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O-MINIMAL STRUCTURES: LOW ARITY VERSUS
GENERATION

SERGE RANDRIAMBOLOLONA

Abstract. We show that an analogue of Hilbert’s Thirteenth Prob-
lem fails in the real subanalytic setting. Namely we prove that, for any

integer n, the o-minimal structure generated by restricted analytic func-
tions in n variables is strictly smaller than the structure of all global
subanalytic sets, whereas these two structures define the same subsets
in Rn+1.

1. Introduction

The aim of this paper is to prove that, for any fixed n ∈ N, the o-minimal
structure generated by the family of all global subanalytic subsets of Rn is
strictly smaller than the structure of all global subanalytic sets: some suban-
alytic subsets of Rn+1 are “transcendental” over the family of all subanalytic
subsets of Rn.

The main motivation for this work was to prove that the statement
“Given an o-minimal structure S over X, there is an integer n
such that S and str (S(n))—its reduct generated by S-definable
subsets of Xn—define the same subsets of XN , for all N .”

is false. We now know it fails in the case S is the structure of global subanalytic
sets.

This result can be seen as a negative answer to a generalized real analytic
version of the second part of Hilbert’s Thirteenth Problem: subanalytic func-
tions do not have the superposition property (see [12] for the positive answer
in the continuous setting).

In Section 2, we give the following definitions: o-minimal structure, gener-
ated structure, subanalytic sets and sub-n-analytic sets; only the last one is
original. We then recall some well known properties.

In Section 3, we show that restricted analytic functions in n variables and
subanalytic subsets of Rn+1 have the same definability power. This elegant

Received July 1, 2004; received in final form April 1, 2005.
2000 Mathematics Subject Classification. 03C64, 26B40, 32B20, 32A05.

c©2005 University of Illinois

547



548 SERGE RANDRIAMBOLOLONA

proof is due to Daniel J. Miler and is based on Hironaka’s Uniformization
Theorem for subanalytic sets.

In Section 4-7, we use Gabrielov’s “Explicit Fibre Cutting Lemma”, a di-
agonal argument on formal series and metric control on truncation of trans-
lated power series, to prove that there is a restricted analytic function f :
[−1, 1]n+1 → R whose graph cannot be defined by mean of restricted analytic
functions in n variables.

2. Definitions

Definition 2.1. We call S = (S(n))n∈N a structure over (R; +, · ) if it has
the following properties:

(S1) S(n) is a boolean subalgebra of P(Rn) for each n ∈ N.
(S2) If n is an integer and A is a semialgebraic subset of Rn then A ∈ S(n).
(S3) If A ∈ S(n), then R×A ∈ S(n+1).
(S4) If A ∈ S(n+1) and π : Rn+1 → R

n is the cartesian projection π(x1, . . . ,
xn+1) = (x1, . . . xn) then π(A) ∈ S(n).

It is said to be an o-minimal structure over (R; +, · ), if, in addition, it has the
following property:

(S5) Every element of S(1) is a finite union of singletons and open intervals.

In other words, a structure over (R; +, ·) is a collection of real sets, con-
taining the family of all semialgebraic sets and stable under natural set theo-
retical operations: union, intersection, complementation, cartesian projection
and cartesian product. The structure is o-minimal if the elements of S(1) are
the simplest possible: finite unions of intervals and points.

Elements of
⋃
n S(n) are called S-definable sets; given an S-definable set

A, we call the integer n such that A ∈ S(n) the arity of A.
A function f from some A ⊆ Rn to Rm is said to be S-definable if its graph

is an S-definable set.
For an introduction to the geometry in o-minimal structure, see, for in-

stance, [6] or [7].
Let us now define the notion of generated structure.
If U = (U (n))n∈N and V = (V(n))n∈N are such that U (n) ⊆ P(Rn) and

V(n) ⊆ P(Rn), we will denote by U v V the property “U (n) ⊆ V(n) for all
n ∈ N”.

IfA = (A(n))n∈N is such thatA(n) ⊆ P(Rn), there exists a smallest element
(for the partial orderv on

∏
n∈N P(P(Rn))) among the S = (S(n))n∈N forming

a structure over (R; +, · ) and satisfying A v S. We will denote this structure
by str (A), and call it the structure generated by A.
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Remark 2.2. Let n0 be an integer and F (n0) a subset of P(Rn0); when
no confusion is possible, we will identify F (n0) and the family

G = (G(n))n∈N ∈
∏
n∈N

P(P(Rn)),

where G(n) = ∅ if n 6= n0 and G(n0) = F (n0).
In such a case str (F (n0)) stands for str (G).

Given an n ∈ N, we let B(n) be the algebra of all functions f : [−1, 1]n → R

such that f admits an analytical continuation in a neighbourhood of [−1, 1]n.
We call such a function f a restricted analytic function (in n variables).

Let E = (E(n))n∈N∗ be the element of
∏
n∈N∗ P(P(Rn)) defined by

E(n+1) := {graph(f) , f ∈ B(n)}.

With the previous notation, we denote by Ran the structure str (E).

Theorem 2.3 (Gabrielov). Ran is an o-minimal structure.

An element A in Ran is called a global subanalytic set.

Definition 2.4. Given an integer n we let

Ran(n) := str (E(n+1));

Ran(n)-definable sets are called global sub-n-analytic sets.

In other words, Ran(n) is the structure generated by the graphs of all re-
stricted analytic functions in at most n variables (whereas there is no bound
on the number of variables for the restricted analytic functions used to gen-
erate Ran).

For instance,

{(x1, x2, x3) ∈ [−1, 1]3; cos
x1 + x2

2
+ sin

x3 − cosx2

2
> 0}

is a Ran(1)-definable subset of R3.

Proposition 2.5. Ran(n) is model complete (as a B(n)-structure).

Let p be an integer; we will denote by Ap(B(n)) the subalgebra of B(p)
generated by all the functions

(x1, . . . , xp) 7→ f(xσ(1), . . . , xσ(n)),

as σ ranges over {1, . . . , p}{1,...,n} (the set of functions from {1, . . . , n} to
{1, . . . , p}) and f ranges over B(n) (the set of restricted analytic functions in
n variables).



550 SERGE RANDRIAMBOLOLONA

Once we have noted that, for every p ∈ N, the algebra Ap(B(n)) is stable
under the action of partial derivation operators, Proposition 2.5 easily fol-
lows from Gabrielov’s “Explicit Model Completeness” ([11, Theorem 1 and
Corollary]).

We will use a more precise version of this result in Sections 4 and 5 to show
how Ran(n)-definable functions are controlled by restricted analytic functions
in at most n variables.

3. Sub-n-analytic sets

Proposition 3.1. Ran(n) is the structure generated by global subanalytic
sets of arity n+ 1.

The following proof is due to Daniel J. Miller.
The inclusion Ran(n) v str (R(n+1)

an ) is easy.
Let us prove the other inclusion by induction on n. The case n = 0 is clear,

so let n > 0 and assume the results holds for n− 1.
Denote by K the set [−1, 1]n. By the cell decomposition theorem ([7,

Theorem 2.11]), it is enough to prove that, given an Ran-definable function
f : C → R, where C is an Ran-cell either included in or disjoint from K, then
f is Ran(n)-definable.

Note that the mapping i : (x1, . . . , xn) 7→ (1/x1, . . . , 1/xn) is Ran(n)-
definable and sends R \K to K; we thus can suppose that A ⊆ K.

Up to a finer cell decomposition, we can furthermore suppose that |f(x)|−1
has constant sign on C and, since y 7→ 1/y is Ran(n)-definable, we can assume
that |f(x)| ≤ 1 for all x ∈ C.

Let G be the closure of the graph of f ; G is a compact subanalytic set of
dimension d ≤ n.

Hironaka’s uniformization theorem ([1, Theorem 0.1]) gives a d-dimensional
analytic manifold Y and a surjective analytic proper mapping ψ : Y → G.

Since G is compact and ψ surjective and proper, Y is compact; we then
easily get a finite family {φi : [−1, 1]d → Y }i=1,...,s of restricted analytic
functions such that the union of their images is covering Y .

Hence G =
⋃s
i=1 ψ ◦ φi([−1, 1]d) is an Ran(d)-definable set and thus an

Ran(n)-definable set.
By the induction hypothesis, C is an Ran(n−1)-definable set and thus an

Ran(n)-definable set. The function f is Ran(n)-definable, for its graph, G ∩
(C × R), is.

4. n-regularity

In the following sections, we prove that there are some Ran-definable an-
alytic functions in n + 1 variables which are not Ran(n)-definable. We first
show how each Ran(n)-definable function is “controlled”, through the notion
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of n-regularity, by the restricted analytic functions in n variables used to
define it.

Let n and p be two integers; in the proof of Proposition 2.5 we have defined
the algebra Ap(B(n)).

By definition, each g ∈ Ap(B(n)) can be written in the form

g(x1, . . . , xp) = Q
(
h1(xσ1(1), . . . , xσ1(n)), . . . , hq(xσq(1), . . . , xσq(n))

)
,

where q is an integer, Q is a polynomial in q variables with integer coeffi-
cients, the hi’s are restricted analytic functions in n variables and the σi’s are
mappings from {1, . . . , n} to {1, . . . , p}.

We will call an element of Ap(B(n)) a restricted analytic function in p
variables which essentially depends on at most n variables.

In some sense, the graph of an Ran(n)-definable function looks almost ev-
erywhere like an analytic variety defined as a zero-set of restricted analytic
functions depending on at most n variables.

Let us make this statement more precise: we first recall a special case of
Gabrielov’s “Explicit Fibre Cutting Lemma” (see [11, Lemma 3 and Theorem
1]):

Theorem 4.1 (Gabrielov). Given a d-dimensional sub-n-analytic set Y ⊆
R
m, there is a p ∈ N, a finite family {Xν} of sub-n-analytic subsets of Rm+p

and a sub-n-analytic subset V of Rm+p such that, if π : Rm × Rp → R
m is

given by π(x1, . . . , xm+p) = (x1, . . . , xm), one has:

(1) Y = π(V ) ∪
⋃
π(Xν);

(2) dimπ(V ) < d;
(3) for each ν, dimXν = d and π|Xν : Xν → Y has rank d at every point

of Xν ;
(4) for each s ∈ Xν , {x− s ;x ∈ Xν} is near 0 the zero-set of m+ p− d

elements fi : Rm+p → R of Am+p(B(n)), (dfi)i having rank m+ p− d
at 0;

(5) Xλ ∩Xµ = ∅ for λ 6= µ.

This theorem leads us to the following definition:

Definition 4.2. Let f be a function from a neighbourhood U of 0 in
R
n+1, to R. f is said to be n-regular at 0 if there exist

• an integer p,
• a (p+ 1)-tuple (g1, · · · , gp+1) of elements of An+p+2(Bn),
• a neighbourhood V ⊆ U of 0 ∈ Rn+1, and
• for each x ∈ V , a point (y1(x), . . . , yp(x)) in Rp,

such that

• gi(x, y1(x), . . . , yp(x), f(x)) = 0, for all i, and
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• the rank of (
∂gi
∂zj

)
1≤i≤p+1

n+2≤j≤n+p+2

is full at the point (x, y1(x), . . . , yp(x), f(x)).

A function f from a neighbourhood U of a ∈ Rn+1 is said to be n-subregular
at a if x 7→ f(a+ x) is n-regular at 0.

In other words, f is n-regular at 0 if, as in Theorem 4.1, the germ of its
graph is the germ of the projection π(X) of an analytic manifold X given as
the zero-set of some functions depending essentially on at most n variables,
and π|X is locally a diffeomorphism.

Proposition 4.3. Given an Ran(n)-definable function f : [−1, 1]n+1 → R,
there is a point a ∈]− 1, 1[n such that f is n-regular at a.

This proposition follows from an easy dimensional argument and Theorem
4.1.

5. Diagonalization

In the sequel we will build a function h : [−1, 1]n+1 → R such that

• there is no a ∈]− 1, 1[n+1, at which h is n-regular (and thus h cannot
be Ran(n)-definable),
• but h is a restriction to [−1, 1]n+1 of some analytic function from
R
n+1 to R (and consequently is Ran-definable).

We will now “enumerate” the germs (above 0 ∈ Rn+1) of n-regular (at 0)
functions f : Rn+1 → R.

We first have to choose a value y for f(0, . . . , 0).
By the definition of n-regularity, it is enough to consider, as p ranges

over N, all (p+ 1)-tuples (g1, . . . , gp+1) of elements in An+p+2(Bn) such that
gi(0, . . . , 0, y) = 0 and the rank of(

∂gi
∂zj

)
1≤i≤p+1

n+2≤j≤n+p+2

is full at points (0, . . . , 0, y).
Let us fix such a p ∈ N.
By definition, each g ∈ An+p+2(Bn) is of the following form:

• there is a q ∈ N and a Q ∈ Z[T1, . . . , Tq],
• there are some h1, . . . , hq ∈ B(n),
• for each i ∈ {1, . . . , q}, there is a mapping σi from {1, . . . , n} to
{1, . . . , n+ p+ 2},
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such that

g(x1, . . . , xn+p+2) = Q(h1(xσ1(1), . . . , xσ1(n)), . . . , hq(xσq(1), . . . , xσq(n))).

So let us fix a q ∈ N, a (p+ 1)-tuple of elements in Z[T1, . . . , Tq] and, for each
1 ≤ j ≤ q and 1 ≤ i ≤ p+1, a mapping σij from {1, . . . , n} to {1, . . . , n+p+2}.

The only parameters left free are now
• the value of y of f(0, . . . , 0),
• the (p+ 1)q-tuple of restricted analytic functions h in n variables.

All those germs are thus built by choosing a set of “assembly instructions”
(the integers p and q, polynomials Q and mappings σ) and then by assembling
“pieces” (the restricted analytic functions h in n variables) that fit this set of
instructions.

Let

s 7→

(
(p(s), q(s)), (Qk(s))1≤k≤p(s)+1, (σij(s)) 1≤j≤q(s)

1≤k≤p(s)+1

)
be a surjective mapping from N to∐

(p,q)∈N2

{(p, q)} × (Z[T1, . . . , Tq])
p+1 ×

((
{1, . . . , n+ p+ 2}{1,...,n}

)q)p+1

.

Fix an s ∈ N, and thus some integers p(s), q(s), some polynomials

(Qk(s))1≤k≤p(s)+1

and some mappings
(σkj (s)) 1≤j≤q(s)

1≤k≤p(s)+1

.

Then let Ms be the subset of

R× (R{X1, . . . , Xn}q(s))
p(s)+1

consisting of the elements(
y,
(
(gkj )

1≤j≤q(s)

)
1≤k≤p(s)+1

)
that satisfy the conditions in Definition 4.2:

(1) hi(0, . . . , 0, y) = 0,∀i ∈ {1, . . . , p(s) + 1},
(2) the rank of (

∂hi
∂xj

)
1≤i≤p+1

n+1≤j≤n+p+2

at (0, . . . , 0, y) is full, with

hk(x1, . . . , xn+p(s)+2) = Qk(s)
(
gk1 (xσ(s)k1 ), . . . , gkq(s)(x

σ(s)kq(s))
)
,

and
xσ(s)kj = (xσ(s)kj (1), . . . , xσ(s)kj (n)).
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Then, by the Implicit Function Theorem, we have a mapping

Φs : Ms −→ R{Y1, . . . , Yn+1}
which sends (

y, (gkj ) 1≤j≤q(s)
1≤k≤p(s)+1

)
to an analytic function f defined in a neighbourhood of 0 ∈ Rn+1 and satis-
fying

• f(0, . . . , 0) = y;
• there are analytic functions (f1, . . . , fp(s)) in a neighbourhood of (0,
. . . , 0) such that the graph of (f1, . . . , fp(s), f) is, in a neighbourhood
of (0, . . . , 0, y), the zero-set of the hi’s.

Remark 5.1. By the definition of n-regularity, if f : U → R is n-regular
at 0 ∈ Rn+1, then the germ of f at 0 is in

⋃
s∈N Φs(Ms).

Let us denote by RD,E [X1, . . . Xm] the set of polynomials in k variables,
of degree < D and of order ≥ d at the origin, with real coefficients.

Definition 5.2. We denote the truncation mapping by

TmDE : R{X1, . . . , Xm} → RD,E [X1, . . . Xm]

h 7→
∑

D≤|ν|<E

∂|ν|h

∂X
ν (0) ·X ν .

The chain rule for derivatives and an easy induction on E gives us the next
proposition, which will be useful in deducing the non-surjectivity of the map
Φs from the non-surjectivity of some rational mapping ΦsDE between finite
dimensional spaces.

Proposition 5.3. Given three integers s, D and E with D < E, let M̃s

be the image of Ms by the truncation

Π := Id ⊗(Tn0E
⊗q(s))

⊗(p(s)+1)

of power series

Π : R× (R{X1, . . . , Xn}q(s))
p(s)+1

→ R× (R0,E [X1, . . . , Xn]q(s))
p(s)+1

.

Then there is a rational mapping ΦsDE such that the diagram

Ms
Φs //

Π

��

R{Y1, . . . , Yn+1}

Tn+1
DE

��
M̃s ΦsDE

// RD,E [Y1, . . . , Yn+1]
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is commutative.

This proposition simply says that the derivatives at the origin of order < E
of an element ξ in the image of Φs depend only on y and on the derivatives
at the origin of order < E of the gkj used to define ξ in the source space of
Φs, and that this dependence is in a rational manner.

6. Translation in the source space

The previous section would help us to produce, by a diagonal argument,
an analytic function which is outside of the image of each Φs and thus is not
n-regular at 0 ∈ Rn+1.

However, we want to construct a function which is nowhere n-regular in a
neighbourhood of 0. Hence we have to consider x 7→ h(α + x) as α ranges
over a neighbourhood (let us say ]−1, 1[n+1) of 0; unfortunately, we then lose
the finite dimensional dependency we found in the previous section.

More precisely, for α ∈]− 1, 1[n+1, if we let τα be the function that assigns
to an analytic function h near [−1, 1]n+1 the function x 7→ h(x+α) (which is
analytic near 0), we do not have the equality

Tn+1
DE (τα(h)) = Tn+1

DE

(
τα
(
Tn+1
DE (h)

))
;

each partial derivative of hα at the origin depends on all partial derivatives
of h at zero.

The aim of this section is to show that this dependency can, however, be
handled by metric arguments.

We first equip each RD,E [Y1, . . . , Yn+1] with the norm∥∥∥∥∥∑
ν

aνY
ν

∥∥∥∥∥
∞

= max
ν
{|aν |}.

Proposition 6.1. Let (Dk) be a increasing sequence of integers, η a pos-
itive real number, α a point in ]− 1, 1[n+1, h an analytic function in a neigh-
bourhood of [−1, 1]n+1 and K an integer.

If for all k > K we have∥∥∥Tn+1
DkDk+1

(h)
∥∥∥
∞
≤ η

2k(Dk+1!)n+1 ,

then ∥∥∥Tn+1
DKDK+1

(τα (h))− Tn+1
DKDK+1

(
τα

(
Tn+1
DKDK+1

(h)
))∥∥∥

∞
≤ η.

This is an easy consequence of the fact that, if Dk ≤ |µ| < Dk+1, then

∂|µ|
(
τα(h)

)
∂Y µ1

1 . . . Y
µn+1
n+1

(0) =
∑
j≥k

∑
νi≥µi

Dj≤|ν|<Dj+1

∂|ν|h

∂Y ν1
1 . . . Y

νn+1
n+1

(0) ·
∏
i

(
νi
µi

)
αi
νi−µi
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and ∣∣∣∣∣∏
i

(
νi
µi

)
αi
νi−µi

∣∣∣∣∣ ≤ (Dk+1!)n+1

if |ν| < Dk+1 and |α| ≤ 1.

Remark 6.2. The linear mapping Lkα on RDk,Dk+1 [Y1, . . . , Yn+1] defined
by Lkα(P ) = TDkDk+1(τα (P )) is an isomorphism, since the image of a mono-
mial X

ν
is the sum of X

ν
and some lower degree monomials.

Furthermore we have the identity∥∥∥(Lkα)
−1
∥∥∥
∞

= max
{

1/‖Lkα(P )‖∞ ; ‖P‖∞ = 1
}

and the mapping (P, α) 7→ 1/‖Lkα(P )‖∞ is continuous on the compact set
{‖P‖∞ = 1} × [−1, 1]n+1.

Thus we have a bound Sk for the norm of (Lkα)−1 that is independent of
α ∈]− 1, 1[n+1.

7. Construction

We will use the good behaviour through truncation of the Φs to build a se-
quence of integers (Ds) and, for each s ∈ N, a polynomial Ps in
RDs,Ds+1 [Y1, . . . Yn], such that the formal power series h(Y1, . . . , Yn+1) =∑
s Ps(Y1, . . . , Yn+1) is the power expansion of an analytic function on Rn+1,

while τα (h) is outside of the image of Φs for each s ∈ N and α ∈ ]− 1, 1[n+1.
The restriction to [−1, 1]n+1 of this function (which is clearly Ran(n+1)-defi-
nable) will thus not be Ran(n)-definable as announced in Section 5.

As we noted before Proposition 5.3, the lack of surjectivity of each Φs will
follow from the lack of surjectivity of some mapping ΦsDsDs+1

between finite
dimensional spaces.

More precisely, if we fix s and D, the function

E 7→ dim(R× (R0,E [X1, . . . , Xn]q(s))
p(s)+1

)

is a polynomial of degree n in E, whereas

E 7→ dim(RD,E [Y1, . . . , Yn+1])

is a polynomial of degree n+ 1.
We thus can build an increasing sequence of integers (Ds) such that

dim(R× (R0,Ds+1 [X1, . . . , Xn]q(s))
p(s)+1

) + n+ 1

is smaller than
dim(RDs,Ds+1 [Y1, . . . , Yn+1]),

for each s.
Suppose we have built for r < s some Pr ∈ RDr,Dr+1 [Y1, . . . Yn+1] and

ηr > 0 such that
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(Ar) ∀t < r , ‖Pr‖∞ ≤ ηt
2r(Dr+1!)n+1 ;

(Br) the ball of center Pr and radius ηrSr, where Sr is such that

∀α ∈]− 1, 1[n+1, Sr ≥ ‖(Tn+1
DrDr+1

◦ τα)
−1‖∞

(see Remark 6.2), does not meet the image of

ρr : (α, ξ) 7→ (Tn+1
DrDr+1

◦ τα)
−1 ◦ ΦrDrDr+1

(ξ),

where α ranges over ]− 1, 1[n+1 and ξ over M̃s.
We can then choose Ps ∈ RDs,Ds+1 [Y1, . . . Yn+1] and ηs > 0 satisfying (As)

and (Bs) as follows:
Let

δ = min

{
ηt

2r(Dr+1!)n+1 ; t < s

}
;

by the dimensional inequality of source and image space (due to the choice
of Ds+1) and the rationality of ρs : (α, ξ) 7→ (Tn+1

DsDs+1
◦ τα)

−1 ◦ ΦsDsDs+1
(ξ),

we know that the image of ρs is nowhere dense in RDs,Ds+1 [Y1, . . . Yn+1]. We
thus can choose Ps and ηs such that ‖Ps‖ < δ and

B(Ps ; ηsSs) ∩ ρs(]− 1, 1[n+1 × M̃s) = ∅.

Let h(Y1, . . . , Yn+1) be the formal series
∑
s Ps(Y1, . . . , Yn+1). We easily

get from the inequalities (Ar) that h is the power expansion of an analytic
function on Rn+1.

Let α be a point in ]− 1, 1[n+1. From condition (Br) we get that

(Tn+1
DrDr+1

◦ τα)
(
B(Tn+1

DrDr+1
h ; ηrSr)

)
∩ Tn+1

DrDr+1
Φr(Mr) = ∅

and then, by the definition of Sr,

B((Tn+1
DrDr+1

◦ τα ◦ Tn+1
DrDr+1

)h ; ηr) ∩ Tn+1
DrDr+1

Φr(Mr) = ∅.

By (As) for s > r, we get from Proposition 6 that∥∥∥(Tn+1
DrDr+1

◦ τα)h− (Tn+1
DrDr+1

◦ τα ◦ Tn+1
DrDr+1

)h
∥∥∥
∞
≤ ηr;

thus
(Tn+1
DrDr+1

◦ τα)h /∈ Tn+1
DrDr+1

Φr(Mr).

Hence
τα h /∈ Φr(Mr).
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