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ON THE CAUCHY PROBLEM FOR AN INTEGRABLE
EQUATION WITH PEAKON SOLUTIONS

ZHAOYANG YIN

Abstract. We establish the local well-posedness for a new integrable
equation. We prove that the equation has strong solutions that blow up

in finite time and obtain the precise blow-up scenario for this equation.
Moreover, we provide a framework of weak solutions for the study of
soliton interaction.

1. Introduction

Recently, Degasperis and Procesi [14] studied the following family of third
order dispersive PDE conservation laws, whose right-hand side is the deriva-
tive of a quadratic differential polynomial:

(1.1) ut + c0ux + γuxxx − α2utxx = (c1u2 + c2u
2
x + c3uuxx)x,

where α, c0, c1, c2, and c3 are real constants. Applying the method of asymp-
totic integrability to the family (1.1), they found that there are only three
equations that satisfy asymptotic integrability conditions within this family:
the KdV equation, the Camassa-Holm equation, and one new equation.

With α = c2 = c3 = 0, (1.1) becomes the well-known Korteweg-de Vries
equation which describes the unidirectional propagation of waves at the free
surface of shallow water under the influence of gravity. Here u(t, x) represents
the wave height above a flat bottom, x is proportional to the distance in the
direction of the propagation, and t is proportional to the elapsed time. The
Cauchy problem of the KdV equation has been studied extensively (see [21],
[22], [23], [24]). As soon as u0 ∈ H1(R), the solutions of the KdV equation are
global (cf. [24]). The equation is integrable (cf. [26]) and its solitary waves
are solitons (cf. [15]).

For c1 = −(3/2)c3/α2 and c2 = c3/2, (1.1) becomes the Camassa-Holm
equation, which models the unidirectional propagation of shallow water waves
over a flat bottom. Here u(t, x) stands for the fluid velocity at time t ≥ 0 in
the spatial x direction. See [4] for the original derivation and [16] and [19]
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for new derivations of this equation. The Camassa-Holm equation has a bi-
Hamiltonian structure and is completely integrable (see [4], [2], [6], [8]). Its
solitary waves are smooth if c0 > 0 and peaked in the limiting case c0 = 0
(cf. [5]). They are orbitally stable and interact like solitons (see [4], [3], [11],
[12], [20]). The equation has global strong solutions (cf. [7], [9]) and also
solutions which blow up in finite time (cf. [7], [9], [10]). Families of integrable
equations similar to the Camassa-Holm equation have long been known to
be derivable from the theory of hereditary symmetries (see [17]). However,
before [4], the Camassa-Holm equation had not been stated explicitly, nor had
it been derived physically as a shallow water wave equation.

Taking c1 = −2c3/α2 and c2 = c3 in (1.1), rescaling, shifting the dependent
variable and applying a Galilean boost (cf. [13]), we obtain the new equation

(1.2)
{
ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

which has a form similar to the Camassa-Holm shallow water wave equation.
The integrability of (1.2) was proved by Degasperis, Holm and Hone [13] by
constructing a Lax pair. In the same paper [13], the bi-Hamiltonian structure
and an infinite sequence of conserved quantities were obtained, and it was
shown that the equation admits exact peakon solutions that are analogous to
the Camassa-Holm peakons.

On the other hand, the Cauchy problem of (1.2) does not seem to have
been discussed in the literature. The aim of this paper is to prove the local
well-posedness of strong solutions to (1.2) for a large class of initial data, and
to get a blow-up criterion for strong solutions to (1.2).

Main Result.

(a) Local well-posedness:
(i) Given u0 ∈ Hs(R), s > 3/2, there exists a maximal T = T (u0) > 0,

and a unique solution u to (1.2), such that

u = u(., u0) ∈ C([0, T );Hs(R)) ∩ C1([0, T );L2(R)).

Moreover, the solution depends continuously on the initial data, i.e.,
the mapping

u0 → u(., u0) : Hs(R)→ C([0, T );Hs(R)) ∩ C1([0, T );L2(R))

is continuous.
(ii) T may be chosen independent of s in the following sense: If

u ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R))

and if u0 ∈ Hs′(R) for some s′ 6= s, s′ > 3/2, then

u ∈ C([0, T );Hs′(R)) ∩ C1([0, T );Hs′−1(R))

with the same value of T .
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(b) Blow-up:
(i) Given u0 ∈ Hs(R), s > 3/2, blow-up of the solution u=u(.,u0) in

finite time T < +∞ occurs if and only if

lim inf
t↑T

{ inf
x∈R

[ux(t, x)]} = −∞.

(ii) Assume that u0 ∈ Hs(R), s > 3/2, is odd, and u′0 < 0. Then the
corresponding strong solution to (1.2) blows up in finite time. The
maximal time of existence is bounded above by −1/u′0.

By applying Kato’s semigroup approach we will prove local well-posedness
for (1.2), analogous to similar results for the Camassa-Holm equation (see [9],
[18], [25], [28]).

We will also give an explosion criterion for (1.2) with odd initial data. The
precise blow-up scenario of (b) for (1.2) is better than the blow-up scenario
lim supt→T ‖ux‖L∞ = +∞, which is quite common for nonlinear hyperbolic
PDE’s (see [1], [29], and [30]).

Degasperis, Holm and Hone [13] also showed that there exist peakon so-
lutions that interact like solitons. In Section 4, we introduce the notion of
weak solutions to (1.2) as a suitable mathematical framework for the study
of soliton interactions.

Our paper is organized as follows. In Section 2, we prove the local well-
posedness of the initial value problem associated with (1.2). In Section 3, we
obtain the precise blow-up scenario and give an explosion criterion for strong
solutions to (1.2) with odd initial data. In Section 4 we introduce and study
the notion of weak solutions and soliton interactions of (1.2). Section 5 is an
appendix in which we collect some results from the literature that we shall
need.

2. Local well-posedness

In this section, we apply Kato’s theory to establish local well-posedness for
the Cauchy problem of (1.2).

For convenience, we state here Kato’s theorem in a form suitable for our
purpose. Consider the abstract quasi-linear evolution equation

(2.1)
dv

dt
+A(v)v = f(v), t ≥ 0, v(0) = v0.

Let X and Y be Hilbert spaces such that Y is continuously and densely
embedded in X, and let Q : Y → X be a topological isomorphism. Let
L(Y,X) denote the space of all bounded linear operators from Y to X. If
X = Y , we denote this space by L(X). We make the following assumptions,
where µ1, µ2, µ3, and µ4 are constants depending only on max{‖y‖Y , ‖z‖Y }:

(i) A(y) ∈ L(Y,X) for y ∈ X with

‖(A(y)−A(z))w‖X ≤ µ1‖y − z‖X‖w‖Y , y, z, w ∈ Y,
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and A(y) ∈ G(X, 1, β) (i.e., A(y) is quasi-m-accretive), uniformly on
bounded sets in Y .

(ii) QA(y)Q−1 = A(y)+B(y), where B(y) ∈ L(X) is bounded, uniformly
on bounded sets in Y . Moreover,

‖(B(y)−B(z))w‖X ≤ µ2‖y − z‖Y ‖w‖X , y, z ∈ Y, w ∈ X.

(iii) f : Y → Y extends to a map from X into X, is bounded on bounded
sets in Y , and satisfies

‖f(y)− f(z)‖Y ≤ µ3‖y − z‖Y , y, z ∈ Y,

‖f(y)− f(z)‖X ≤ µ4‖y − z‖X , y, z ∈ Y.

Theorem 2.1 (Kato, [21]). Assume that (i), (ii), and (iii) hold. Given
v0 ∈ Y , there is a maximal T > 0 depending only on ‖v0‖Y , and a unique
solution v to (2.1) such that

v = v(., v0) ∈ C([0, T );Y ) ∩ C1([0, T );X).

Moreover, the map v0 7→ v(., v0) is a continuous map from Y to C([0, T );Y )∩
C1([0, T );X).

We now provide a framework in which we shall reformulate the problem
(1.2). We begin by fixing some notations. All spaces of functions are assumed
to be over R; for simplicity, we drop R in our notation for function spaces if
there is no ambiguity. If A is an unbounded operator, we denote by D(A) the
domain of A. [A,B] denotes the commutator of two linear operators A and
B. ‖.‖X denotes the norm of Banach space X. We denote the norm and the
inner product of Hs, s ∈ R+, by ‖.‖s and (., .)s, respectively.

Next, because of the bi-Hamiltonian structure of (1.2) (see [13]), in anal-
ogy to the case of the Camassa-Holm equation [4], (1.2) can be written in
Hamiltonian form and has the invariant

(2.2) E(u) = −1
6

∫
R

u3dx.

With y := u − uxx, (1.2) takes the form of a quasi-linear evolution equation
of hyperbolic type:

(2.3)
{
yt + uyx + 3uxy = 0, t > 0, x ∈ R,
y(0, x) = u0(x)− ∂2

xu0(x), x ∈ R.

We also note that if p(x) := (1/2)e−|x|, x ∈ R, then (1 − ∂2
x)−1f = p ∗ f for

all f ∈ L2, and p ∗ y = u, where ∗ denotes convolution. Using this identity,
we can rewrite (2.3) as

(2.4)
{
ut + uux = −∂xp ∗ ( 3

2u
2), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
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or, equivalently, as

(2.5)
{
ut + uux = −∂x(1− ∂2

x)−1( 3
2u

2), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

Theorem 2.2. Given u0 ∈ Hs, s > 3/2, there exists a maximal value
T = T (u0) > 0, and a unique solution u to (1.2) (or (2.5)), such that

u = u(., u0) ∈ C([0, T );Hs) ∩ C1([0, T );L2).

Moreover, the solution depends continuously on the initial data, i.e., the map-
ping

u0 → u(., u0) : Hs → C([0, T );Hs) ∩ C1([0, T );L2)

is continuous.

To prove this result, we will apply Theorem 2.1 with A(u) = u∂x, f(u) =
−∂x(1 − ∂2

x)−1( 3
2u

2), Y = Hs, X = L2, Λ = (1 − ∂2
x)1/2, and Q = Λs.

Obviously, Q is an isomorphism of Hs onto L2. Thus, in order to derive
Theorem 2.2 from Theorem 2.1, we only need to verify that A(u) and f(u)
satisfy the conditions (i)–(iii).

We break the argument into several lemmas.

Lemma 2.1. The operator A(u) = u∂x, with u ∈ Hs, s > 3/2, belongs to
G(L2, 1, β).

Proof. Since L2 is a Hilbert space, we have A(u) ∈ G(L2, 1, β) for some
real number β if and only if the following conditions hold (cf. [23]):

(a) (A(u)y, y)0 ≥ −β‖y‖20.
(b) The range of A+ λ is all of X, for some (or all) λ > β.

We first prove (a). Since u ∈ Hs, s > 3/2, u and ux belong to L∞. Note
that ‖ux‖L∞ ≤ ‖u‖s. Thus

(A(u)y, y)0 = (u∂xy, y)0 = −1
2

(uxy, y)0

≤ 1
2
‖ux‖L∞‖y‖20 ≤ c‖u‖s‖y‖20.

Setting β = c‖u‖s, we obtain (A(u)y, y)0 ≥ −β‖y‖20.
Next, we prove (b). Because A(u) is a closed operator and satisfies (a),

(λI + A) has closed range in L2 for all λ > β. Therefore, it suffices to show
that (λI +A) has dense range in L2 for all λ > β.

Given u ∈ Hs, s > 3/2, and y ∈ L2, we have the generalized Leibnitz
formula

∂x(uy) = uxy + u∂xy in H−1.
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Since ux ∈ L∞, we have

D(A) = D(u∂x) = {y ∈ L2, u∂xy ∈ L2}
= {z ∈ L2,−∂x(uz) ∈ L2} = D((u∂x)∗) = D(A∗).

Assume that the range of (A + λ) is not all of L2. Then there exists
z ∈ L2, z 6= 0 such that ((λI + A)y, z)0 = 0 for all y ∈ D(A). Since
H1 ⊂ D(A), D(A) is dense in L2. Hence it follows that z ∈ D(A∗) and
λz + A∗ = 0 in L2. Since D(A) = D(A∗), multiplying by z and integrating
by parts, we obtain

0 = ((λI +A∗)z, z)0 = (λz, z) + (z,Az) ≥ (λ− β)‖z‖20, ∀λ > β,

and thus z = 0, which contradicts our assumption z 6= 0. This completes the
proof of Lemma 2.1. �

Lemma 2.2. Let A(u) = u∂x with u ∈ Hs, s > 3/2. Then A(u) ∈
L(Hs, L2) for all u ∈ Hs. Moreover,

‖(A(u)−A(z))w‖0 ≤ µ1‖u− z‖0‖w‖s, u, z, w ∈ Hs.

Proof. Let u, z, w ∈ Hs, s > 3/2. Then we have

‖(A(u)−A(z))w‖0 ≤ c‖u− z‖0‖∂xw‖L∞
≤ µ1‖u− z‖0‖w‖s.

Taking z = 0 in the above inequality, we obtain A(u) ∈ L(Hs, L2). This
completes the proof of Lemma 2.2. �

Lemma 2.3. We have B(u) = [Λs, u∂x]Λ−s ∈ L(L2), for u ∈ Hs.
Moveover,

‖(B(u)−B(z))w‖0 ≤ µ2‖u− z‖s‖w‖0.

Proof. Let u, z ∈ Hs, s > 3/2, and w ∈ L2. Then

‖(B(u)−B(z))w‖0 = ‖[Λs, (u− v)∂x]Λ−sw‖0
≤ ‖[Λs, (u− v)]Λ1−s‖L(L2)‖Λ−1∂xw‖0
≤ µ2‖y − z‖s‖w‖0,

where we applied Lemma 5.1 (see Section 5) with r = 0, t = s − 1. Taking
z = 0 in the above inequality, we obtain B(u) ∈ L(L2). This completes the
proof of Lemma 2.3. �

Lemma 2.4. Let f(u) = −∂x(1 − ∂2
x)−1( 3

2u
2). Then f is bounded on

bounded sets in Hs, and satisfies
(a) ‖f(y)− f(z)‖s ≤ µ3‖y − z‖s, y, z ∈ Hs,
(b) ‖f(y)− f(z)‖0 ≤ µ4‖y − z‖0, y, z ∈ Hs.
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Proof. Let y, z ∈ Hs, s > 3/2, and note that Hs−1 is a Banach algebra.
Then we have

‖f(y)− f(z)‖s ≤
3
2
‖(y − z)(y + z)‖s−1

≤ 3
2
‖y − z‖s−1‖y + z‖s−1

≤ 3
2

(‖y‖s + ‖z‖s)‖y − z‖s.

This proves (a).
Taking z = 0 in the above inequality, we obtain that f is bounded on

bounded sets in Hs.
Next, we prove (b). Let y, z ∈ Hs, s > 3/2, and note that ‖y‖L∞ ≤ ‖y‖s.

Then we have

‖f(y)− f(z)‖0 = ‖ − ∂x(1− α2∂2
x)−1 3

2
(y2 − z2)‖0

≤ 3
2
‖(y − z)(y + z)‖0

≤ 3
2
‖y − z‖0‖y + z‖L∞

≤ 3
2

(‖y‖s + ‖z‖s)‖y − z‖0,

which proves (b). This completes the proof of Lemma 2.4. �

Proof of Theorem 2.2. The result follows by combining Theorem 2.1 and
Lemmas 2.1–2.4. �

Remark 2.1. In Theorem 2.2, the function u actually is an element of
C([0, T );Hs) ∩ C1([0, T ); Hs−1) because (2.5) implies that du/dt ∈ Hs−1.

Theorem 2.3. The maximal T in Theorem 2.2 may be chosen indepen-
dent of s in the following sense. If

u = u(., u0) ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1)

is a solution to (1.2) (or (2.5)), and if u0 ∈ Hs′ for some s′ 6= s, s′ > 3/2,
then

u ∈ C([0, T );Hs′) ∩ C1([0, T );Hs′−1),
with the same value of T . In particular, if u0 ∈ H∞ =

⋂
x≥0H

s, then u ∈
C([0, T );H∞).

Proof. If s′ < s, the result follows the uniqueness of the solution guaranteed
by Theorem 2.2, so it suffices to consider the case s′ > s. To this end, we
return to (2.3). Setting y(t) = Λ2u(t), we have

(2.6)
dy

dt
+A(t)y +B(t)y = 0, y(0) = Λ2u(0),



656 ZHAOYANG YIN

where A(t)y = ∂x(uy) and B(t)y = 2uxy.
Because u ∈ C([0, T );Hs) and u0 ∈ Hs′ , we have y ∈ C([0, T );Hs−2) and

y(0) = (1− ∂2
x)u(0) ∈ C([0, T );Hs′). We will show that y ∈ C([0, T );Hs′−2),

which implies u ∈ C([0, T );Hs′) since (1−∂2
x) is an isomorphism from Hs′ to

Hs′−2. This will complete the proof of Theorem 2.3.
Since u ∈ C([0, T );Hs), ux ∈ Hs−1, and Hs−1 is a Banach algebra, we

have B(t) ∈ L(Hs−1).
Following the arguments in Lemmas 3.1–3.3 in [22], we first prove that

the family A(t) has a unique evolution operator {U(t, τ)} associated with the
spaces X = Hh and Y = Hk, where −s ≤ h ≤ s− 2, 1− s ≤ k ≤ s− 1, and
k ≥ h+ 1. To this end, as in the proof of Lemma 3.1 in [22], we need to verify
the following three conditions:

(i) A(t) ∈ G(Hh, 1, β) for all y ∈ Hs.
(ii) Λh∂x[Λk−h, u]Λ−k is uniformly bounded on L2.
(iii) A(t) ∈ L(Hk,Hh) is strongly continuous in t.

Let us first show (i). SinceHh is a Hilbert space, we haveA(t) ∈ G(Hh, 1, β)
for some real number β if and only if the following conditions hold (cf. [23]):

(a) (A(t)y, y)h ≥ −β‖y‖2h.
(b) −A(t) is the infinitesimal generator of a C0-semigroup on Hh, for

some (or all) λ > β.

To prove (a), take y ∈ Hh and note that

Λh∂x(uy) = Λh∂x(−[Λ−h, u]Λhy + Λ−h(uΛhy))

= −Λh∂x[Λ−h, u]Λhy + ∂x(uΛhy).

Thus

(A(t)y, y)h = (−Λh∂x[Λ−h, u]Λhy + ∂x(uΛhy), Λhy)0

= (Λh+1[Λ−h, u]Λhy, ∂xΛh−1y)0 +
1
2

(uxΛhy,Λhy)0

≤ ‖Λh+1[Λ−h, u]‖L(L2)‖Λhy‖20 +
1
2
‖ux‖L∞‖Λhy‖20

≤ c‖u‖s‖y‖2h,

where we have used Lemma 5.1 with r = −(h + 1) and t = 0. Setting
β = c‖u‖s, we obtain (A(t)y, y)h ≥ −β‖y‖2h, as claimed.

Next, we prove (b). Let S = Λs−1−h, and note that S is an isomorphism of
Hs−1 onto Hh and that Hs−1 is continuously and densely embedded in Hh

as −s ≤ h ≤ s− 2. Define

A1(t) := SA(t)S−1 = Λs−1−hA(t)Λh+1−s,

B1(t) := A1(t)−A(t) = [S,A(t)]S−1.
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Let y ∈ Hh and u ∈ Hs, s > 3/2. Then

‖B1(t)y‖h = ‖Λh∂x[Λs−1−h, u]Λh+1−sy‖0
≤ ‖Λh∂x[Λs−1−h, u]Λ1−s‖L(L2)‖Λhy‖0
≤ c‖u‖s‖y‖h,

on applying Lemma 5.1 with r = −(h + 1), t = s − 1. Therefore, we have
B1(t) ∈ L(Hh). Since

A(t)y = ∂x(uy) = uxy + u∂xy and ux ∈ L(Hs−1),

by applying Lemma 5.4 and a perturbation theorem for semigroups, we see
that Hs−1 is A(t)-admissible. Further, applying Lemma 5.3 with Y = Hs−1,
X = Hh and S = Λs−1−h, we obtain that −A1(t) is the infinitesimal generator
of a C0-semigroup on Hh. Since A1(t) = A(t)+B1(t) and B1(t) ∈ L(Hh), by a
perturbation theorem for semigroups it follows that −A(t) is the infinitesimal
generator of a C0-semigroup on Hh. This proves (b).

Next, we verify (ii). For y ∈ L2 we have

‖Λh∂x[Λk−h, u]Λ−ky‖0 ≤ c‖u‖s‖y‖0,
by Lemma 5.1 with r = −(h+ 1), t = k. This proves (ii).

Finally, we verify (iii). Take y ∈ Hk. Then

‖(A(t+ τ)−A(t))y‖h = ‖∂x((u(t+ τ)− u(t))y)‖h
≤ ‖(u(t+ τ)− u(t))y‖h+1

≤ c‖u(t+ τ)− u(t)‖s−1‖y‖h+1

≤ c‖u(t+ τ)− u(t)‖s‖y‖k,

by Lemma 5.1 with r = s− 1, t = h+ 1. The continuity of u now yields (iii).
Thus, the above conditions (i)–(iii) imply the existence and uniqueness of

an evolution operator U(t, τ) for the family A(t). In particular, for −s ≤ r ≤
s− 1, U(t, τ) maps Hr into itself.

Next, take Y = Hs−2, X = Hs−3, and note that

y ∈ C([0, T );Hs−1) ∩ C1([0, T );Hs−2).

Using the properties of the evolution operator U(t, τ), we obtain
d

dτ
(U(t, τ)y(τ)) = U(t, τ)(−B(τ)y(τ)).

An integration over τ ∈ [0, t] gives

(2.7) y(t) = U(t, 0)y(0)−
∫ t

0

U(t, τ)B(τ)y(τ)dτ.

If s < s′ ≤ s+1, then B(t) = ux(t) ∈ L(Hs′−2) is strongly continuous on [0, t),
and Hs−1Hs′−2 ⊂ Hs′−2 since s−1 > 1/2. Since −s < s−2 < s′−2 ≤ s−1,
the family {U(t, τ)} is a strongly continuous map from the space Hs′−2 into
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itself. Noting that y(0) ∈ Hs′−2, and regarding (2.7) as an integral equation
of Volterra type that can be solved for y by successive approximation, we then
obtain the assertion of Theorem 2.3 for the case s < s′ ≤ s+ 1.

In the case s′ > s + 1, the result follows by a repeated application of the
above argument. This completes the proof of Theorem 2.3. �

3. Blow-up

In this section we address the question of the formation of singularities for
solutions to (1.2). We first derive the precise blow-up scenario for solutions
to (1.2), and then show that there are smooth initial data for which the
corresponding solution to (1.2) does not exist globally in time.

Theorem 3.1. Given u0 ∈ Hs, s > 3/2, blow-up of the solution u=u(.,u0)
in finite time T < +∞ occurs if and only if

lim inf
t↑T

{ inf
x∈R

[ux(t, x)]} = −∞.

Proof. Let us first assume that u0 ∈ Hs, for some s ∈ N, s ≥ 4. Multiply-
ing (2.3) by y = u− uxx and integrating by parts, we get

(3.1)
d

dt

∫
R

y2dx = −3
∫
R

y2uxdx−
∫
R

uyyxdx = −5
2

∫
R

y2uxdx.

Next, we differentiate (2.3) with respect to the spatial variable x, and then
multiply this equation by yx. Using the identity y = u− uxx and integrating
by parts, we obtain

d

dt

∫
R

y2
xdx = −

∫
R

yxyxxu dx− 4
∫
R

y2
xuxdx− 3

∫
R

yyxuxxdx(3.2)

= −7
2

∫
R

y2
xuxdx+

3
2

∫
R

y2uxdx.

Adding the equations (3.1) and (3.2), we obtain

(3.3)
d

dt

(∫
R

y2dx+
∫
R

y2
xdx

)
= −7

2

∫
R

y2
xuxdx−

∫
R

y2uxdx.

If ux is bounded from below on [0, T )×R, i.e., if there exists M > 0 such that

−ux(t, x) ≤M on [0, T )× R,

(3.3) implies

(3.4)
d

dt

(∫
R

y2dx+
∫
R

y2
xdx

)
≤ 7

2
M

(∫
R

y2dx+
∫
R

y2
xdx

)
.

Using Gronwall’s inequality, we see that the H3 norm of the solution to (1.2)
does not blow up in finite time. Moreover, an analogous inductive argument
shows that the Hk-norm of this solution does not blow up in finite time for
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all k ∈ N , 4 ≤ k ≤ s. Applying Theorem 2.2 and Theorem 2.3, we obtain the
assertion of Theorem 3.1 for all s > 3/2. �

Theorem 3.2. Assume that u0 ∈ Hs, s > 3/2, is odd, and u′0 < 0.
Then the corresponding strong solution to (1.2) blows up in finite time. The
maximal time of existence is bounded above by −1/u′0.

Proof. Let T be the maximal time of existence of the solution

u ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1),

of (1.2) (or (2.5)). The existence of T is guaranteed by Theorem 2.2 and
Remark 2.1. Note that, because of the symmetry (u, x) → (−u,−x) of (1.2)
(or (2.5)), if u0(x) is odd, then u(t, x) is odd for any t ∈ [0, T ). In particular,
if s ≥ 3 and the functions u and uxx are continuous in x, we have

(3.5) u(t, 0) = uxx(t, 0) = 0, t ∈ [0, T ).

Differentiating (2.5) with respect to x, and noting that ∂2
xp ∗ f = p ∗ f − f ,

we obtain

(3.6) utx = −u2
x − uuxx +

3
2
u2 − p ∗

(
3
2
u2

)
.

Setting h(t) = ux(t, 0) for t ∈ [0, T ), noting that p ∗ ( 3
2u

2) ≥ 0, and using
(3.5), we get

(3.7)
dh

dt
(t) ≤ −h2(t), t ∈ [0, T ).

It follows that

(3.8) 0 >
1
h(t)

≥ 1
h(0)

+ t, t ∈ [0, T ),

and hence T ≤ −1/h(0). This proves the assertion of the theorem for the case
s ≥ 3.

To complete the proof we use a simple density argument. Let u0 ∈ Hs

with s > 3/2. Set un0 = e(1/n)(1−∂2
x)u0. If u0(x) is odd, then un0 (x) is also odd.

Since un0 (x) ∈ H3, the above argument yields

T (un0 ) ≤ − 1
hn(0)

,

where hn(0) = e(1/n)(1−∂2
x)u′0. Letting n → ∞, and applying Theorem 2.3,

we conclude that T (u0) ≤ −1/h(0). This completes the proof of Theorem
3.2. �

Remark 3.1. Because (1.2) is invariant with respect to the transformation
(x, t) 7→ (x+ k, t), where k ∈ R, Theorem 3.2 remains true for all initial data
u0 ∈ Hs, s > 3/2, which are point-symmetric.
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Corollary 3.2. The only equilibrium point of (1.2) (or (2.4)) in Hs, s >
3/2, is the point 0. It is unstable.

Proof. Note that (2.4) can be written in the form

(3.9) ut = −
(
u2

2
+ p ∗

(
3
2
u2

))
x

.

Since Hs ∈ C1
0 (R), s > 3/2, an equilibrium solution u ∈ Hs, s > 3/2,

satisfies
u2

2
+ p ∗

(
3
2
u2

)
= 0, x ∈ R.

Since p ∗ ( 3
2u

2) ≥ 0, it follows that u ≡ 0. Because in every neighborhood
of 0 in Hs, s > 3/2, there are odd functions u0 with u′0(0) < 0, we can
apply Theorem 3.2 to these functions, and then obtain the result of Corollary
3.2. �

4. Weak solutions and soliton interactions

In this section we define strong solutions and weak solutions for (1.2).
We also prove that there are no traveling waves for (1.2) which are strong
solutions, and that its peakon solutions are weak solutions.

Definition 4.1. If

u ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1)

with s > 3/2 is a solution to (2.4), then u(t, x) is called a strong solution to
(2.4) (or (1.2)).

Note that (1.2) has the soliton interaction property of solitary waves with
corners at their peaks, discovered in [13] and [14]. Obviously, such solutions
are not strong solutions to (2.4). In order to provide a mathematical frame-
work for the study of soliton interaction, we define the notion of weak solutions
to (2.4).

Let us return to (3.9). Setting

F (u) =
(
u2

2
+ p ∗

(
3
2
u2

))
,

(2.4) can be rewritten as the conservation law

(4.1) ut + F (u)x = 0, u(0, x) = u0.

Definition 4.2. Let u0 ∈ Hα, α ∈ [1, 3/2]. If u belongs to the space
L∞loc([0, T );Hα) and satisfies∫ T

0

∫
R

(uψt + F (u)ψx)dxdt+
∫
R

u0(x)ψ(0, x)dx = 0
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for all functions ψ ∈ C∞0 ([0, T ) × R) that are restrictions to [0, T ) × R of a
function having continuous derivatives of arbitrary positive integer order on
R

2 with compact support contained in (−T, T ) × R, then u is called a weak
solution to (2.4). If u is a weak solution on [0, T ) for every T > 0, it is called
a global weak solution to (2.4) (or (1.2)).

Proposition 4.1.

(i) Every strong solution is a weak solution.
(ii) If u is a weak solution and

u ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1)

with s > 3/2, then it is a strong solution.
(iii) All nontrivial traveling wave solutions of (1.2) are not strong solu-

tions.
(iv) There exist peakon solitons of (1.2) which are weak solutions.

Proof. (i) Let

u ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1)

with s > 3/2 be a strong solution to (2.4). Obviously, u ∈ L∞loc([0, T );Hα)
and u0 ∈ Hα with α ∈ [1, 3/2], and F (u) ∈ Hs, s > 3/2. Therefore, the
equation ut + F (u)x = 0 holds in C([0, T );Hs−1) with s > 3/2. Integrating
by parts in C([0, T );L2), we obtain that u is a weak solution of (2.4).

(ii) Let
u ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1)

with s > 3/2, be a weak solution. Then u0 ∈ Hs, s > 3/2. By Theorem 2.2
there exists a unique strong solution v with initial data u0, and by (i), v is
also a weak solution to (2.4). Thus we have∫ T

0

∫
R

(uψt + F (u)ψx)dxdt =
∫ T

0

∫
R

(vψt + F (v)ψx)dxdt.

Integration by parts yields∫ T

0

∫
R

(ut + F (u)x)ψdxdt =
∫ T

0

∫
R

(vt + F (v)x)ψdxdt.

Because C∞0 ([0, T )× R) is dense in L2([0, T )× R), it follows that

(4.2) ut + F (u)x = vt + F (v)x in L2([0, T )× R).

Since
u ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1)

with s > 3/2, (4.2) holds in C([0, T );Hs−1) with s > 3/2. Since v is a strong
solution of (2.4), we have

ut + F (u)x = 0 in C([0, T );Hs−1)
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Hence u is a strong solution to (2.4).
(iii) Assume first that there exists a nontrivial traveling wave u(t, x) =

ϕc(x− ct) ∈ H3, which is a strong solution to (1.2). Then

(4.3) −cϕ′c + cϕ
′′′

c + 4ϕ′cϕc − 3ϕ′cϕ
′′

c − ϕcϕ
′′′

c = 0 in L2.

It follows that

(4.4) (−cϕc + cϕ
′′

c + 2ϕ2
c − (ϕ′c)

2 − ϕcϕ
′′

c )′ = 0 in L2.

Therefore, we have

(4.5) ((ϕc − c)2)
′′
− 4ϕ2

c + 2cϕc = 0 in H1.

Now note that H3 ⊂ C2
0 and that the solutions of (4.5) in C2, except for

the trivial solutions ϕc = 0 and ϕc = c/2, are all unbounded. In particular,
taking c = 0 and solving (4.5) gives

u2 = k1e
−2x + k2e

2x,

where k1, k2 are two arbitrary nonnegative constants. Since u ∈ C2
0 , this is

impossible.
If u(t, x) = ϕc(x − ct) ∈ Hs with s > 3/2, then applying a simple density

argument and using the continuous dependence on initial data guaranteed by
Theorem 2.2, we obtain that there exists no nontrivial traveling wave solution
to (1.2) that is a strong solution to this equation.

(iv) Take the initial data u0(x) = ce−|x|. By computation one can check
that the traveling wave u(x, t) = ce−|x−ct| is a global weak solution to (2.4) for
any c ∈ R. In addition, the functions u(x, t) = ce−|x−ct| are peakon solitons
(see [13]). �

Next, we use the framework of weak solution to describe the soliton inter-
action for (1.2), as presented in the work of Degasperis, Holm and Hone [13].
Multi-peakon solutions of the (1.2) take the form [13]

(4.6) u(x, t) =
N∑
j=1

pj(t)e−|x−qj(t)|,

where N is the number of peakons and pj , qj ∈W 1,∞(R), j = 1, . . . , N .
Regarding a solution u(x, t) of (4.6) as a global weak solution of (1.2),

applying Definition 2.4, then fixing x ∈ R and splitting the spatial integral of
F (u) over R according to the order of magnitude of x, pj , and qj j = 1, . . . , N ,
we find, by a routine computation, that the functions pj and qj satisfy the
following system of ordinary differential equations with discontinuous right-
hand side:

(4.7)

{
p′j = 2

∑N
k=1 pjpk sgn(qj − qk)e−|qj−qk|,

q′j =
∑N
k=1 pke

−|qj−qk|.



ON THE CAUCHY PROBLEM FOR AN INTEGRABLE EQUATION 663

In the case of 2-peakon interaction, i.e., (4.7) with N = 2, we consider two
peakons which are initially well-separated with asymptotic speeds c1 > c2 > 0
as t −→ −∞ so that they eventually collide. In this case, we have two
conserved quantities,

P := p1 + p2 = c1 + c2,

H := p2
1 + p2

2 + 2p1p2e
−|q1−q2|(2− e−|q1−q2|) = c21 + c22.

Let N = 2, P = p1 + p2, Q = q1 + q2, p = p1 − p2 and q = q1 − q2. Then
(4.7) becomes

(4.8)

{
P ′ = 0, Q′ = P (1 + e−|q|),
p′ = (p2 − P 2)e−|q|, q′ = p(1− e−|q|),

with two conserved quantities,

P = c1 + c2,

H =
1
2

(P 2 + p2) +
1
2

(P 2 − p2)e−|q|(2− e−|q|) = c21 + c22.

If at some instant t0 the peakons overlap, i.e., q(t0) = 0, we would have

c21 + c22 = H = P 2 = (c1 + c2)2

However, this is impossible since c1 > c2 > 0, so the peakons do not overlap
at any instant t0. Since the faster wave starts to the left of the slower one, we
have q < 0. Thus, from the two conserved quantities we obtain

(c1 + c2)2 − p2 =
4c1c2

(1− eq)2
.

This relation can be used to solve (4.8) and obtain explicit formulas for p1,
p2, q1, and q2 (see [13]), and hence also the phase shift for the faster soliton

4qf = q2(+∞)− q1(−∞) = log
[
c1(c1 + c2)
(c1 − c2)2

]
and the phase shift for the slower soliton

4qs = q1(+∞)− q2(−∞) = log
[

(c1 − c2)2

c2(c1 + c2)

]
.

Therefore, we infer that:
(a) If c1 > 3c2, both waves experience a forward shift.
(b) If c1 = 3c2, no shift occurs for the slower wave, while the faster one

is shifted forward.
(c) If c1 < 3c2, the faster wave is shifted forward while the slower one is

shifted backward.
The phenomenon of 2-peakon interaction observed here for (1.2) is the same

as that of 2-peakon interaction for the Camassa-Holm equation, except that
the constant 3 above is replaced by 2 (see [4], [9]).
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5. Appendix

Lemma 5.1 ([22]). Let f ∈ Hs, s > 3/2. Then,

‖Λ−r[Λr+t+1,Mf ]Λ−t‖L(L2) ≤ c‖f‖s, |r|, |t| ≤ s− 1,

where Mf is the operator of multiplication by f , and c is a constant depending
only on r and t.

Lemma 5.2 ([21]). Let r, t be real numbers such that −r < t ≤ r. Then,

‖fg‖t ≤ c‖f‖r‖g‖t, if r > 1/2,

‖fg‖r+t−1/2 ≤ c‖f‖r‖g‖t, if r < 1/2,

where c is a positive constant depending on r and t.

Lemma 5.3 ([27, §4.5, Theorems 5.5 and 5.8]). Let X and Y be two Ba-
nach spaces and Y be continuously and densely embedded in X. Let −A be
the infinitesimal generator of the C0-semigroup T (t) on X and let S be an
isomorphism from Y onto X. Then Y is −A-admissible (i.e., T (t)Y ⊂ Y for
all t ≥ 0 and the restriction of T (t) to Y is a C0-semigroup on Y ) if and
only if −A1 = −SAS−1 is the infinitesimal generator of the C0-semigroup
T1(t) = ST (t)S−1 on X. Moreover, if Y is −A-admissible, then the part of
−A in Y is the infinitesimal generator of the restriction of T (t) to Y .

Lemma 5.4. The operator A(u) = u∂x, with u ∈ Hs, s > 3/2, belongs to
G(Hs−1, 1, β).

Proof. Since Hs−1 is a Hilbert space, A(u) belongs to G(Hs−1, 1, β) for
some real number β if and only if the following conditions hold (cf. [23]):

(a) (A(u)y, y)s−1 ≥ −β‖y‖2s−1.
(b) −A(u) is the infinitesimal generator of a C0-semigroup on Hs−1, for

some (or all) λ > β.
We first prove (a). Since u ∈ Hs, s > 3/2, it follows that u and ux belong

to L∞ and ‖ux‖L∞ ≤ ‖u‖s. Note that

Λs−1(u∂xy) = [Λs−1, u]∂xy + uΛs−1(∂xy) = [Λs−1, u]∂xy + u∂xΛs−1y.

Thus

(A(u)y, y)s−1 = (Λs−1(u∂xy),Λs−1y)0

= ([Λs−1, u]∂xy,Λs−1y)0 −
1
2

(uxΛs−1y,Λs−1y)0

≤ ‖[Λs−1, u]Λ2−s‖L(L2)‖Λs−1y‖20 + ‖ux‖L∞‖Λs−1y‖20
≤ c‖u‖s‖y‖2s−1,

by Lemma 5.1 with r = 0, t = s − 2. Setting β = c‖u‖s, we obtain
(A(u)y, y)s−1 ≥ −β‖y‖2s−1, as claimed.
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Next, we prove (b). Let S = Λs−1, and note that S is an isomorphism of
Hs−1 onto L2 and that Hs−1 is continuously and densely embedded in L2

since s > 3/2. Define

A1(u) := SA(u)S−1 = Λs−1A(u)Λ1−s, B1(u) = A1(u)−A(u).

Let y ∈ L2 and u ∈ Hs, s > 3/2. Then we have

‖B1(u)y‖0 = ‖[Λs−1, u∂x]Λ1−sy‖0
≤ ‖[Λs−1, u]Λ2−s‖L(L2)‖Λ−1∂xy‖0
≤ c‖u‖s‖y‖0,

by Lemma 5.1 with r = 0, t = s− 2. Hence B1(u) ∈ L(L2).
Note that A1(u) = A(u) + B1(u) and A(u) ∈ G(L2, 1, β) in Lemma 2.1.

By a perturbation theorem for semigroups (cf. [27, §5.2, Theorem 2.3]) we
obtain A1(u) ∈ G(L2, 1, β′). Applying Lemma 5.3 with Y = Hs−1, X = L2,
and S = Λs−1, we conclude that Hs−1 is A-admissible. Hence −A(u) is the
infinitesimal generator of a C0-semigroup on Hs−1. This completes the proof
of Lemma 5.4. �
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