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AN EXTREMAL FUNCTION FOR THE MULTIPLIER
ALGEBRA OF THE UNIVERSAL PICK SPACE

FRANK WIKSTRÖM

Abstract. Let H2
m be the Hilbert function space on the unit ball in

C
m defined by the kernel k(z, w) = (1−〈z, w〉)−1. For any weak zero set

of the multiplier algebra of H2
m, we study a natural extremal function,

E. We investigate the properties of E and show, for example, that E
tends to 0 at almost every boundary point. We also give several explicit
examples of the extremal function and compare the behaviour of E to

the behaviour of δ∗ and g, the corresponding extremal function for H∞

and the pluricomplex Green function, respectively.

1. Introduction

Let m ≥ 1 be an integer and define k : Bm × Bm → C by k(z, w) =
(1−〈z, w〉)−1, where Bm is the unit ball in Cn and 〈z, w〉 =

∑m
j=1 zjw̄j is the

standard inner product on Cm. It is not difficult to check that k is a positive
kernel on Bm, i.e., that for any choice {λ1, . . . , λn} of a finite number of points
in Bm the matrix

(k(λj , λk))nj,k=1 =
(

1
1− 〈λj , λk〉

)n
j,k=1

is positive semi-definite. Let H2
m denote the Hilbert function space on Bm de-

fined by k. More explicitly, let kw(·) = k(·, w) and let H2
m be the closed linear

span of {kw : w ∈ Bm} under the inner product 〈
∑
j ajkwj ,

∑
k bkkwk〉H2

m
=∑

j,k aj b̄kk(wk, wj).
Recently, there has been a substantial amount of interest in the space H2

m,
the main reason being that k is a complete Pick kernel and furthermore that k
has a certain universal property among complete Pick kernels. Let us quickly
review these notions. If H is a (complex) Hilbert function space on X, recall
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that a function φ : X → C is a multiplier of H if φf ∈ H for all f ∈ H.
If φ is a multiplier of H, the closed graph theorem implies that the operator
Mφ : H → H defined by Mφf = φf is bounded. We define Mult(H) to be the
set of multipliers of H equipped with the norm ‖φ‖Mult(H) = ‖Mφ‖op, where
‖ · ‖op is the operator norm. With this definition, one can check that Mult(H)
is a Banach algebra.

Given λ1, . . . , λn ∈ D and w1, . . . , wn ∈ D, recall that Pick’s classical theo-
rem [10] gives necessary and sufficient conditions for the existence of a func-
tion f ∈ H∞(D) with ‖f‖H∞ ≤ 1 such that f(λj) = wj for 1 ≤ j ≤ n. More
precisely, such a function f exists if and only if the Pick matrix(

1− wjw̄k
1− λjλk

)n
j,k=1

is positive semi-definite. One modern approach to Pick’s theorem is to view
H∞(D) as the multiplier algebra of the Hardy space H2(D).

For the abstract formulation of Pick’s theorem, assume that H is a Hilbert
function space on X with reproducing kernel K and assume that λ1, . . . , λn ∈
X and w1, . . . , wn ∈ C . The Pick problem is to give necessary and sufficient
conditions on the λj ’s and the wj ’s for the existence of φ ∈ Mult(H) with
‖φ‖Mult(H) ≤ 1 and φ(λj) = wj for 1 ≤ j ≤ n. It is not too difficult to verify
that a necessary condition is that the matrix(

(1− wjw̄k)K(λj , λk)
)n
j,k=1

is positive semi-definite. If this condition is also sufficient we say that K is
a Pick kernel. If the corresponding necessary condition for the matrix-valued
version of Pick interpolation is sufficient for all matrix sizes, we say that K
is a complete Pick kernel. Pick’s classical theorem can now be formulated
as saying that the Szegő kernel S(z, w) = (1 − zw̄)−1, i.e., the reproducing
kernel for H2(D), is a Pick kernel. (In fact, the Szegő kernel is a complete
Pick kernel.) The kernel k in this paper is just the Szegő kernel for m = 1
and our space H2

1 is just the Hardy space H2(D). For m ≥ 2, H2
m is not the

usual Hardy space in the ball of Cm but a proper subspace of it.
For every integer m, the kernel k is a complete Pick kernel on Bm, and

conversely, if H is a Hilbert function space with reproducing kernel K, and K
is an irreducible complete Pick kernel, then H can be isometrically embedded
in δH2

m for some m and some non-vanishing function δ. This was proven by
Agler and McCarthy in [1].

In this paper, we will define a certain extremal function for the multiplier
algebra of H2

m and study its properties. This extremal function is a natural
analogue of the Carathéodory function δ∗ which has been studied in connec-
tion with the pluricomplex Green function. (See, for example, Edigarian and
Zwonek [7] and Wikström [12], [13].)
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2. H2
m and its multiplier algebra

It is straight-forward to check that the monomials {zα}α∈Nm are mutu-
ally orthogonal in H2

m, and from a power series expansion of k we see that
‖zα‖2H2

m
= α!/|α|!. (Here, as usual, if α = (α1, . . . , αm) is a multi-index,

zα = zα1
1 · · · zαmm , |α| = α1 + · · · + αm and α! = α1! · · ·αm!.) From this it

follows that

H2
m =

{
f =

∑
α

cαz
α : ‖f‖2H2

m
=
∑
α

|cα|2α!
|α|!

<∞

}
.

It is also possible to give integral representations of the norm in H2
m. (See

Alpay and Kaptanoğlu [3].) If φ is a multiplier of H2
m, then φ must be holo-

morphic since φ = φ · 1 and 1 ∈ H2
m. By general Hilbert function space

theory it also follows that φ must be bounded, so Mult(H2
m) ⊂ H∞(Bm). If

m > 1, this inclusion is proper. Interestingly enough, the Mult-norm and the
H2
m-norm agree on monomials.

Proposition 2.1. Let φ(z) = zα. Then ‖φ‖2Mult(H2
m) = ‖φ‖2H2

m
= α!/|α|!.

Proof. For simplicity of notation, assume that m = 2. (The argument
can be adapted to work for every m.) Let α = (α1, α2). First note that if
j = (j1, j2) is a multiindex, then

(|j|+ |α|)!
(j + α)!

=
(
j1 + j2 + α1 + α2

j1 + α1

)
≥
(
j1 + j2
j1

)(
α1 + α2

α1

)
=
|j|!
j!
|α|!
α!

.

This can be seen from considering the natural expansions of

(x+ 1)j1+j2+α1+α2 = (x+ 1)j1+j2(x+ 1)α1+α2 ,

and comparing the coefficients of xj1+α1 . Now, if f ∈ H2
m, f =

∑
cj1j2z

j1
1 z

j2
2 ,

then

‖φf‖2H2
m

=
∞∑

j1,j2=0

|cj1j2 |2(
j1+j2+α1+α2

j1+α1

) ≤ ∞∑
j1,j2=0

|cj1j2 |2(
j1+j2
j1

)(
α1+α2
α1

) =
α!
|α|!
‖f‖2H2

m
.

Hence ‖φ‖2Mult(H2
m) ≤ α!/|α|!. On the other hand, since 1 ∈ H2

m and ‖1‖ = 1,
‖φ‖2Mult(H2

m) ≥ ‖φ‖
2
H2
m

= α!/|α|!. �

As far as the author is aware, there is no explicit description of Mult(H2
m),

but the following result gives a characterization of the multipliers of H2
m that
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can be used to deduce some properties of the multiplier algebra, even though
the condition is far from easy to verify for a given φ ∈ H∞(Bm).

Theorem 2.2. Assume that φ is a holomorphic function on Bm. Then φ
is a multiplier of H2

m with ‖φ‖Mult(H2
m) ≤ 1 if and only if

K(z, w) =
1− φ(z)φ(w)

1− 〈z, w〉
is a positive kernel on Bm.

For a proof of Theorem 2.2, see, for example, [2, Corollary 2.37].

Remark. Recall that a sesqui-holomorphic kernel K(z, w) is positive if
and only if there is a Hilbert space H and a holomorphic function H : X → H
such that K(z, w) = 〈H(z),H(w)〉. (See, for example, Agler-McCarthy [2,
Theorem 2.53].)

As a consequence of this characterization of the multiplier algebra of H2
m

we can prove that the unit ball of Mult(H2
m) is biholomorphically invariant.

Let Aut(Bm) denote the group of biholomorphic self-mappings of Bm and let
ball(Mult(H2

m)) = {φ ∈ Mult(H2
m) : ‖φ‖Mult(H2

m) ≤ 1}.

Theorem 2.3. Assume that φ ∈ ball(Mult(H2
m)) and that T ∈ Aut(Bm).

Then φ ◦ T ∈ ball(Mult(H2
m)).

Proof. Let φ ∈ ball(Mult(H2
m)). Recall that Aut(Bm) is generated by

unitary mappings of Cm and mappings of the form

Ta(z) =
(
a− z1

1− āz1
,

(1− |a|2)1/2z2

1− āz1
, . . . ,

(1− |a|2)1/2zm
1− āz1

)
,

where a ∈ D. (See, for example, Rudin [11] for a proof of this fact.) It is clear
that ‖f‖H2

m
= ‖f ◦U‖H2

m
for all unitaries U and all f ∈ H2

m and hence ‖f ·φ◦
U‖H2

m
= ‖f ◦U−1 ·φ‖H2

m
≤ ‖f ◦U−1‖H2

m
= ‖f‖H2

m
, so φ◦U ∈ ball(Mult(H2

m)).
To finish the proof, it is enough to show that φ ◦ Ta ∈ ball(Mult(H2

m)) for
every a ∈ D. Note that

1− 〈Ta(z), Ta(w)〉 = 1− (a− z1)(ā− w̄1) + (1− |a|2)(z2w̄2 + · · ·+ zmw̄m)
(1− āz1)(1− aw̄1)

=
(1− |a|2)(1− 〈z, w〉)
(1− āz1)(1− aw̄1)

.

Let ψ = φ ◦ Ta. By Theorem 2.2, ψ ∈ ball Mult(H2
m) if and only if

Kψ(z, w) =
1− ψ(z)ψ(w)

1− 〈z, w〉
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is a positive kernel. But

Kψ(Ta(z), Ta(w)) =
1− φ(z)φ(w)

1− 〈Ta(z), Ta(w)〉

=
1− φ(z)φ(w)

1− 〈z, w〉
(1− āz1)(1− aw̄1)

1− |a|2

= (1− |a|2)−1 〈H(z)(1− āz1),H(w)(1− āw1)〉

for some auxiliary Hilbert space H and some holomorphic H : Bm → H
using the remark following Theorem 2.2. Hence Kψ is a positive kernel, and
ψ ∈ ball(Mult(H2

m)). �

3. The extremal function

Definition 3.1. Let F be a set of functions on X and let A ⊂ X,A 6= X.
If there is a function f ∈ F such that f−1(0) = A, we say that A is a zero set
for F . If A is the intersection of zero sets, we say that A is a weak zero set
for F .

Definition 3.2. Let A be a weak zero set for Mult(H2
m). We define the

(Mult(H2
m)-)extremal function for A as

E(z,A) = sup{log Reφ(z) : φ ∈ Mult(H2
m), ‖φ‖Mult(H2

m) ≤ 1, φ|A = 0}.

If A = {w} is a singleton, we usually write E(z, w) instead of E(z, {w}).
Similarly, if A is a weak zero set for H2

m, we define the (H2
m-)extremal function

for A as

F (z,A) = sup{log Re f(z) : f ∈ H2
m, ‖f‖H2

m
≤ 1, f |A = 0}.

In this paper we will be mostly concerned with the Mult(H2
m)-extremal

function, but we will shortly see that E and F are closely related.

Definition 3.3. Let z ∈ Bm and let A be a weak zero set of Bm. If
φ ∈ ball(Mult(H2

m)) satisfies that φ|A = 0 and log Reφ(z) = E(z,A), we say
that φ is E-extremal (with respect to z and A). Similarly, if f ∈ Hm with
‖f‖ ≤ 1, f |A = 0 and log Re f(z) = F (z,A), we say that f is F -extremal.

Note that if m = 1, and A consists of a single point, then E(z, w) is just the
(negative) Green function for the unit disc E(z, w) = g(z, w) = log

∣∣ z−w
1−zw̄

∣∣.
Also, if we replace ball(Mult(H2

m)) with ball(H∞(Bm)) in the definition of
E, we obtain the Carathéodory function δ∗. Later on, we will compare E to
δ∗ and to the pluricomplex Green function g, so for completeness let us define
these functions here as well.
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Definition 3.4. Let Ω be a domain in Cm and let A be a zero set for
H∞(Ω). We define the Carathéodory function, δ∗, by

δ∗(z,A) = sup{log |f(z)| : f ∈ H∞(Ω), ‖f‖H∞ ≤ 1, f |A = 0}.

Definition 3.5. Let Ω be a domain in Cm and let ν be a non-negative
function on Ω. We define the pluricomplex Green function with poles defined
by ν by

g(z, ν) = sup{u(z) : u ∈ PSH(Ω), u < 0, νu ≥ ν},
where νu denotes the Lelong number of u, i.e.,

νu(x) = lim
r→0

sup|ξ−x|=r u(ξ)
log r

.

Note that if A is a zero set for H∞, then δ∗(z,A) ≤ g(z, χA), and if Ω = B
m

and A is a zero set for Mult(H2
m), then E(z,A) ≤ δ∗(z,A). Let us move on

to collect the basic properties of E and F .

Theorem 3.6. The functions E and F have the following properties:
(1) E is biholomorphically invariant; more precisely, if T ∈ Aut(Bm),

then E(z,A) = E(T (z), T (A)).
(2) For every z ∈ Bm and every weak zero set A for H2

m, there is a
unique F -extremal function, which we will denote by EF zA, given by
EF zA = PAkz/‖PAkz‖, where PA is the orthogonal projection H2

m →
IA and IA is the space of functions in H2

m that vanish on A. Hence
F (z,A) = log ‖PAkz‖.

(3) For every z ∈ Bm and every weak zero set A for Mult(H2
m), there is

a unique E-extremal function, which we will denote by EEzA, given by
EF zA = EEzAkz/‖kz‖. Hence F (z,A) = E(z,A) + log ‖kz‖. Further-
more, if A is finite, then EEzA is a rational function of degree at most
|A|.

(4) E(·, A) and F (·, A) are plurisubharmonic on Bm and continuous on
B
m \A.

Proof. (1) is a direct consequence of Theorem 2.3.
(2) A normal family argument proves the existence of an F -extremal func-

tion. If f and g are two F -extremal functions, then (f + g)/2 is also F -
extremal. Note that an F -extremal function must have norm exactly 1. Since
every point in the unit sphere of a Hilbert space is an extreme point (in the
convex sense), f = g. A variational argument (see [2, Proposition 9.31] for
details) shows that any function which is orthogonal to the F -extremal func-
tion must be orthogonal to PAkz. Hence, the F -extremal function must be
the normalization of PAkz.

(3) Again, a normal family argument proves the existence of an E-extremal
function φ. Let N be the closed linear span of {kζ : ζ ∈ A} and kz. The Pick
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property of k implies that the linear operator on N that sends kζ to 0 for
all ζ ∈ A and sends kz to φ(z)kz has norm 1. From this it follows from
a computation ([2, Proposition 9.33] for details) that F (z,A) = E(z,A) +
log ‖kz‖ and hence that the function φkz/‖kz‖ must be F -extremal. But
since the F -extremal function is unique, so is the E-extremal function.

Now assume that A is finite, say A = {w1, . . . , wn}. It is clear that
E(z,A) = log c, where c is the (unique) positive real number such that
detP = 0, where

P =



1− c2

1− ‖z‖2
1

1− 〈z, w1〉
· · · 1

1− 〈z, wn〉
1

1− 〈w1, z〉
1

1− 〈w1, w1〉
· · · 1

1− 〈w1, wn〉
...

...
. . .

...
1

1− 〈wn, z〉
1

1− 〈wn, w1〉
. . .

1
1− 〈wn, wn〉


.

Choose v = (v0, . . . , vn)T ∈ Cn+1 such that Pv = 0. Take any ζ ∈ Bm. Since
there exists a function φ ∈ ball(Mult(H2

m)) with φ(z) = c and φ(w1) = · · · =
φ(wn) = 0, the matrix

P̃ =


P

1− cᾱ
1− 〈z, ζ〉

1
1− 〈w1, ζ〉

...
1

1− 〈wn, ζ〉
1− αc̄

1− 〈ζ, z〉
1

1− 〈ζ, w1〉
. . .

1
1− 〈ζ, wn〉

1− |α|2

1− ‖ζ‖2


must be positive semi-definite for some choice of α (namely for α = φ(ζ)).
Take any η ∈ C and let vη = v ⊕ η. Hence

0 ≤ v∗ηP̃ vη = |η|2 1− |α|2

1− ‖ζ‖2
+ 2 Re η̄

v0
1− cᾱ

1− 〈z, ζ〉
+

n∑
j=1

vj
1− 〈wj , ζ〉


for all η. Consequently,

(3.1) v0
1− cᾱ

1− 〈z, ζ〉
+

n∑
j=1

vj
1− 〈wj , ζ〉

= 0,

and this equation determines α uniquely, since it is straight-forward to check
that v0 must be non-zero. Furthermore, we see from Equation (3.1) that
α = φ(ζ) is a rational function in ζ of degree at most n.
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(4) Take a sequence zj in Bm \ A converging to z ∈ Bm \ A and consider
EE

zj
A . By passing to a subsequence, we may assume that EEzjA converges

locally uniformly to some φ ∈ Mult(H2
m). Clearly φ|A = 0, so E(z,A) ≥

log |φ(z)| = limj log |EEzjA (zj)| = limj E(zj , A). Hence E is upper semicon-
tinuous. On the other hand, on compact subsets of Bm\A, E is the supremum
of a class of continuous functions, and consequently E is lower semicontinu-
ous. Since E is the supremum of a class of plurisubharmonic functions and E
is upper semicontinuous, E must be plurisubharmonic. Also, since

F (z,A) = E(z,A) + log ‖kz‖ = E(z,A) +
1
2

log
1

1− ‖z‖2
,

F is also plurisubharmonic and continuous on Bm \A. �

The fact that the E-extremal function is unique gives another proof that
there is no Pick kernel whose multiplier algebra is H∞. More precisely:

Corollary 3.7. There is no Pick kernel on Bm for m ≥ 2 whose multi-
plier algebra is H∞(Bm).

Proof. Recall that the extremal functions for δ∗ in general are not unique,
not even when A is a singleton. In fact, if w = 0 and z = (λ, 0), then
f = z1 + cz2

2 is extremal for δ∗ and all c with |c| < 1/2.
Note that the proof of uniqueness for the E-extremal function in Theo-

rem 3.6 only uses the fact that k is a Pick kernel. Hence, there is no Pick
kernel on Bm whose multiplier algebra is H∞(Bm). �

Theorem 3.8. Let A be a weak zero set for H2
m, and let a ∈ Bm \ A.

Then
F (z,A ∪ {a}) =

1
2

log
(
exp(F (z,A))2 − |EF aA(z)|2

)
.

Consequently,

E(z,A ∪ {a}) =
1
2

log
(
exp(E(z,A))2 − (1− ‖z‖2)|EF aA(z)|2

)
.

Proof. Let A′ = A ∪ {a}. Recall that if X is a weak zero set for H2
m, IX

denotes the subspace {f ∈ H2
m : f |X = 0}. Using the reproducing kernel

property, we see that IX is the orthogonal complement of the closed linear
hull of {kλ : λ ∈ X}. Hence, for f ∈ H2

m,

PA′f = f − P⊥A′f = PAf −
〈f, PAka〉
‖PAka‖2

PAka.

In particular,

‖PA′kz‖2 = 〈PA′kz, kz〉 = 〈PAkz, kz〉 −
〈kz, PAka〉
‖PAka‖2

〈PAka, kz〉

= ‖PAkz‖2 − |EF aA(z)|2,
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since EF aA = PAka/‖PAka‖. Using Theorem 3.6, we obtain the formula for
F (z,A′). The expression for E(z,A′) follows from the fact that E(z,A′) =
F (z,A′)− log ‖kz‖. �

Proposition 3.9. If A and B are weak zero sets of Bm, then E(z,A ∪
B) ≥ E(z,A) + E(z,B) with equality if and only if EEzA∪B = EEzAEE

z
B.

Proof. Take z ∈ Bm. If z ∈ A ∪ B, then clearly E(z,A ∪ B) = E(z,A) +
E(z,B) = −∞. Otherwise, φ = EEzAEE

z
B vanishes on A∪B, so E(z,A∪B) ≥

log |φ(z)| = E(z,A) + E(z,B). Furthermore, if E(z,A ∪ B) = E(z,A) +
E(z,B), then φ = EEzAEE

z
B is E-extremal for (z,A ∪ B). Conversely, if

EEzA∪B can be factorized as EEzA∪B = EEzAEE
z
B , it is clear that E(z,A ∪

B) = E(z,A) + E(z,B). �

Proposition 3.10. If A ⊂ B are weak zero sets of Bm, then E(z,A) ≥
E(z,B) with equality if and only if EEzA|B = 0.

Proof. Since EEzB |A = 0, E(z,A) ≥ E(z,B). Assume that E(z,A) =
E(z,B). Then EEzB must be E-extremal for (z,A), so the E-extremal func-
tion for (z,A) vanishes on B. Conversely, if EEzA|B = 0, then E(z,B) ≥=
E(z,A), so E(z,A) = E(z,B). �

Theorem 3.11. Let A be a weak zero set for Mult(H2
m). Then for almost

all p ∈ ∂Bm, limz→pE(z,A) = 0. (Here, the limit is to be taken in a Korányi
region; see, for example, [11].)

Proof. Let M = {f ∈ H2
m : f |A = 0}. Then M is a Mult(H2

m)-invariant
subspace of H2

m. (Note that M is non-empty, since Mult(H2
m) ⊂ H2

m.) By a
theorem of Arveson [4], there is a sequence {φj} ⊂ Mult(H2

m) ∩M such that

PM =
∑
j

MφjM
∗
φj ,

where the sum converges in the SOT-topology. Hence

PMkz =
∑
j

MφjM
∗
φjkz =

∑
j

Mφjφj(z)kz =
∑
j

φj(z)φjkz.

But ‖PMkz‖2 = 〈PMkz, PMkz〉 = 〈PMkz, kz〉 + 〈PMkz, PMkz − kz〉
= 〈PMkz, kz〉, so

‖PMkz‖2 = 〈PMkz, kz〉 =
∑
j

|φj(z)|2‖kz‖2.

By Theorem 3.6,

E(z,A) = log
‖PMkz‖
‖kz‖

=
1
2

log
∑
j

|φj(z)|2.
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On the other hand, Green, Richter and Sundberg [8] have shown that the
sequence {φj} can be chosen to be inner, i.e., that

∑
j |φj(z)|2 → 1 as z → p

for almost every p ∈ ∂Bm. �

Remark. It is natural to conjecture that E(z,A) → 0 as z → p for all
p ∈ ∂Bm \ Ā. Of course, if A is finite, then E(z,A)→ 0 everywhere on ∂Bm.

4. Examples

Proposition 4.1. If w ∈ Bm, then

E(z, w) =
1
2

log
(

1− (1− ‖z‖2)(1− ‖w‖2)
|1− 〈z, w〉|2

)
.

Proof. Clearly E(z, w) = log c0, where c0 is the supremum over all |c| such
that

A =


1− |c|2

1− ‖z‖2
1

1− 〈z, w〉
1

1− 〈w, z〉
1

1− ‖w‖2

 ≥ 0.

Clearly A ≥ 0 if and only if |c| ≤ 1 and detA ≥ 0, i.e., iff

1− |c|2 ≥ (1− ‖z‖2)(1− ‖w‖2)
|1− 〈z, w〉|2

.

Note that E(z, w) = δ∗(z, w) = g(z, w), where δ∗ and g are the Carathéodory
function and the pluricomplex Green function, respectively. �

Proposition 4.2. Let r ∈ D and let w1 = (r, 0), w2 = (−r, 0) and set
A = {w1, w2} ⊂ B2. Then

E(z,A) =
1
2

log
(

1− (1− |r|4)(1 + |z1|2)(1− ‖z‖2)
|1 + z1r̄|2|1− z1r̄|2

)
.

Proof. Again, E(z, w) = log c0, where c0 is the solution to

det


1− |c|2

1− ‖z‖2
1

1− 〈z, w1〉
1

1− 〈z, w2〉
1

1− 〈w1, z〉
1

1− 〈w1, w1〉
1

1− 〈w1, w2〉
1

1− 〈w2, z〉
1

1− 〈w2, w1〉
1

1− 〈w2, w2〉



= det


1− |c|2

1− ‖z‖2
1

1− z1r̄

1
1 + z1r̄

1
1− rz̄1

1
1− |r|2

1
1 + |r|2

1
1 + rz̄1

1
1 + |r|2

1
1− |r|2

 = 0.
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An elementary but somewhat tedious computation leads to the formula given
above. Alternatively, we could use Theorem 3.8 to prove this proposition. �

Remark. In the two pole setting, Coman [5] has computed g and it follows
from results in [7] that in this case δ∗ = g. However, E is strictly less than
these functions unless z2 = 0 or z1 = ±r.

Theorem 4.3. Let A = {z2 = 0} ⊂ B2. Then

E(z,A) =
1
2

log
|z2|2

1− |z1|2
.

Proof. From Proposition 3.10, we see that E(z,A) ≤ infw∈AE(z, w). Let
w = (z1, 0). The mapping

T (ζ1, ζ2) =

(
z1 − ζ1
1− ζ1z̄1

,

√
1− |z1|2ζ2
1− ζ1z̄1

)
satisfies T ∈ Aut(B2), T (w) = 0 and T (z) = (0, z2/

√
1− |z1|2). Hence

E(z, w) = log
|z2|√

1− |z1|2
,

by Proposition 4.1. Furthermore f(ζ) = ζ2 is the E-extremal function for
T (z) and 0 and hence fw = f ◦ T−1 is the E-extremal function for z and w.
On the other hand, the zero set of f is A and T−1(A) = A, so f−1

w (0) = A.
By Proposition 3.10, E(z,A) = E(z, w). �

Remark. In this setting, we again have that E = δ∗ = g. See Lárusson
and Sigurdsson [9] for the derivation of g in this case.

Remark. The fact that E(z,A) = infw∈AE(z, w) when A = {z2 = 0} is
not an example of a general principle at work. In fact, the equality E(z,A) =
infw∈AE(z, w) holds if and only if A is the intersection of Bm with a complex
hyperplane. This can be seen using Proposition 3.10 and the fact that the
zero set of a function that is E-extremal for a singleton is just a hyperplane.

Proposition 4.4. Let A = {z2 = 0} ⊂ B2 and let a ∈ B2 \ A. Define
A′ = A ∪ {a}. Then

E(z,A′) =
1
2

log
(
|z2|2

1− |z1|2
− |z2|2(1− |a1|2)(1− ‖a‖2)(1− ‖z‖2)

|1− z1ā1|2|1− 〈z, a〉|2

)
.

Proof. Let z ∈ B2. From the proof of Theorem 4.3 we see that

EEzA(ζ) =
eiθζ2

√
1− |z1|2

1− ζ1z̄1
,
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where θ ∈ R is chosen so that EEzA(z) is positive real. Hence, using Theo-
rem 3.6, we obtain

EF zA(ζ) =
kz(ζ)
‖kz‖

EEzA(ζ) =
eiθζ2

√
1− |z1|2

√
1− ‖z‖2

(1− ζ1z̄1)(1− 〈ζ, z〉)
,

and consequently, by Theorem 3.8,

E(z,A′) =
1
2

log
(
exp(E(z,A))2 − (1− ‖z‖2)|EF aX(z)|2

)
=

1
2

log
(
|z2|2

1− |z1|2
− |z2|2(1− |a1|2)(1− ‖a‖2)(1− ‖z‖2)

|1− z1ā1|2|1− 〈z, a〉|2

)
. �

Theorem 4.5. Let A = {z1z2 = 0} ⊂ B2. Then

E(z,A) =
1
2

log
(
|z1|2|z2|2(2− ‖z‖2)
(1− |z1|2)(1− |z2|2)

)
.

Proof. Let z ∈ B2 and let B = {z2 = 0} ∪ {(0, z2)}. Then

E(z,A) ≤ E(z,B) =
1
2

log
(
|z2|2

1− |z1|2
− |z2|2(1− |z2|2)(1− ‖z‖2)

1− |z2|2

)
=

1
2

log
(
|z1|2|z2|2(2− ‖z‖2)
(1− |z1|2)(1− |z2|2)

)
,

by Propositions 3.10 and 4.4. On the other hand, if X = {z2 = 0}, z ∈ B2

and a = (0, z2), then

PXkz(ζ) = exp(E(z,X))EEzX(ζ) =
z̄2ζ2

(1− ζ1z̄1)(1− 〈ζ, z〉)
.

From the proof of Theorem 3.8 it follows that

PBkz = PXkz −
〈kz, PXka〉
‖PXka‖2

PXka(4.1)

=
z̄2ζ2

(1− ζ1z̄1)(1− 〈ζ, z〉
− z̄2ζ2

1− ζ2z̄2
.

Now, EF zB = PBkz/‖PBkz‖, so the zero set of EF zB equals the zero set of
PBkz, and from Theorem 3.6 if also follows that the zero set of EEzB equals the
zero set of PBkz since the kernel function kz is zero free. From Equation (4.1)
we see that PBkz and hence EEzB vanishes on A. Thus

E(z,A) = E(z,B) =
1
2

log
(
|z1|2|z2|2(2− ‖z‖2)
(1− |z1|2)(1− |z2|2)

)
,

by Proposition 3.10. �
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Remark. In this setting, E is smaller than g. The pluricomplex Green
function with poles along A = {z1z2 = 0} has been computed by Nguyen
Quang Dieu [6], and even though δ∗ is not completely known, it is clear that
δ∗(z,A) ≥ log |2z1z2| (since f(z) = 2z1z2 is a H∞ function bounded by one
and f vanishes on A). In fact, on D = {z ∈ B2 : |z1| ≤ 1/

√
2, |z2| ≤ 1/

√
2},

δ∗(z,A) = g(z,A) = log |2z1z2|.
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