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AN EXTREMAL FUNCTION FOR THE MULTIPLIER
ALGEBRA OF THE UNIVERSAL PICK SPACE

FRANK WIKSTROM

ABSTRACT. Let H2, be the Hilbert function space on the unit ball in
C™ defined by the kernel k(z,w) = (1—(z,w)) 1. For any weak zero set
of the multiplier algebra of H2,, we study a natural extremal function,
E. We investigate the properties of E and show, for example, that F
tends to 0 at almost every boundary point. We also give several explicit
examples of the extremal function and compare the behaviour of E to
the behaviour of §* and g, the corresponding extremal function for H°
and the pluricomplex Green function, respectively.

1. Introduction

Let m > 1 be an integer and define k£ : B™ x B™ — C by k(z,w) =
(1—(z,w))~t, where B™ is the unit ball in C" and (z,w) = > iy 2jWj is the
standard inner product on C™. It is not difficult to check that k is a positive
kernel on B™, i.e., that for any choice {A1,..., A, } of a finite number of points
in B™ the matrix

KOs = (1= )

Jik=1

is positive semi-definite. Let H?2, denote the Hilbert function space on B™ de-
fined by k. More explicitly, let k,(-) = k(-,w) and let H2, be the closed linear
span of {k, : w € B™} under the inner product (3, ajkuw;, >y bkkw, )z, =
>k @jbek(wi, wj).

Recently, there has been a substantial amount of interest in the space H2,,
the main reason being that k is a complete Pick kernel and furthermore that &
has a certain universal property among complete Pick kernels. Let us quickly
review these notions. If H is a (complex) Hilbert function space on X, recall
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that a function ¢ : X — C is a multiplier of H if ¢f € H for all f € H.
If ¢ is a multiplier of H, the closed graph theorem implies that the operator
My : H — H defined by M, f = ¢f is bounded. We define Mult(H) to be the
set of multipliers of H equipped with the norm [|¢||nute(r) = | Mgllop, Where
I llop is the operator norm. With this definition, one can check that Mult(H)
is a Banach algebra.

Given Aq,..., A\, € D and wyq,...,w, € D, recall that Pick’s classical theo-
rem [10] gives necessary and sufficient conditions for the existence of a func-
tion f € H>®(D) with ||f| g < 1 such that f()\;) = w; for 1 < j <n. More
precisely, such a function f exists if and only if the Pick matrix

< 1 —wjwy ) "

L= XAk / ke

is positive semi-definite. One modern approach to Pick’s theorem is to view
H®°(D) as the multiplier algebra of the Hardy space H?(D).

For the abstract formulation of Pick’s theorem, assume that H is a Hilbert
function space on X with reproducing kernel K and assume that A\1,..., A\, €
X and wy,...,w, € C. The Pick problem is to give necessary and sufficient
conditions on the A;’s and the w;’s for the existence of ¢ € Mult(H) with
|lInute() < 1 and ¢(Aj) = w; for 1 < j < n. It is not too difficult to verify
that a necessary condition is that the matrix

n

((1 — wjﬁ)k)K()\j, )\k))j,kzl

is positive semi-definite. If this condition is also sufficient we say that K is
a Pick kernel. If the corresponding necessary condition for the matrix-valued
version of Pick interpolation is sufficient for all matrix sizes, we say that K
is a complete Pick kernel. Pick’s classical theorem can now be formulated
as saying that the Szegd kernel S(z,w) = (1 — zw)~?, i.e., the reproducing
kernel for H%(D), is a Pick kernel. (In fact, the Szeg6 kernel is a complete
Pick kernel.) The kernel & in this paper is just the Szegd kernel for m = 1
and our space H? is just the Hardy space H?(D). For m > 2, H2 is not the
usual Hardy space in the ball of C"™ but a proper subspace of it.

For every integer m, the kernel k is a complete Pick kernel on B™, and
conversely, if H is a Hilbert function space with reproducing kernel K, and K
is an irreducible complete Pick kernel, then H can be isometrically embedded
in H2, for some m and some non-vanishing function §. This was proven by
Agler and McCarthy in [1].

In this paper, we will define a certain extremal function for the multiplier
algebra of H2, and study its properties. This extremal function is a natural
analogue of the Carathéodory function §* which has been studied in connec-
tion with the pluricomplex Green function. (See, for example, Edigarian and
Zwonek [7] and Wikstrom [12], [13].)
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2. H? and its multiplier algebra

It is straight-forward to check that the monomials {z%},cnm are mutu-
ally orthogonal in H?2,, and from a power series expansion of k we see that
20132 = a!/|a|l. (Here, as usual, if @ = (a1,...,0qy,) is a multi-index,
2% = ;fl ceezfm ool = a1 + -+ ap, and al = ag!- - apy!.) From this it
follows that

2

. |ca al
Hrznz{f:anz IIfH%,zn:Z la! R

It is also possible to give integral representations of the norm in HZ2,. (See
Alpay and Kaptanoglu [3].) If ¢ is a multiplier of H2,, then ¢ must be holo-
morphic since ¢ = ¢ -1 and 1 € HZ. By general Hilbert function space
theory it also follows that ¢ must be bounded, so Mult(H2) c H>(B™). If
m > 1, this inclusion is proper. Interestingly enough, the Mult-norm and the
H?2 -norm agree on monomials.

PROPOSITION 2.1.  Let ¢(2) = 2. Then ||9| 312 ) = 6132 = o!/|all.

Proof. For simplicity of notation, assume that m = 2. (The argument
can be adapted to work for every m.) Let = («1, ). First note that if
j = (41,72) is a multiindex, then

(gl + et <j1 +j2+ o +a2) - (j1 +j2> (al —|—a2) et
(Jj+ a)! hito N J1 o J ol
This can be seen from considering the natural expansions of

(x + 1)j1+j2+a1+a2 =(z+ 1)j1+j2 (z + 1)a1+a2’

and comparing the coefficients of 27171, Now, if f € H2,, f =3 c¢j,j, 2{1252,
then

||¢f||2 _ i |cj1j2‘2 < io: |cj1j2|2 _ a_'HfHQ
HZ, — (j1+j2+041+042) - (j1+j2) (a1+a2) - |a|] H2 -
J1,j2=0 Jiton J1,52=0 \ J1 al

Hence ||¢”§/[u1t(H2 ) < al/[all. On the other hand, since 1 € H2 and ||[1]| = 1,
||¢H12\/Iult(H?n) = ||¢H12L13n = al/lall. O

As far as the author is aware, there is no explicit description of Mult(H?2),
but the following result gives a characterization of the multipliers of H2, that
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can be used to deduce some properties of the multiplier algebra, even though
the condition is far from easy to verify for a given ¢ € H>*(B™).

THEOREM 2.2. Assume that ¢ is a holomorphic function on B™. Then ¢
is a multiplier of H2, with Pllntute (2 ) < 1 if and only if

K(z,w) = 1o olz)olw) If(é)qi;v)

is a positive kernel on B™.
For a proof of Theorem 2.2, see, for example, [2, Corollary 2.37].

REMARK. Recall that a sesqui-holomorphic kernel K(z,w) is positive if
and only if there is a Hilbert space H and a holomorphic function H : X — H
such that K(z,w) = (H(z), H(w)). (See, for example, Agler-McCarthy [2,
Theorem 2.53].)

As a consequence of this characterization of the multiplier algebra of H2,
we can prove that the unit ball of Mult(H?2) is biholomorphically invariant.
Let Aut(B™) denote the group of biholomorphic self-mappings of B"™ and let
ball(Mult(H7,)) = {¢ € Mult(H7,) : [|gllvurczzz,) < 1}-

THEOREM 2.3.  Assume that ¢ € ball(Mult(H2)) and that T € Aut(B™).
Then ¢ o T € ball(Mult(H?2)).

Proof. Let ¢ € ball(Mult(H2))). Recall that Aut(B™) is generated by
unitary mappings of C™ and mappings of the form

a—z — la|?)Y/22 — |a|?)/22,,
Ta(z):< (1 —lal*) . w>

where a € D. (See, for example, Rudin [11] for a proof of this fact.) It is clear
that || fllg2 = ||foUl| g2, for all unitaries U and all f € H;, and hence || f-$o
Ullis, = | FoU~ " 0llizs, < 1foU s, = £l a2, 50 $oU € ball(Mult(F2,).
To finish the proof, it is enough to show that ¢ o T, € ball(Mult(H2,)) for
every a € D. Note that

1—@2’1’ 1—az 1—az

(@ —z1)(@—wy) + (1 —|a|?) (22w + - + 2mWm)
(1 — @21)(1 — (l’lDl)
(1—Ja*)( = (z,w))
(]. — (_ZZl)(l — (l’lf)l) '
Let 1 = ¢ o T,. By Theorem 2.2, ¢ € ball Mult(H?2,) if and only if

_ 1 -9(=)9(w)
1—(z,w)

1 (To(2), To(w)) = 1 —

Kdi(zaw)
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is a positive kernel. But

Ky(T,(2). Tu(w) = - 1<‘Tf((j))§<jgi})>
|~ $(2)00@) (1~ az)(1 - am)

1—(z,w) 1—|al?

= (1= la*)T (H(2)(1 - az1), H(w)(1 - awr))

for some auxiliary Hilbert space H and some holomorphic H : B™ — H
using the remark following Theorem 2.2. Hence K, is a positive kernel, and
Y € ball(Mult(H2)). O

3. The extremal function

DEFINITION 3.1. Let F be a set of functions on X and let A C X, A # X.
If there is a function f € F such that f~1(0) = A, we say that A is a zero set
for F. If A is the intersection of zero sets, we say that A is a weak zero set
for F.

DEFINITION 3.2. Let A be a weak zero set for Mult(H?2). We define the
(Mult(H?2,)-)extremal function for A as

E(z, A) = sup{logRe ¢(2) : ¢ € Mult(H?), plIntute(mz) < 1, ¢[a = 0}.

If A = {w} is a singleton, we usually write E(z,w) instead of F(z, {w}).
Similarly, if A is a weak zero set for H2,, we define the (H2,-)extremal function
for A as

F(z,A) = sup{logRe f(2) : f € Hp,, | flluz, <1, f]A =0},

In this paper we will be mostly concerned with the Mult(H2,)-extremal
function, but we will shortly see that E and F are closely related.

DEFINITION 3.3. Let z € B™ and let A be a weak zero set of B™. If
¢ € ball(Mult(H?2)) satisfies that ¢|A = 0 and logRe ¢(2) = E(z, A), we say
that ¢ is E-extremal (with respect to z and A). Similarly, if f € H™ with
I/l <1, f]A =0 and logRe f(z) = F(z,A), we say that f is F-extremal.

Note that if m = 1, and A consists of a single point, then F(z,w) is just the
(negative) Green function for the unit disc E(z,w) = g(z,w) = log|&=%].
Also, if we replace ball(Mult(H2,)) with ball(H°°(B™)) in the definition of
FE, we obtain the Carathéodory function 6*. Later on, we will compare E to
¢6* and to the pluricomplexr Green function g, so for completeness let us define
these functions here as well.
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DEFINITION 3.4. Let ©Q be a domain in C™ and let A be a zero set for
H° (). We define the Carathéodory function, 6*, by

5% (2, A) = sup{log | £(2)] : f € H(Q), ]|~ < 1, f|A = 0}.

DEFINITION 3.5. Let Q be a domain in C™ and let v be a non-negative
function on 2. We define the pluricomplexr Green function with poles defined
by v by

g(z,v) = sup{u(z) : u € PSH(Q),u < 0,1, > v},

where v, denotes the Lelong number of u, i.e.,

SUD|¢_pey U
) = im "= 1)
T T

Note that if A is a zero set for H*, then 6*(z, A) < g(z, xa), and if @ = B™
and A is a zero set for Mult(H2,), then E(z, A) < §*(z, A). Let us move on
to collect the basic properties of E and F'.

THEOREM 3.6. The functions E and F have the following properties:

(1) E is biholomorphically invariant; more precisely, if T € Aut(B™),
then E(z,A) = E(T(z),T(A)).

(2) For every z € B™ and every weak zero set A for HZ,, there is a
unique F-extremal function, which we will denote by EF%, given by
EF% = Pak./||Pak.||, where Py is the orthogonal projection HZ2, —
I4 and 14 is the space of functions in H2, that vanish on A. Hence
F(z,A) =log ||Pak.|.

(3) For every z € B™ and every weak zero set A for Mult(H2,), there is
a unique E-extremal function, which we will denote by EE7, given by
EF% = EFE4k,/||k.||. Hence F(z,A) = E(z, A) + log||k.||. Further-
more, if A is finite, then EE? is a rational function of degree at most
|Al.

(4) E(-,A) and F(-, A) are plurisubharmonic on B™ and continuous on
B™\ A.

Proof. (1) is a direct consequence of Theorem 2.3.

(2) A normal family argument proves the existence of an F-extremal func-
tion. If f and g are two F-extremal functions, then (f + ¢)/2 is also F-
extremal. Note that an F-extremal function must have norm exactly 1. Since
every point in the unit sphere of a Hilbert space is an extreme point (in the
convex sense), f = g. A variational argument (see [2, Proposition 9.31] for
details) shows that any function which is orthogonal to the F-extremal func-
tion must be orthogonal to Psk,. Hence, the F-extremal function must be
the normalization of Pxk,.

(3) Again, a normal family argument proves the existence of an E-extremal
function ¢. Let N be the closed linear span of {k¢ : ( € A} and k.. The Pick
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property of k implies that the linear operator on N that sends k¢ to 0 for
all ( € A and sends k. to ¢(z)k, has norm 1. From this it follows from
a computation ([2, Proposition 9.33] for details) that F(z, A) = E(z, A) +
log ||k || and hence that the function ¢k, /|k,|| must be F-extremal. But
since the F-extremal function is unique, so is the F-extremal function.

Now assume that A is finite, say A = {w,...,w,}. It is clear that
E(z,A) = logec, where ¢ is the (unique) positive real number such that
det P = 0, where

1—¢c2 1 1
1— 2|2 1—{z,w; 1= (z,w,
ﬂ | <1 ) <1 )
p=|1—(w,2) 1—(wi,wr) 1 — (wy, wy)
1 1 1
1- <wn7 Z> 1- <wn7w1> I <wn7wn>

Choose v = (’Uo7 . 7'Un)T c (Cn-i-l such that Pv = 0. Take any C c B™. Since
there exists a function ¢ € ball(Mult(H2,)) with ¢(z) = ¢ and ¢(w1) = --- =
¢(wn) = 0, the matrix

1—ca
1—§z,<>
P 1 — (w1, ()
P= :
1
1—ac 1 1 1—|af?
1={C2) 1-(Gw) — 1-(Cwn) 1—[¢|?

must be positive semi-definite for some choice of « (namely for a = ¢(()).
Take any n € C and let v,, = v @ 7. Hence

— |a)? l—ca
||C||2+2Re77 vo +_

J

0< U*Pv,7 = |77|2

n

11 wJ,Q

for all 7. Consequently,

(3.1) 1_CO‘ Z wj 50

=1

and this equation determines « unlquely, since it is straight-forward to check
that vg must be non-zero. Furthermore, we see from Equation (3.1) that
a = ¢(¢) is a rational function in ¢ of degree at most n.
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(4) Take a sequence z; in B"™ \ A converging to z € B"™ \ A and consider
EEZ"‘. By passing to a subsequence, we may assume that EE;:" converges
locally uniformly to some ¢ € Mult(H2). Clearly ¢|a = 0, so E(z,A) >
log|¢(2)| = limjlog|EEY (2;)| = lim; E(z;, A). Hence E is upper semicon-
tinuous. On the other hand, on compact subsets of B"\ A, F is the supremum
of a class of continuous functions, and consequently E is lower semicontinu-
ous. Since F is the supremum of a class of plurisubharmonic functions and FE
is upper semicontinuous, F must be plurisubharmonic. Also, since

1 1
F(z 4) = B(= A) + log |k = E(z, 4) + 3 og T

F is also plurisubharmonic and continuous on B™ \ A. O

The fact that the E-extremal function is unique gives another proof that
there is no Pick kernel whose multiplier algebra is H°°. More precisely:

COROLLARY 3.7. There is no Pick kernel on B™ for m > 2 whose multi-
plier algebra is H>(B™).

Proof. Recall that the extremal functions for §* in general are not unique,
not even when A is a singleton. In fact, if w = 0 and z = (A, 0), then
f = z1 + 23 is extremal for §* and all ¢ with |¢| < 1/2.

Note that the proof of uniqueness for the E-extremal function in Theo-
rem 3.6 only uses the fact that k is a Pick kernel. Hence, there is no Pick
kernel on B™ whose multiplier algebra is H>(B™). O

THEOREM 3.8. Let A be a weak zero set for H2,, and let a € B™ \ A.
Then

F(z,AU{a}) = %log (exp(F(z,A))* — |[EF(2)]?) .

Consequently,

B(z, AU {a}) = 3 log (exp(B(= A))” — (1~ |=]) | EF3()).

Proof. Let A’ = AU {a}. Recall that if X is a weak zero set for H2,, Ix
denotes the subspace {f € H2, : f|X = 0}. Using the reproducing kernel
property, we see that Ix is the orthogonal complement of the closed linear
hull of {ky : A € X}. Hence, for f € H2,,

<f7 PAka>

= T Psk,.
[Paka|? "4

Puf=f—Pif=Paf-

In particular,
<k27 PAka>

Pak,|? = (Park,, k) = (Pak,, k,) — w2 -Atal
IPacksl? = (Pavks ) = (Pabe ) = g

<PAkaa kz>

= ||Pak:||* — |[EF4(2)]%,
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since EFY = Pak,/||Pak,||. Using Theorem 3.6, we obtain the formula for
F(z,A"). The expression for E(z, A') follows from the fact that E(z, A’) =
F(z,A") —log||k.]|- O

PROPOSITION 3.9. If A and B are weak zero sets of B™, then E(z, AU
B) > E(z,A) + E(z, B) with equality if and only if EE3 5z = EE4EE%.

Proof. Take z € B™. If z € AU B, then clearly E(z,AUB) = E(z,A) +
E(z,B) = —oco. Otherwise, ¢ = EE3 EE% vanishes on AUB, so E(z, AUB) >
log|¢(z)| = E(z,A) + E(z,B). Furthermore, if E(z,AU B) = E(z,A) +
E(z,B), then ¢ = FE{EE} is E-extremal for (z, AU B). Conversely, if
EFE3 g can be factorized as EE3 5z = EFE3FEFE%, it is clear that E(z, AU
B) = E(z,A) + E(z, B). O

PrOPOSITION 3.10. If A C B are weak zero sets of B™, then E(z,A) >
E(z, B) with equality if and only if EE%|B = 0.

Proof. Since EE%|A = 0, E(z,A) > E(z,B). Assume that E(z, A) =
E(z,B). Then EE% must be E-extremal for (z, A), so the E-extremal func-
tion for (z, A) vanishes on B. Conversely, if EE%|p = 0, then E(z, B) >=
E(z,A), so E(z,A) = E(z, B). O

THEOREM 3.11.  Let A be a weak zero set for Mult(HZ2,). Then for almost
allp € OB™, lim,_,, E(z, A) = 0. (Here, the limit is to be taken in a Kordnyi
region; see, for example, [11].)

Proof. Let M = {f € H2, : f|A = 0}. Then M is a Mult(H?2)-invariant
subspace of H2,. (Note that M is non-empty, since Mult(H2) C HZ.) By a
theorem of Arveson [4], there is a sequence {¢;} C Mult(H2) N M such that

Pym= Z My, M;j’
J
where the sum converges in the SOT-topology. Hence

Puk. =Y My, M k.= My, 6;(2)k- —Z¢a

J J

But HPMkZ||2 = <PMkZ5PMkZ> = <PMk27kZ> + <P./\/lkzap/\/lkz - kz>
= (Pmk, k), so

|Prks|)? = (Prks, k) Zm R (LAl
By Theorem 3.6,

[|1Pak ||
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On the other hand, Green, Richter and Sundberg [8] have shown that the
sequence {¢;} can be chosen to be inner, i.e., that 3 |p;(2)]* = Las z —p
for almost every p € OB™. O

REMARK. It is natural to conjecture that F(z,A) — 0 as z — p for all
p € 0B™\ A. Of course, if A is finite, then E(z, A) — 0 everywhere on OB™.

4. Examples

ProPOSITION 4.1. Ifw € B™, then

_ 1 (1 = =l*) (@ — [lwl*)
E(z,w)—ilog (1— TEERTIE >

Proof. Clearly E(z,w) = logcg, where ¢q is the supremum over all |c| such
that

1—|c|? 1
Ao | TTJF TR | 5o

1—(w,z) 1—[w]|?
Clearly A > 0 if and only if |¢] < 1 and det A > 0, i.e., iff
(1= [l20*) (A = flewlf*)

1—|e|®* >
I R AT
Note that E(z,w) = 6*(z,w) = g(z,w), where 6* and g are the Carathéodory
function and the pluricomplex Green function, respectively. O

PROPOSITION 4.2. Let r € D and let wy = (1,0), wy = (—7,0) and set
A = {wy,wy} C B2 Then

E(z,A) = %log <1 -

A= DA+ =)A= ||Z||2)> .

|1 + 2177|2|1 — 21f|2

Proof. Again, E(z,w) = log ¢y, where ¢ is the solution to
1—|c? 1 1

1 —4|Z||2 1—(z,w1) 11— (zwy)
1 1
T wn s T-(wnen 1-(wnes
— (W1, 2 — (W1, W1 — (W1, W2
1 1 1
1—(wg,2) 1—(wo,w1) 1— (wy,ws)
1— e 1 1
1—{‘2’”2 1—2z7r 1+ 217
1 1
=det — =0
1—rz; 1—|r2 14r
1 1 1

L+rzy 142 1-—|r?
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An elementary but somewhat tedious computation leads to the formula given
above. Alternatively, we could use Theorem 3.8 to prove this proposition. [

REMARK. In the two pole setting, Coman [5] has computed g and it follows
from results in [7] that in this case 6* = g. However, E is strictly less than
these functions unless zo = 0 or z; = =£r.

THEOREM 4.3. Let A= {z, =0} C B%. Then

|22/

1

Proof. From Proposition 3.10, we see that E(z, A) < infy,ca F(z,w). Let
w = (z1,0). The mapping

T((1,C2) = ( “ = - |Zl|2C2>

1-Gz' 1-Ga
satisfies T € Aut(B?), T(w) = 0 and T(2) = (0,22/+/1 — |21]?). Hence

|22
Vi-lal?
by Proposition 4.1. Furthermore f(¢) = (2 is the E-extremal function for
T(z) and 0 and hence f,, = f o T~ is the E-extremal function for z and w.

On the other hand, the zero set of f is A and T-1(A) = A, so f,1(0) = A.
By Proposition 3.10, E(z, A) = E(z,w). O

E(z,w) =log

REMARK. In this setting, we again have that ' = §* = g. See Lérusson
and Sigurdsson [9] for the derivation of ¢ in this case.

REMARK. The fact that E(z, A) = inf,ca E(z,w) when A = {25 = 0} is
not an example of a general principle at work. In fact, the equality E(z, A) =
infca E(z,w) holds if and only if A is the intersection of B™ with a complex
hyperplane. This can be seen using Proposition 3.10 and the fact that the
zero set of a function that is F-extremal for a singleton is just a hyperplane.

PROPOSITION 4.4. Let A = {z = 0} C B? and let a € B>\ A. Define
A= AU{a}. Then

1
E(Z,A/) = 5 log <

[21?_ 2lP(0 = |a[*)A - [al*)d - Izz))_

L —[z)? 11— z1a: 21 - (z,a)|?

Proof. Let z € B2, From the proof of Theorem 4.3 we see that

EE4(¢) = ew@— \/1_|21|2’

1-Gz
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where 6 € R is chosen so that EE%(z) is positive real. Hence, using Theo-
rem 3.6, we obtain

e¢y — |21]2 — 2|2
B = i 0 = e ey

and consequently, by Theorem 3.8,

E(z,A")

%log (exp(E(z, 4))* — (1 = [l2|*)| EF% (2)?)
_ }log( [21? _ 2lP( = a3 - [a*)d - IZQ))_ 0

1—1z? 1 — z1@1|%|1 — {2z, a)|?

THEOREM 4.5. Let A = {2120 = 0} C B2. Then

_1 21|22/ (2 = ||2]1)
Bz 4) = 3 log ((1 — ) - lzz2>> '

Proof. Let z € B? and let B = {z2 = 0} U {(0,22)}. Then

1 25]2 2012(1 = |2512)(1 = |12]|2
E(z,A) < B(z,B) = 1og<1|_7|21|2 =X 1|_2|Z>2<|2 [E >)

>
- < 1 Pal?(2 = 1) ) |
2\ TP = [2P)

by Propositions 3.10 and 4.4. On the other hand, if X = {z; = 0}, z € B2
and a = (0, z2), then

Z2Co

(1-¢z)(1—=((2)

Pxk-(¢) = exp(E(z, X)) EEX (C) =

From the proof of Theorem 3.8 it follows that

_ <kz7 PXka>
[1Px Fall?
Z2G2 LS
(I=Gz)(1—((z) 1-Gzn
Now, EFf = Pgpk./||Ppk.||, so the zero set of EFf equals the zero set of
Pk, and from Theorem 3.6 if also follows that the zero set of EEF equals the

zero set of Ppk, since the kernel function k, is zero free. From Equation (4.1)
we see that Pgk, and hence EE% vanishes on A. Thus

E(2,A) = B(z, B) = llog( 2122l (2 — |12]1°) )

(4.1) Pgk. = Pxk. Pxkq

2 (1=l = [22?)
by Proposition 3.10. O
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REMARK. In this setting, F is smaller than g. The pluricomplex Green
function with poles along A = {z120 = 0} has been computed by Nguyen
Quang Dieu [6], and even though §* is not completely known, it is clear that

&

z, A) > log|2z122| (since f(z) = 22129 is a H* function bounded by one

and f vanishes on A). In fact, on D = {z € B? : |z| < 1/v/2, 2] < 1/V2},

5% (
(1]
2]
(3]

(4]

(5]

(9]

[10]

[11]

z,A) = g(z, A) = log 221 29].
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