
be the fine partition of ∗[0, 1] described above. Then π ◦ ∗f is constant on each
partition set Ai in the fine partition.

Proof. A function f is λ-measurable if there exists a sequence of simple
functions (fn) such that limn→∞ ‖f(x)− fn(x)‖ = 0 outside a set C ∈ C with
λ(C) = 0. Since the nonstandard partition {A1, . . . , Ah} refines the standard
partition into C and its complement and contains no sets of ∗λ-measure zero,
we have Ai ∩ ∗C = ∅ for all i ∈ {1, . . . ,H}. Assume that ‖∗f(x)− ∗f(y)‖ > ε
for some positive real number ε and some x, y ∈ Ai. Then for some fn we
must have ∗fn(x) 6= ∗fn(y). Therefore there are disjoint measurable sets C1

and C2 in C such that x ∈ ∗C1 and y ∈ ∗C2, contradicting the assumption
that Ai is a set in a partition which is finer than the image under ∗ of any
measurable partition of [0, 1]. �

Theorem 3.2. Let ν : C → E be a countably additive vector measure
with Radon-Nikodým derivative f : [0, 1]→ E. Define the generalized Radon-
Nikodým derivative fν : ∗[0, 1]→ Ê as above. Then

π ◦ ∗f = fν on each set Ai in the fine partition of ∗[0, 1].

Proof. Lemma 3.1 shows that π ◦ ∗f is constant on all sets Ai. By con-
struction fν is constant on each set Ai. For each i ∈ {1, . . . ,H} choose a
ci ∈ Ai. By assumption ν(B) =

∫
B
f dλ for all B ∈ C, and hence ∗ν(Ai) =∫

Ai
∗f d∗λ for all i. On the other hand ∗ν(Ai) =

∫
Ai
ϕν d

∗λ for all i. Hence

π
(∫

Ai
(∗f − ϕν) d∗λ

)
= 0. As both functions are constant on the set Ai, this

implies that π(∗f − ϕν) = 0 on each set Ai . �

Remark 3.3. This result seems strange at first, as a Radon-Nikodým
derivative is only unique up to equality λ-almost everywhere. In the statement
of Theorem 3.2 there is no mention of “almost everywhere”. The reason is
that in the fine partition {A1, . . . , AH} the images under ∗ of all λ-nullsets
were discarded.

Given a generalized Radon-Nikodým derivative fν , the converse question
arises: can we recover the traditional Radon-Nikodým derivative f from the
generalized derivative fν , provided that f exists? The difficulty here is that
the set

⋃H
i=1Ai does not contain any standard points, hence fν(x) = 0 for

each standard point x ∈ ∗[0, 1]. For this reason, we cannot recover f from fν
by just restricting fν to the standard points.

Anderson observed that the nonstandard version of Lusin’s Theorem can
be described as follows (Theorem 3.7 in [2]):

Theorem. Let Y have a countable base of open sets, and let f : [0, 1]→ Y

be λ-measurable. Then ◦(∗f(x)) = f( ◦x) for λ̂-almost all x ∈ ∗[0, 1].
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It only takes a very minor modification of Anderson’s proof to apply in
our setting, as a λ-measurable function is essentially separably valued. In our
setting the theorem reads as follows:

Theorem 3.4. Let f : [0, 1] → E be λ-measurable. Then there is a set
A ∈ Lλ(∗C) such that λ̂(A) = 0 and ◦ (∗f(x)) = f( ◦x) for x ∈ ∗[0, 1] \A.

Combining Theorems 3.2 and 3.4 we have:

Corollary 3.5. If the measure ν has a traditional Radon-Nikodým de-
rivative f : [0, 1] → E, then the generalized derivative fν : ∗[0, 1] → Ê equals
f ◦ st : ∗[0, 1]→ E ⊂ Ê λ̂-almost everywhere on ∗[0, 1].

Proof. The equality holds on
⋃H
i=1Ai, a set of λ̂-measure one. �

As noted above, we cannot obtain f from fν by restricting fν to the stan-
dard points. What we can do is find a function f ∈ M(λ̂, Ê) in the equiv-
alence class of fν such that f is constant on monads and then restrict f to
[0, 1] ⊆ ∗[0, 1]. Theorem 3.4 implies that the elements of the image of L1(λ,E)
in M(λ̂, Ê) have a representative that is constant on monads. The converse
also holds; all E-valued functions in M(λ̂, Ê) which are constant on monads
are already (in an equivalence class) in the image of L1(λ,E):

Theorem 3.6. Let ν be a countably additive, λ-continuous, E-valued mea-
sure of bounded variation. Assume that the equivalence class of the generalized
Radon-Nikodým derivative fν in M(λ̂, Ê) contains an E-valued function f̃ν
which is constant on monads. Then the measure ν has a Radon-Nikodým
derivative f , namely the restriction of f̃ν to the standard points in ∗[0, 1].

Proof. Define f to be the restriction of f̃ν to the standard points. The
functions f ◦ st and fν agree λ̂-almost everywhere on ∗[0, 1]. By construction,
ϕν is an S-integrable lifting of f ◦ st, hence f ◦ st ∈M(λ̂, Ê). By Theorem 6.5
in [10], any E-valued function in M(λ̂, Ê) is already an element of L1(λ̂, E),
i.e., f ◦ st is Bochner integrable and in particular λ̂-measurable. We need
to show that f is λ-measurable. The Pettis Measurability Theorem implies
that f ◦ st and therefore also f is essentially separably valued. All that is
left to show is that the function f is weakly λ-measurable. For real-valued
functions on the unit interval Theorem 3.11 in [2] asserts the following: If
g : ∗[0, 1] → R is Lλ(∗C)-measurable and g(x) = g( ◦x) for λ̂-almost all x,
then the restriction f = g|[0,1] is Lebesgue-measurable and ◦(∗f(x)) = g(x)
for λ̂-almost all x. Composing f ◦ st with any functional e′ ∈ E′, we get
that e′ ◦ f ◦ st is real-valued, λ̂-measurable and constant on monads. By
Anderson’s theorem the restriction of e′ ◦ f ◦ st to the standard points is a
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λ-measurable function. Therefore e′ ◦ f is λ-measurable for all e′ ∈ E′. We
showed that f is essentially separably valued and weakly measurable. By the
Pettis Measurability Theorem, f is measurable. The integrability of f follows
from the integrability of f ◦ st. �

4. Bidual-valued derivatives

Theorem 1 in [5] translates to the setting of this paper as follows:

Theorem. Let ν : C → E be a countably additive vector measure of
bounded variation such that ν � λ. Then there is a function f : [0, 1]→ E′′

having the following properties:

(1) For every e′ ∈ E′, the function 〈e′, f〉 is Lebesgue integrable and

〈ν(A), e′〉 =
∫
A

〈e′, f〉 dλ, for any A ∈ C.

(2) The function ‖f‖ is Lebesgue integrable and for the variation of ν we
have

|ν|(A) =
∫
A

‖f‖ dλ for any A ∈ C.

Our generalized derivative fν : ∗[0, 1] → Ê falls short of this derivative
of Dinculeanu and Uhl on two counts: its domain is too big and it has Ê
instead of E′′ as its range. In this section we will show how to restrict the
domain and the range of our generalized derivative fν to obtain the standard
weak*-derivative of Dinculeanu and Uhl. We start with the range space.

It is a consequence of the principle of local reflexivity (see [6], Prop. 3.13)
that the nonstandard hull Ê contains an isometric copy of the second dual E′′

of the Banach space E, provided that the nonstandard extension is at least κ-
saturated, where card(E′′) < κ. Since we assumed this amount of saturation,
Proposition 3.13 in [6] produces is an isometry T of E′′ into Ê that satisfies

(1) Tx = x for all x ∈ E and
(2) 〈y, x〉 = 〈Tx, y〉 for all x ∈ E′′ and y ∈ E′.

Hence we can regard E′′ as a subspace of Ê. Furthermore, with the usual
identification of a space as a subspace of its second dual, we see that every
element of Ê defines a continuous linear functional on Ê′. By [6], E′ is a
subspace of Ê′ and this allows us to define a contractive projection P : Ê →
E′′ that assigns to every element in Ê its restriction to E′. This makes E′′ a
complemented subspace of Ê.

Composing our generalized derivative with this projection P : Ê → E′′

does restrict the range of fν . The price to pay is that the integral gets weaker
in the process and the generalized integral becomes a weak*-integral.



880 G. BEATE ZIMMER

Proposition 4.1. If fν is a generalized Radon-Nikodým derivative of ν :
C → E, then P ◦ fν : ∗[0, 1] → E′′ is a weak*-measurable function such that
for all C ∈ C and e′ ∈ E′

〈ν(C), e′〉 =
∫
∗C

〈e′, P ◦ fν〉 dλ̂.

Proof. The weak*-measurability follows as e′ ◦ fν is a real-valued extended
integrable function, which by Theorem 6.5 in [10] already is an integrable
function. The rest is proved as follows:

〈ν(C), e′〉 = e′
(∫

∗C

fν dλ̂

)
= e′

(
π

(∫
∗C

ϕν d
∗λ

))
= ◦

(
∗e′
(∫

∗C

ϕν d
∗λ

))
= ◦

(∫
∗C

〈ϕν , ∗e′〉 d∗λ
)

=
∫
∗C

◦〈ϕν , ∗e′〉 dλ̂

=
∫
∗C

〈e′, P ◦ fν〉 dλ̂.

We used the S-integrability of ϕν to interchange the standard part map with
the integral in the second but last step. �

To restrict the domain of the generalized derivative appropriately, we resort
to liftings. In [3], Bliedtner and Loeb have obtained a strong multiplicative
lifting of L∞([0, 1]) by using a base choice function S : [0, 1] → ∗[0, 1] with
the following three properties:

(1) S(x) ≈ x.
(2) For each set E for which x is a point of density S(x) ∈ ∗E.
(3) For each standard null set B, S(x) /∈ ∗B.

The lifting of a bounded measurable function f is then given by ρ(f)(x) =
◦ ∗f(S(x)).

In a remark it is pointed out that this even gives a lifting for functions in
L1(λ) if one allows infinities and does not require multiplicativity at those
points. This follows by approximating an integrable function by bounded
functions.

In the nonstandard partition {A1, . . . , AH} of ∗[0, 1] we have discarded all
∗λ nullsets. The union of these nullsets is still an ∗λ nullset. To avoid the
possibility that S(x) lies in any of the discarded sets of ∗λ-measure zero, we
need to make an additional assumption on the lower density e used in the
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construction of S. We assume that its base generating function only takes its
values in the power set of

⋃H
i=1Ai, instead of the power set of ∗[0, 1].

Theorem 4.2. Assume that fν : ∗[0, 1] → Ê is the generalized Radon-
Nikodým derivative of the measure ν : C → E. Then the function f : [0, 1]→
E′′ defined as f(x) = P (fν(S(x))) has the following properties:

(1) For every e′ ∈ E′, the function 〈e′, f〉 is Lebesgue integrable and

〈ν(A), e′〉 =
∫
A

〈e′, f〉 dλ, for any set A ∈ C.

(2) The function ‖f‖ is Lebesgue integrable and for the variation of ν we
have

|ν|(A) =
∫
A

‖f‖ dλ for any A ∈ C.

Proof. (1) Let e′ ∈ E′. Assume that g : [0, 1] → R is a Radon-Nikodým
derivative of the real-valued measure e′ ◦ ν. For the existence of g we use the
Radon-Nikodým theorem for real-valued measures without proving it again.
Our methods do allow a proof, but it does not differ significantly from the
well-known proof of the Radon-Nikodým theorem for real-valued measures
that uses the Hahn decomposition. Ross gives a nonstandard proof of the
Radon-Nikodým theorem in [12] in which he uses a conditional expectation in
the final step of reducing the domain to a standard domain. By Theorem 3.2,
the function e′◦fν agrees with the standard part of the nonstandard extension
of g on each partition set Ai, and in particular at each point S(x). Since ρ(g)
is also a Radon-Nikodým derivative for 〈ν, e′〉 and ρ(g)(x) = ◦(∗g(S(x))), we
get for every x ∈ [0, 1]

〈e′, f(x)〉 = 〈e′, P (fν(S(x)))〉 = ◦(∗g(S(x))) = ρ(g)(x).

Hence
∫
A
〈e′, f〉 dλ =

∫
A
g dλ = 〈ν(A), e′〉.

(2) By Theorem 2.2, part (2), ‖fν‖ is the generalized derivative of |ν| with
respect to λ and |ν|(A) =

∫
∗A
‖fν‖ dλ̂ for all sets A ∈ C. Since P is a contrac-

tive projection,
∫
∗A
‖fν‖ dλ̂ ≥

∫
∗A
‖P ◦ fν‖ dλ̂, so all that remains to prove

is that
∫
∗A
‖fν‖ dλ̂ =

∫
A
‖fν(S(x))‖ dλ. Using the Radon-Nikodým theorem

for real-valued measures, there is a real-valued derivative d|ν|
dλ : [0, 1] → R.

Theorem 3.2 asserts that π ◦ ∗d|ν|dλ = ‖fν‖ on each set Ai in the fine partition.
Since ◦ ∗d|ν|dλ (S(x)) is a lifting of d|ν|

dλ , we get

|ν|(A) =
∫
A

d|ν|
dλ

dλ =
∫
A

◦ ∗
(
d|ν|
dλ

)
(S(x)) dλ =

∫
A

‖fν(S(x))‖ dλ.

Hence
∫
∗A
‖fν‖ dλ̂ =

∫
A
‖fν(S(x))‖ dλ , finishing the proof, as by the defini-

tion of the total variation |ν|(A) ≤
∫
A
‖P ◦ fν ◦ S‖ dλ. �
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One quick application is a well-known result:

Corollary 4.3. Every separable dual space has the Radon-Nikodým prop-
erty.

Proof. If E is a separable dual space, then we can obtain E as a comple-
mented subspace of Ê. The contractive projection is obtained by restricting
elements of Ê, which we may regard as functionals on Ê′, to functionals on
the predual of E. We denote the projection again by P : Ê → E . Hence we
can construct a derivative P ◦ fν ◦ S : [0, 1]→ E as above. This derivative is
weak*-measurable and separably valued. Since the predual of E is norming
for E and by the separability of E, it follows (see II.1.4 in [4], a corollary
of the Pettis Measurability Theorem) that P ◦ fν ◦ S is λ-measurable. The
integrability follows from Theorem 4.2, which establishes the integrability of
‖P ◦ fν ◦ S‖. �

5. Conclusion

Unifying the Banach space-valued and bidual-valued Radon-Nikodým deri-
vatives is useful, since the drawback in the existing general bidual-valued
derivatives was the weakness of the measurability conditions of the derivative,
whereas the nonstandard hull valued derivatives are still extended integrable.

We opted to use the base choice function of Bliedtner and Loeb to restrict
the domain of the generalized derivative. Ross uses a conditional expectation
with respect to the smallest σ-algebra containing the nonstandard extension
of all standard measurable sets for his proof of the Radon-Nikodým theo-
rem in [12]. The existence of conditional expectations for Bochner integrable
functions can be proved independently of the Radon-Nikodým theorem (see
Theorem V.4 in [4]) and the proof which starts with simple functions can be
extended to internal ∗-simple functions or functions in M(λ̂, Ê). We could also
have used Ross’ idea for changing the domain of our generalized derivatives
from

⋃H
i=1Ai to [0, 1].
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