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LIFTING OF ALMOST PERIODICITY OF A POINT
THROUGH MORPHISMS OF FLOWS

ALICA MILLER

This article is dedicated to my mother, Naza Tanović-Miller, the best example of all

Abstract. Let f : X → Y be a morphism of flows, y an almost peri-
odic point of Y, and x ∈ f−1(y). In general x is not necessarily almost

periodic, but several conditions are known under which that happens.

They fall into either “compact” or “noncompact” conditions, depending
on whether X and Y are assumed to be compact or not. In “noncom-

pact” conditions other assumptions are restrictive. We find a criterion
for almost periodicity of x, which generalizes both “compact” and “non-
compact” statements at the same time. We deduce theorems of Ellis,

Markley, Kutaibi-Rhodes and Pestov as corollaries.

1. Introduction

The paper consists of eight sections, the first of which is this introduction.
Section 2 covers the notation, terminology, and some relevant basic facts.
Morphisms of flows with the same acting group were often investigated in

Topological Dynamics (see the papers by R. Ellis and H. Gottschalk [7] and
J. Auslander [1]). The case of not necessarily the same acting group was
considered in only one paper so far, namely [9]. In Section 3 we call these
morphisms “skew-morphisms” and give several natural situations where they
appear. We use them in a systematic manner in the rest of the paper.

In Section 4 we introduce the notion of a continuous map good over a point,
give examples and prove some statements with this notion.

The first important statement about lifting of almost periodicity was given
by R. Ellis in [5] for compact flows. Later N. Markley and others obtained
some statements for not necessarily compact flows. In [10] Markley said that
his results “differ from other results of this genre in that we do not assume that
either space is compact.” Then S.H.A. Kutaibi, F. Rhodes and others ([9], [13],
[14]) proved various “noncompact” statements under different assumptions.
Some related results were also obtained by R. Sacker and G. Sell (see the
Structure Theorem and the Equicontinuous Lifting Theorem in [15]) and by
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W. Shen and Y. Yi (see the Lifting Properties Theorem in [16]). Finally a
result of V. Pestov in [12] can be considered as a lifting through a skew-morp-
hism of flows.

Our goal is to find a theorem which unifies various known statements about
lifting of almost periodicity of a point in both the compact and the not nec-
essarily compact case. In Section 5 we give a first version of such a theorem.

In Section 6 we give a general version of such a theorem. In order to do that,
we introduce the notion of a skew-morphism good over a point with respect to
orbit-closures. In Section 7 we give several examples of this notion.

In Section 8 we show that various other statements about lifting of almost
periodicity of a point (“compact” and “non-compact” as well) are corollaries of
our criterion. We get, as corollaries, results of Ellis, Markley, Kutaibi-Rhodes,
Pestov.

2. Notations and preliminaries

2.1. If X is a set, we denote its cardinality by |X|. All topological spaces
are assumed to be Hausdorff. If T is a topological group, Td denotes the group
T equipped with the discrete topology.

2.2. Let X,Y be topological spaces, f : X → Y a continuous map. Then
the map g : X → Gr(f), defined by g(x) = (x, f(x)), is a homeomorphism.
(Here Gr(f) = {(x, f(x))|x ∈ X} is considered as a subspace of X × Y .)

2.3. T will denote the topological group of complex numbers of module
1. If T is an abelian group, the continuous homomorphisms χ : T → T are
called continuous characters of T . The set of all continuous characters of T
will be denoted by T̂ .

2.4. Let T be a topological group. A subset A of T is syndetic if there
exists a compact subset K of T such that T = KA. If S is a syndetic subgroup
of T , the quotient space T/S is compact. A subset A of T is discretely syndetic
if it is a syndetic subset of Td.

2.5. Let h : T → T ′ be a surjective group homomorphism having the
compact-covering property (i.e., for every compact K ′ in T ′ there is a compact
K in T such that h(K) = K ′). Then if S′ is a syndetic subset of T ′, h−1(S′)
is a syndetic subset of T .

This statement is from [9]. The proof is similar to the proof of Lemma 5.2
below.

2.6 ([3]). Let X and Y be topological spaces, f : X → Y a continuous
map. We say that (X, f) is a covering of Y if for each point y ∈ Y there is
an open neighborhood V of y such that f−1(V ) is a nonempty disjoint union
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of open subsets Ui, i ∈ I, of X, on which the restrictions fi : Ui → V of f are
homeomorphisms.

An open neighborhood V of a point y ∈ Y is called elementary if it satisfies
the above condition. An open neighborhood U of a point x ∈ X is called
elementary if there is an elementary neighborhood V of the point y = f(x)
such that U is one of the disjoint open subsets Ui, i ∈ I, of X, whose union
is equal to f−1(V ).

A homeomorphism g : X → X, x 7→ gx, is called a deck-transformation of
the covering (X, f) if f(gx) = f(x) for all x ∈ X. The deck-transformations
form a group 4 under composition (written as (g, g′) 7→ gg′). We say that
4 is transitive on the fiber f−1(y) of a point y ∈ Y if for any two elements
x, x′ ∈ f−1(y) there is an element g ∈ 4 such that x′ = gx.

If (X, f) is a covering of Y , the fibers of f are discrete. Also f is a surjective
local homeomorphism. In particular, f is open.

2.7. A triple X = 〈T,X, π〉 consisting of a topological group T , a topo-
logical space X and a continuous action π : T ×X → X of T on X is called a
flow on X. We write t · x or tx for π(t, x). We say that X is compact (resp.
abelian), if X is compact (resp. if T is abelian). We say that X is trivial if
|X| = 1. For x ∈ X we denote by πx : T → X the orbital map t 7→ t · x. For
t ∈ T we denote by πt the transition homeomorphism x 7→ t · x.

2.8. A flow XS = 〈S,X, π
∣∣
X×S〉, where S is a subgroup of T , will be

called a restriction of the flow X = 〈T,X, π〉. Usually it is denoted simply by
XS = 〈S,X〉. If a subset Y of X is invariant under the action of T , then the
canonical flow 〈T, Y 〉 is a subflow of X .

2.9. Let X = 〈T,X〉 and Y = 〈T, Y 〉 be flows. A map f : X → Y is
a morphism of flows if it is continuous and f(tx) = tf(x) for all t ∈ T and
x ∈ X. If f is surjective, Y is a factor of X , and X is an extension of Y.

2.10. Let X = 〈T,X〉 be a flow. A continuous function η : X → T is
an eigenfunction of X if there is a continuous character χ ∈ T̂ such that
η(t · x) = χ(t)η(x) for (t, x) ∈ T × X. In that case χ is an eigenvalue of
X (the eigenvalue which corresponds to η) and η is an eigenfunction which
corresponds to χ.

2.11. A flow X = 〈T,X〉 is minimal if the orbit T ·x of every point x ∈ X
is dense in X. It is totally minimal if the flow XS is minimal for every syndetic
(equivalently, closed syndetic) subgroup of T . If f : X → Y is a surjective
morphism of flows, then if X is minimal (resp. totally minimal), Y is minimal
(resp. totally minimal).

2.12. Every compact flow contains a minimal set ([2], [6], [8], [17]).
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2.13. For x ∈ X and U, V ⊂ X, the dwelling set D(U, V ) (resp. D(x, V ))
is the set of all t ∈ T such that t · U

⋂
V 6= ∅ (resp. t · x ∈ V ).

2.14. Let X = 〈T,X〉 be a flow. A point x ∈ X is almost periodic (in
X ) if for every neighborhood U of x there is a syndetic subset A of T such
that Ax ⊂ U , i.e., the dwelling set D(x,U) is syndetic in T . A point x ∈ X
is discretely almost periodic if it is almost periodic in the flow Xd = 〈Td, X〉,
where Td is the group T equipped with the discrete topology. Every discretely
almost periodic point is almost periodic. A flow X is pointwise almost periodic
if every point x ∈ X is almost periodic.

2.15. Let X = 〈T,X〉 be a flow, x ∈ X. Let Y be an invariant subset of
X which contains x and let Y = 〈T, Y 〉 be the subflow of X on Y . Then x is
almost periodic in X if and only if x is almost periodic in Y.

2.16. Let X = 〈T,X〉 be a flow, x ∈ X. If x has a compact neighborhood,
then x is almost periodic iff Tx is compact minimal. In particular, a point x
in a compact flow X is almost periodic if and only if Tx is minimal ([2], [6],
[8], [17]).

2.17. Let X = 〈T,X〉 be a compact flow. Then ([2], [6], [8], [17]):
(i) A point x ∈ X is almost periodic if and only if it is discretely almost

periodic.
(ii) X is pointwise almost periodic if and only if every orbit closure in X

is minimal.
(iii) If X is minimal, every point x ∈ X is almost periodic.
(iv) There is at least one almost periodic point of X .
(v) Let S be a syndetic normal subgroup of T , XS = 〈S,X〉 a restriction

of X , x ∈ X; then x is almost periodic in X if and only if x is almost
periodic in XS .

3. The notion of a skew-morphism of flows

Definition 3.1. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows. A pair of
maps (h, f), where h : T → T ′ is a continuous group homomorphism and
f : X → Y is a continuous map, is called a skew-morphism of flows if

f(tx) = h(t)f(x)

for all t ∈ T and all x ∈ X. We write (h, f) : X → Y.
A skew-morphism (h, f) is called a skew-isomorphism if h is an isomorphism

of topological groups and f is a homeomorphism.

Example 3.2. Let X = 〈T,X〉, Y = 〈T, Y 〉 be two flows with the same
acting group T and let f : X → Y be a morphism of flows. Then (idT , f) :
X → Y is a skew-morphism. Also if Xd = 〈Td, X〉, then (idT , idX) : Xd → X
is a skew-morphism (but not necessarily a skew-isomorphism).
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Example 3.3. Let X = 〈T,X〉 be a flow, f : X → T be an eigenfunction
of X and χ ∈ T̂ the corresponding eigenvalue. Let T = 〈T,T〉 be the flow
defined by the action of the unit circle T on itself by multiplication. Then
(f, χ) : X → T is a skew-morphism.

Example 3.4. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X → Y
a skew-morphism, y ∈ Y, x ∈ f−1(y). Since f(Tx) ⊂ T ′y, we have f(Tx) ⊂
T ′y. Let f1 : Tx→ T ′y be the restriction of f to these sets. Let X ′ = 〈T, Tx〉
and Y ′ = 〈T ′, T ′y〉 be the canonical flows. Then (h, f1) : X ′ → Y ′ is a
skew-morphism of flows.

Example 3.5. Let X = 〈T,X, π〉 be a flow, S a normal subgroup of T ,
x ∈ X, t ∈ T . Consider the canonical flows Y = 〈S, Sx〉 and Z = 〈S, Stx〉.
Notice that Stx = tSx. Let h = Intt : S → S, h(s) = tst−1, and let
f = πt : X → X, πt(x) = tx. Then (h, f) = (Intt, πt) : Y → Z is a
skew-isomorphism of flows. If T is abelian, Intt = idS , so we have a skew-
isomorphism (idS , πt) : Sx→ Stx.

Example 3.6. Let X = 〈T,X, π〉 be a compact minimal abelian flow, S a
syndetic subgroup of T . The orbit-closures under S form a partition of X. Let
R be the equivalence relation on X defined by this partition, X̃ = X/R and
pX : X → X/R the canonical map. For x ∈ X let Sx := {t ∈ T | tx ∈ Sx}.
It is shown in [11] that Sx = Sy for any x, y ∈ X. Let S∗ := Sx, where
x is an arbitrary element of X, and let pT : T → T/S∗ be the canonical
homomorphism. For x ∈ X denote by x̃ the element pX(x) of X̃. The
function π̃ : T/S∗ ×X/R → X/R, given by π̃(t + S∗, x̃) = t̃x, defines a flow
X̃ = 〈T/S∗, X/R, π̃〉 (see the proof of Theorem 4.3 in [11] for more details).
Then (pT , pX) : X → X̃ is a skew-morphism of flows.

Proposition 3.7. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) :
X → Y a skew-morphism.

(i) If h is surjective, then f(X) is an invariant subset of Y (and hence
〈T ′, f(X)〉 is a subflow of Y).

(ii) If X is minimal and f is surjective, then Y is minimal.
(iii) If X is totally minimal, h,f are both surjective and h has the com-

pact-covering property, then Y is totally minimal.

Proof. (i) and (ii) are easy.
(iii) Fix a syndetic subset S′ of T ′ and an element y ∈ Y . By 2.5, S =

h−1(S′) is a syndetic subset of T . Let x ∈ f−1(y). Then Sx = X. Hence
S′y = h(S)y = h(S)f(x) = f(Sx) ⊃ f(Sx) = f(X) = Y . So Y is totally
minimal. �
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The proofs of the next two propositions are the same as the proofs in the
case of morphisms.

Proposition 3.8 ([2], [6], [8], [17] for morphisms). Let X = 〈T,X〉, Y =
〈T ′, Y 〉 be two flows, (h, f) : X → Y a skew-morphism with h surjective. Let
x ∈ X, y = f(x). Then if x is almost periodic in X , y is almost periodic in
Y.

Proposition 3.9 ([5], [17, II(7.10)] for morphisms). Let X = 〈T,X〉,
Y = 〈T ′, Y 〉 be two compact flows, (h, f) : X → Y a skew-morphism with h
surjective. Let y ∈ Y be an almost periodic point of Y. Then the set f−1(y)
contains an almost periodic point of X .

Remark 3.10. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X → Y
a skew-isomorphism, x ∈ X, y = f(x). Then x is almost periodic in X if and
only if y is almost periodic in Y.

4. The notion of a continuous map good over a point

Definition 4.1. Let X and Y be topological spaces, y ∈ Y . A continuous
map f : X → Y , is said to be good over y if the fiber f−1(y) = {xi | i ∈ I} is
finite and if, given neighborhoods Ui of xi, i ∈ I, there exists a neighborhood
V of y, such that:

(G) f−1(V ) ⊂
⋃
i∈I Ui.

Remark 4.2. Whenever the fiber f−1(y) is empty, f is good over y (the
condition (G) being trivially satisfied).

Proposition 4.3. Let X and Y be topological spaces, y ∈ Y . A continu-
ous map f : X → Y is good over y if and only if the fiber f−1(y) = {xi | i ∈ I}
is nonempty finite and, given neighborhoods Ui of xi, i ∈ I, there exist neigh-
borhoods Wi of xi, i ∈ I, and V of y, such that:

(G1) Wi ⊂ Ui, for all i ∈ I;
(G2) f−1(V ) =

⋃
i∈IWi.

Proof. Clearly (G1) and (G2) imply (G). Conversely, if (G) holds, put
Wi := f−1(V )

⋂
Ui. �

Remark 4.4. Suppose that f is good over y. Then the Wi’s and V can
be chosen so that, in addition, they are open and that the condition

Wi

⋂
Wj = ∅ for all i, j ∈ I, i 6= j

is satisfied.
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Example 4.5. Any homeomorphism f : X → Y is good over every y ∈ Y .
More generally, if X is a topological space and F a finite (discrete) space, then
pr1 : X × F → X is good over every x ∈ X.

Remark 4.6. Let X,Y be topological spaces, f : X → Y a continuous
map, y ∈ Y , and suppose that f−1(y) = {x}. Then f is good over y if and
only if for every neighborhood U of x there is a neighborhood V of y such that
f−1(V ) ⊂ U . Then, in particular, the canonical surjection f ′ : X → f(X),
deduced from f , is open at x.

Proposition 4.7. Let X be a compact space, f : X → Y a continuous
map, y ∈ Y a point with a finite fiber. Then f is good over y.

Proof. The statement follows from the following standard fact:

Let X be a compact space, f : X → Y a continuous map and y ∈ Y . Then
for every open neighborhood U of f−1(y) there is a neighborhood V of y with
f−1(V ) ⊂ U .

(A continuous map f from a compact space X to a Hausdorff space Y is
closed, so f(X \ U) is closed in Y . Since the latter set cannot contain y,
the open set V = Y \ f(X \ U) is a neighborhood of y and has the desired
property.) �

Remark 4.8. Let X and Y be topological spaces, f : X → Y a continuous
map and y ∈ Y a point with a finite fiber.

(i) If X is compact, f is good over y but not necessarily a local home-
omorphism. (Consider the subsets of R2: X = {(a, 1)| − 1 ≤ a ≤
1} ∪ {(0, 2)}, Y = {(a, 0)| − 1 ≤ a ≤ 1}, the map f : (x, y) 7→ (x, 0),
and the point y = (0, 0).)

(ii) If (X, f) is a covering of Y , f is good over y and a local homeomorp-
hism.

(iii) If f is a local homeomorphism, f is not necessarily good over y. (Con-
sider the subsets of R2: X = {(a, b)|−1 ≤ a ≤ 1, b ∈ {1, 2}}\{(0, 2)},
Y = {(a, 0)| − 1 ≤ a ≤ 1}, the map f : (x, y) 7→ (x, 0), and the point
y = (0, 0)).

Proposition 4.9. Let X, Y be topological spaces, f : X → Y a continu-
ous map, y ∈ Y .

(i) Let X1 either be a closed subspace of X or contain f−1(y). Let f1 :
X1 → Y be the restriction of f to X1. Then if f is good over y, f1 is
good over y.

(ii) Let X1 be a neighborhood of f−1(y) in X. Let f1 : X1 → Y be the
restriction of f to X1. Then f is good over y if and only if f1 is good
over y.
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(iii) Let Y ′ be a subspace of Y which contains f(X). Let f ′ : X → Y ′ be
the canonical map deduced from f . Then f is good over y if and only
if f ′ is good over y.

Proof. (i) Suppose that f is good over y and let f−1(y) = {xi| i ∈ I}.
For each i ∈ I let Ui be an arbitrary neighborhood of xi in X. Taking
smaller neighborhoods if necessary we may assume that for each xi which is
not in X1, Ui ∩X1 = ∅. It is then clear that for each neighborhood V of y,
f−1(V ) ⊂

⋃
i∈I Ui implies f−1

1 (V ) ⊂
⋃
i∈J(Ui∩X1), where J ⊂ I is such that

{xi| i ∈ J} = f−1(y) ∩X1.
(ii) Let f−1(y) = {xi| i ∈ I} and for each i ∈ I let Ui be an arbitrary

neighborhood of xi in X1. The statement follows from the fact that then for
each i ∈ I, Ui is a neighborhood of xi in X as well.

(iii) Clear. �

Example 4.10. Let X, Y , f and y be as in Remark 4.8(i). Let X1 =
X \ {(0, 1)}. Then f is good over y, but the restriction f1 : X1 → Y is not.
This shows that 4.9(i) is no longer true if neither X1 is closed in X nor X1

contains f−1(y).

5. A criterion for lifting of almost periodicity of a point (first
version)

The following lemma is a part of a proof from [12].

Lemma 5.1. Let X = 〈T,X, π〉 be a flow, x ∈ X. Then for every neigh-
borhood V of x there are a neighborhood W of x and a neighborhood O of the
unit element e ∈ T such that OD(x,W ) ⊂ D(x, V ).

Proof. Fix a neighborhood V of x. Since π : T ×X → X is continuous at
(e, x), there is a neighborhood W of x and a neighborhood O of e such that
OW ⊂ V . We claim that then OD(x,W ) ⊂ D(x, V ). Indeed, let o ∈ O and
let t ∈ D(x,W ). Then tx ∈ W , hence o(tx) ∈ OW , and therefore (ot)x ∈ V ,
i.e., ot ∈ D(x, V ). �

Lemma 5.2. Let h : T → T ′ be a surjective group homomorphism. Then
for every discretely syndetic subset S′ of T ′, h−1(S′) is discretely syndetic in
T .

Proof. There is a finite subset F ′ = {b′1, , · · · , b′n} of T ′ such that T ′ = F ′S′.
For every b′i ∈ F ′ let bi ∈ T be such that h(bi) = b′i. Let F = {b1, · · · , bn}.
We claim that T = Fh−1(S′). Indeed, for t ∈ T , let h(t) = b′s′. Put
s = b−1t. Then h(s) = h(b)−1h(t) = b′

−1
b′s′ = s′, so s ∈ h−1(S′). We have

t = b · b−1t ∈ F · h−1(S′). �

The following lemma is a part of a proof from [10].
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Lemma 5.3. Let T be a topological group, S a syndetic subset of T , S1, · · · ,
Sn subsets of S such that S =

⋃n
i=1 Si, t1, · · · , tn elements of T . Then the

set
⋃n
i=1 tiSi is syndetic.

Proof. Let K be a compact subset of T such that T = KS. We have:
(
⋃n
i=1Kt

−1
i ) · (

⋃n
i=1 tiSi) ⊃

⋃n
i=1Kt

−1
i tiSi =

⋃n
i=1KSi = K(

⋃n
i=1 Si) =

KS = T , and the set
⋃n
i=1Kt

−1
i is compact. So the set

⋃n
i=1 tiSi is syndetic.

�

The following theorem and its corollary are the first versions of the criterion
for lifting of almost periodicity of a point.

Theorem 5.4. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X → Y
a skew-morphism with h surjective, y ∈ Y . Suppose that the following two
conditions hold:
(OC1) For any x, x′ ∈ f−1(y), Tx = Tx′.
(GR1) If x is an element of f−1(y), the restriction f1 : Tx→ Y of f is good

over y.
Then for any x ∈ f−1(y), x is almost periodic in X if and only if y is almost
periodic in Y.

Proof. ⇐=: Suppose y is almost periodic in Y. Let x ∈ f−1(y). By the as-
sumption (GR1), the fiber f−1(y) is finite, say f−1(y) = {x = x1, x2, · · · , xn}.
Fix any open neighborhood U of x in Tx. Put U1 = U and t1 = e. It follows
from the assumption (OC1) that for each i ∈ {2, 3, · · · , n} there is an open
neighborhood Ui of xi in Tx and ti ∈ T such that tiUi ⊂ U . Choose disjoint
open neighborhoods Wi ⊂ Ui, i = 1, 2, · · · , n, of the points xi in Tx and an
open neighborhood V of y so that the conditions (G1), (G2) are satisfied.
By Lemma 5.1, there is a neighborhood V ′ of y and a neighborhood O of
the unit element eT ′ in T ′, such that OD(y, V ′) ⊂ D(y, V ). Also there is a
compact set K ′ ⊂ T ′ such that T ′ = K ′D(y, V ′). We have K ′ ⊂ F ′O for
some finite subset F ′ of T ′. Thus T ′ ⊂ F ′OD(y, V ′) ⊂ F ′D(y, V ) ⊂ T ′, so
T ′ = F ′D(y, V ). By Lemma 5.2, S = h−1(D(y, V )) is discretely syndetic in
T and hence syndetic in T . Because of (G2) we have Sx ⊂

⋃n
i=1Wi (since for

every s ∈ S, f(sx) = h(s)y ∈ V ). Let Si = {s ∈ S|sx ∈ Wi}, i = 1, 2, · · · , n.
If for s ∈ S, sx ∈ Wi for some i = 1, 2, · · · , n, then tisx ∈ tiWi ⊂ tiUi ⊂ U
(here we used (G1)), hence for every s ∈ S, s ∈ Si implies tis ∈ D(x,U).
Consequently D(x,U) ⊃

⋃n
i=1 tiSi. Since S =

⋃n
i=1 Si, the set

⋃n
i=1 tiSi is

syndetic in T by Lemma 5.3. Hence D(x,U) is syndetic and so x is almost
periodic in the subflow 〈T, Tx〉 of X . Consequently x is almost periodic in X .

=⇒: Follows from Proposition 3.8. �

Corollary 5.5. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X →
Y a skew-morphism with h surjective, y ∈ Y . Suppose that f is good over y
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and that for any x, x′ ∈ f−1(y), Tx = Tx′. Then for any x ∈ f−1(y), x is
almost periodic in X if and only if y is almost periodic in Y.

Proof. Since f is good over y, then (by Proposition 4.9) for any element
x ∈ f−1(y) the restriction f1 : Tx→ Y of f is good over y. So the statement
follows from Theorem 5.4. �

Example 5.6. Let X = 〈T,X〉 be a compact flow. Consider the action of
the group Z2 = Z/2Z on X ×X such that

(1 + 2Z) · (x, y) = (y, x),
for all (x, y) ∈ X ×X. It commutes with the canonical action of T on X ×
X. Let Y := (X × X )/Z2 be the canonical T -flow on the quotient space
Y := (X × X)/Z2 and let q : X × X → Y be the canonical map. Denote
[(x, y)] := q(x, y). Note that for all x, y ∈ X, q−1([(x, y)]) = {(x, y), (y, x)} if
x 6= y, and q−1([(x, x)]) = {(x, x)}. By Proposition 4.7, the map q is good
over every point [(x, y)] of Y . Also, for every [(x, y)] ∈ Y , if (y, x) ∈ T (x, y)
then (x, y) ∈ T (y, x), so T (x, y) and T (y, x) are either equal to each other
or disjoint. So, by Corollary 5.5, for every (x, y) ∈ X × X, (x, y) is almost
periodic in X × X if and only if [(x, y)] is almost periodic in (X × X )/Z2.

6. A criterion for lifting of almost periodicity of a point (general
version)

Definition 6.1. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, y a point
from Y . A skew-morphism (h, f) : X → Y is said to be good over y with
respect to orbit closures if the following two conditions hold:

(OC) For any x, x′ ∈ f−1(y), x′ ∈ Tx implies x ∈ Tx′.
(GR) For any x ∈ f−1(y), the restriction f1 : Tx→ Y of f is good over y.
A morphism f : X → Y of flows X = 〈T,X〉 and Y = 〈T, Y 〉 is said to be

good over a point y ∈ Y with respect to orbit closures if the skew-morphism
(idT , f) : X → Y is good over y with respect to orbit closures.

Remark 6.2. The condition (OC) is weaker than the condition:
(OC′) For any x, x′ ∈ f−1(y), Tx and Tx′ are either equal to each other or

disjoint.
If, for example, Ty is minimal, (OC) and (OC′) are equivalent. (This is

the case in Proposition 7.3 below.)
The condition (GR) requires that all f1’s, but not necessarily f , are good

over y. Hence the fiber f−1(y) can be infinite. (If f is good over y, the
condition (GR) is automatically satisfied by Proposition 4.9.)

Example 6.3. Let X = 〈T,X〉 and Y = 〈T ′, Y 〉 be two flows and (h, f) :
X → Y a skew-morphism with h surjective and f a homeomorphism. Then
for every y ∈ Y , (h, f) is good over y with respect to orbit-closures.
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Theorem 6.4 (Criterion for lifting of almost periodicity of a point). Let
X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X → Y a skew-morphism with
h surjective. Let y ∈ Y be a point such that (h, f) is good over y with respect
to orbit-closures. Then for any x ∈ f−1(y), x is almost periodic in X if and
only if y is almost periodic in Y.

Proof. Let x ∈ f−1(y). Let X1 = 〈T, Tx〉 be the subflow of X on Tx.
Let f1 : Tx → Y be the restriction of f to Tx. Then the skew-morphism
(h, f1) : X1 → Y satisfies conditions (GR1), (OC1) of Theorem 5.4. (The
condition (GR1) follows from the assumption (GR) and the condition (OC1)
follows from the assumption (OC).) Hence x is almost periodic in X1 iff y
is almost periodic in Y. By 2.15, x is almost periodic in X iff y is almost
periodic in Y. �

Corollary 6.5. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X →
Y a skew-morphism with h surjective, y ∈ Y . Suppose that f is good over y
and that for any x, x′ ∈ f−1(y), Tx and Tx′ are either equal to each other or
disjoint. Then for any x ∈ f−1(y), x is almost periodic in X if and only if y
is almost periodic in Y.

Proof. Follows from Proposition 4.9 and Theorem 6.4. �

7. Examples of skew-morphisms good over a point with respect to
orbit-closures

Proposition 7.1. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) :
X → Y a skew-morphism with h surjective. Suppose that (X, f) is a covering
of Y . Let y ∈ Y be a point with a finite fiber. Suppose that each deck-
transformation of (X, f) is an automorphism of the flow X and that the group
4 of deck-transformations of (X, f) is transitive on f−1(y). Then:

(i) f is good over y.
(ii) (h, f) is good over y with respect to orbit closures.

Proof. (i) Proved in Remark 4.8(ii).
(ii) The condition (GR) follows from (i). Let’s check (OC). Observe that

for every g ∈ 4 and x′, x′′ ∈ X, x′′ ∈ Tx′ implies gx′′ ∈ Tgx′ since g is
an automorphism of X . Fix any x ∈ f−1(y) and let x′ ∈ f−1(y) ∩ Tx. Let
g ∈ 4 be such that gx = x′. From gx ∈ Tx we have (using the above
observation) g2x ∈ Tgx ⊂ Tx. Then g3x ∈ Tg2x ⊂ Tgx, etc. Since all
elements x, gx, g2x, · · · are in the finite set f−1(y), there is a smallest n ≥ 1
such that gnx = x. We have Tx = Tgnx ⊂ Tgn−1x ⊂ · · · ⊂ Tgx ⊂ Tx.
Hence Tx = Tgx = Tx′. Hence (OC) holds. �

Proposition 7.2. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) :
X → Y a skew-morphism with h surjective. Let y be a point of Y which
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has a neighborhood V such that f−1(V ) is compact and suppose that for any
x, x′ ∈ f−1(y), Tx and Tx′ are either equal to each other or disjoint. Let
x ∈ f−1(y) be such that Tx ∩ f−1(y) is finite. Let f1 : Tx → T ′y be the
restriction of f to Tx and let X1 = 〈T, Tx〉 be the subflow of X on Tx. Then:

(i) f1 is good over y.
(ii) (h, f1) : X1 → Y is good over y with respect to orbit closures.

Proof. (i) Since f−1
1 (V ) = f−1(V ) ∩ Tx, K := f−1

1 (V ) is compact. Also
K is a neighborhood of f−1

1 (y) in Tx and f−1
1 (y) = f−1(y) ∩ Tx is finite by

assumption. Since, by Proposition 4.7, the restriction f2 : K → Y of f1 is
good over y, the map f1 is also good over y (by Proposition 4.9).

(ii) Follows immediately from (i) and the assumption about orbit-closures
of elements of f−1(y). �

Proposition 7.3. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, X compact,
and let (h, f) : X → Y be a skew-morphism with h surjective and f locally
injective. Let y ∈ Y be an almost periodic point of Y. Then:

(i) f is good over y.
(ii) (h, f) is good over y with respect to orbit closures.

Proof. (i) For each point z ∈ X we can choose an open neighborhood Oz
such that f is injective on Oz. Since X is compact there are finitely many
points z1, z2, · · · , zn such that Oz1 ∪ · · · ∪ Ozn covers X. Each of these sets
can contain at most one element from f−1(y). Hence f−1(y) is finite. Now
by Proposition 4.7, f is good over y.

(ii) The condition (GR) follows from (i). Let’s check (OC). We may assume
that f is surjective and hence Y compact. Fix any x ∈ f−1(y). Let x′ be
another point from f−1(y) and suppose x′ ∈ Tx. Suppose that x /∈ Tx′.
Let f−1(y) = {x = x1, x2, · · · , x′ = xm, xm+1, · · · , xn}. Without loss of
generality we may assume that Tx′ ∩ f−1(y) = {xm, xm+1, · · · , xn}. Using
the compactness of X and the fact that f is good over y, we can find (choosing
conveniently neighborhoods Ui of xi, i = 1, · · · , n) open pairwise disjoint
neighborhoods Wi of xi, i = 1, 2, · · · , n, and V of y, so that at the same
time the conditions (G1), (G2) are satisfied, f is injective on each of Wi,
i = 1, 2, · · · , n, and Tx′ is disjoint from every Wi, i = 1, 2, · · · ,m−1. Let S′ =
D(y, V ). Then by 2.17(i), T ′ = F ′S′, where F ′ is a finite subset of T ′. Hence
by Lemma 5.2, T = Fh−1(S′), where F is a finite and S = h−1(S′) a syndetic
subset of T . There is a net tαsαx1 → xm with tα ∈ F and sα ∈ S. The
net (tα) in F has a convergent subnet tβ → t. Since tβsβx1 → xm, we have
tsβx1 → xm. Hence sβx1 → t−1xm. Since f(sβx1) = h(sβ)y ∈ V , sβx1 ∈⋃n
i=1Wi = f−1(V ). At the same time t−1xm ∈ Tx′. Since Tx′ is disjoint

from each Wi for i = 1, 2, · · · ,m−1, we have that for β ≥ β0 (for some β0) all
sβx1 are in

⋃n
i=mWi. Fix some sβx1 ∈ Wj , j ∈ {m,m+ 1, · · · , n}. For each
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i = m,m+1, · · · , n, sβxi ∈
⋃n
p=mWp (which must be in Tx′ and in

⋃n
i=1Wi at

the same time). So there are two of the points sβx1, sβxm, sβxm+1, · · · , sβxn
in one of the sets Wm, · · · ,Wn. The image under f1 of each of them is h(sβ)y.
Since f is injective on each of Wm, · · · ,Wn, these two points should be equal
to each other, a contradiction. Hence x ∈ Tx′, i.e., the condition (OC) is
satisfied. �

Corollary 7.4. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows and suppose
that all orbit closures of X are compact. Let (h, f) : X → Y be a skew-
morphism with h surjective, f locally injective and let y ∈ Y be an almost
periodic point of Y. Then (h, f) is good over y with respect to orbit closures.

Proof. For each point x from f−1(y), we can apply Proposition 7.3 to the
skew-morphism (h, f1) : X1 → Y, where X1 = 〈T, Tx〉 is the subflow of X on
Tx and f1 : Tx→ Y is the restriction of f to Tx. �

8. Applications of the criterion for lifting of almost periodicity of
a point

Corollary 8.1. Let X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X →
Y a skew-morphism with h surjective and f a homeomorphism. Let y ∈ Y
and let x ∈ f−1(y). Then y is almost periodic in Y if and only if x is almost
periodic in X .

Proof. Follows from Example 6.3 and Theorem 5.4. �

Corollary 8.2 ([12, Theorem]). Let X = 〈T,X〉 be a flow and x a point
of X. Then x is almost periodic if and only if it is discretely almost periodic.

Proof. Apply Corollary 8.1 to (idT , idX) : Xd → X , where Xd = 〈Td, X〉.
�

Corollary 8.3 ([10, Theorem 2.1] with T = T ′ and h = idT ). Let X =
〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X → Y a skew-morphism with
h surjective. Suppose that (X, f) is a covering of Y all of whose fibers are
finite. Let y ∈ Y and let x ∈ f−1(y). Suppose that each deck-transformation
of (X, f) is an automorphism of the flow X and that the group of deck-trans-
formations of (X, f) is transitive on f−1(y). Then y is almost periodic in Y
if and only if x is almost periodic in X .

Proof. Follows from Proposition 7.1 and Theorem 5.4. �

Corollary 8.4 ([9, Proposition 4.3] with T = T ′ and h = idT ). Let
X = 〈T,X〉, Y = 〈T ′, Y 〉 be two flows, (h, f) : X → Y a skew-morphism with
h surjective. Suppose that whenever x1, x2 ∈ X are in the same fiber, their
orbit-closures are either equal to each other or disjoint. Let y be a point of Y
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which has a neighborhood V such that f−1(V ) is compact and let x ∈ f−1(y)
be such that Tx∩ f−1(y) is finite. Then y is almost periodic in Y if and only
if x is almost periodic in X .

Proof. Let f ′ : Tx → T ′y be the restriction of f , X ′ = 〈T, Tx〉, Y ′ =
〈T ′, T ′y〉 the canonical flows. Then, by Proposition 7.2, (h, f ′) : X ′ → Y ′
is good over y with respect to orbit-closures. Hence, by Theorem 5.4, y is
almost periodic in Y ′ iff x is almost periodic in X ′. Also, by 2.15, y is almost
periodic in Y iff y is almost periodic in Y ′ and x is almost periodic in X iff x is
almost periodic in X ′. Thus y is almost periodic in Y iff x is almost periodic
in X . �

Corollary 8.5. Let X = 〈T,X〉 be a flow all of whose orbit-closures are
compact and let Y = 〈T ′, Y 〉 be a compact flow. Let (h, f) : X → Y be a
skew-morphism with h surjective and with f locally injective. Let y ∈ Y be an
almost periodic point in Y with a nonempty fiber. Then every x ∈ f−1(y) is
an almost periodic point of X .

Proof. Follows from Proposition 7.3 and Theorem 5.4. �

Corollary 8.6 ([5, Proposition 3]). Let X = 〈T,X〉, Y = 〈T, Y 〉 be two
compact flows and f : X → Y a surjective locally injective morphism. Let y be
an almost periodic point of Y. Then every x ∈ f−1(y) is an almost periodic
point of X .

Proof. Follows from Corollary 8.5. �
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